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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

ON THE EXTENSION OF TRANSI-GROUPS 

ALEXANDRU SOLIAN, (Bucharest) 

(Received September 29, 1963) 

The author generahzes the theory of extensions of groups to the transi-
groups introduced by the author in the paper [5]. 

In the theory of transi-groups one can construct the quotient-transi-group of 
a given transi-group with respect to a normal subtransi-group of the latter. As in the 
theory of groups one can raise the problem of finding transi-groups which are in a 
certain sense, extensions of two given transi-groups. The present paper treats and 
solves a slightly modificated problem. 

Coming now to a more precise formulation we remark that, when giving a transi-
group (M, 21, e) and an equivalence relation ^ in M, imprimitive with respect to 2(, 
i.e. a normal subtransi-group (K, 25, e, '^), the group 25 is not an (effective) transfor
mation group of К but it is homorphically mapped onto such a group 25*, obtaining 
in this manner the transi-group (K, 58*, e) associated with (K, 25, e, ^), The group 21 
is an extension of 25 by 21/25 (which acts as a transformation group of M/'^), If the 
quotient-transi-group (M/'^, W25, [e]) (where \_e] is the equivalence class of e 
and coincides as a subset of M with K) is transitive, all the equivalence classes of M 
with respect to '^ have the same cardinal number, so that M can be identified with 
the cartesian product К x [Mj ^). 

The present paper deals with the problem of existence (and not of finding all 
solutions) of a transi-group (M, 2(, e) when the group 21 is given as an extension 
of 25 by 21/25. To be more precise, a necessary and sufficient condition is given in 
order that the given extension 21 act as an (effective) transformation group in the 
cartesian product К x (M/ '--'). 

For the questions of the theory of equivalence relations, the reader may refer to [2] 
and [1], for those of the theory of groups to [3] and for those of the theory of transi-
groups, to the papers [4] and [5] where the definitions of technical terms employed 
are also given. 

1. Let i^ be a set and let 25 be a group for which there exists a group homomor-
phism xl/ from 58 onto an (effective) transformation group 25* of K, Let (M*, 2f*, ^*) 
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be a transitive transi-group; let 21* be the subgroup of all a, a e 2(*, for which a(e*) = 
= e* and let a^, Я e Л, be a system of representatives of the left residue classes of 2{* 
with respect to 21* (here the representative of %% is meant to be e, the unit element 
of 21*). 

For any X* G M*, there exists a unique Я, A G Л, for which а;̂ (в*) = x*. 
Let 21 be a given extension of 35 by 2{*; let т ,̂ a G 21*, be a system of representatives 

of the extension, where т̂  = 1 (here 1 denotes the unit element of 21); let /i^^ ,̂ a, j9 G 2t*, 
be the factor system associated with the т .̂ Let us denote by 2lo the subgroup of all 
elements of 2i, whose residue classes are in 21*; we have 2lo ^ S5. We introduce the 
notations 

a^"^ = x^ax'^ , (T̂  = T ; VT„ , a G 21* , (т G25 . 

The elements of 21 may be uniquely represented in the form <7T«, a G 95, a G 21* and 
the product is made according to 

((JlT^) {cjjX^ = (Tia^2^Ha,ß^aß . ос, Д G 21* , CTj, (72 G 95 . 

Let us denote the cartesian product К x M* by M. 
Finally we make the following hypothesis: 

Hypothesis {^): If a, CTG25, has the property ф{(т°'^) = ф{\) for all keA, then 
G =1, 

The introduction of this hypothesis will be justified at point 2. 

2. To justify the introduction of hypothesis ( ^ ) , we make the following consi
derations: 

Suppose that (M, 2t, e) is a transi-group and that {K, 25, e, ^ ) is a normal subtransi-
group, the quotient-transi-group with respect to whom, (M*, 2(*, e*) say, is transi
tive; it is well-known^) that in this case, all classes in the decomposition of M by 
^ are cardinally equivalent; consequently, M can be identified with the cartesian 
product К X M*. The identification is made in the following manner (we employ the 
notations of point 1, though we have to do here with another situation): 

If X G M, let X* be his equivalence class with respect to ^; suppose that a^, X e Л, 
is such that a;(e*) = x*; then 

(1) C ( ^ ) = fe6K 

as is easily seen from the definition of quotient-transi-groups; we then identify x, 
X G M, with the couple (/c, x*) e К x M*. 

In particular we identify keК with (/c, e*) and if a^(e*) = x* we obtain from (1), 
T«̂ (/c, e*) = (fc, X*). 

^) See, for instance, [4]. 

31 



With every a G 25 there is associated, in a natural way a transformation ф((т) of K, 
namely that which satisfies {(фо) (к), в*) = a{k, e*), кеК^). Consequently, with 
the same notations as before, we have 

a{k, X*) = ax^lK e*) = т J ( ^ a " - ) (fe), e*) = {{фа'^) (к), x*) . 

Hence, it is sen that if фа"^^ is the identical transformation of К for all ÀE Л, 
then ( 7 = 1 . 

Thus, hypothesis (6^) is a necessary condition for the construction of the transi-
group (M, 21, e). 

It must be also observed that if 25 coincides with 25* and ф is the identity mapping, 
hypothesis (^) is automatically satisfied since among the cr̂ ^ may be found a too. 

3. With the data and notations of point 1, let us suppose in addition that there 
exists a homomorphism cp, (p : Шо -^ X{K) whose restriction to^ coincides with ф. ^) 

1) We define a mapping rj,f]:%-^ X{M) in the following manner: Let ax^ e 21, 
(T G 25, a G 31* and let (/c, x*) G M. where ke К, x"^ e M*. If the chosen representative 
of the left residue class with respect to З!*, which contains a, is a ,̂ g e Л, then 
a^(e*) = a(e*) hence T ~ 4 « G 2lo; put 

"Ö 

the <5„, a G 21*, define a function which associates with every a G 3(* a ^^G2^(i^). 
Suppose that x* = аД^*) and that â  = aa^(mod З!*«)» "*") >̂? v G Л. 

Then, by definition,^) 

(2) ( , , Ю ) (fe, X*) = ((<7/i,.,J- 5,,,(/c), a(x*)) . 

We assert that fj{(JT^), a G 25, a G 21*, is a transformation of M: indeed, if {k\ y*) e 
e M, k' e K, y* G M*, then, since 2(* acts transitively on M, there exist a, a ,̂ ôv ^ 31* 
where À,veA such that 

a(x*) = j ; * = ay(e*) and а;̂ (е*) = x* ; 

let k, ke K, be such that 

^,J''^ Ô^Jk) = k'; 

such a /c exists since <5„„̂  and ф{((Т1и^ ал)"̂ ") ^*'̂  transformations of K̂ ; we have 
( ,7K))(/c,x*) = (/c',y*). • 

^) Instead of crr ,̂ we have written cr which is the same thing. 
^) By X(E) we denote, generally, the group of all transformations of the set E, 
'̂ ) That is to say, left congruent with respect to Ш*. 
^) Here, instead of (гр(а^)) (k^) we have written, in order to simphfy notations, rTjC^x), <^i ^'^B, 

ki ^1^' 
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If (rj{aT^)) (к, X*) = {ri((Jt^)) (/ci, xî) , it is an immediate fact that x* = xt ; further 
it may be easily checked that к = k^. 

2) In order to prove that f/ is a group homomorphism, let сг̂ т̂ , сгзт̂  e Ш and 
(k, X*) e M where the meaning of notations is obvious; if 

(3) X* = ая(е*) , afx*) = aje^) , ^5а(х*) = a J e * ) , 

where Я, v, тг G Л, then according to definition (2), we have 

According to the same definition we have 

(5) rj{a2Tß . (TiO (/c, X*) = ([(T^^V^.a/^/i., J^'^ oß^Jk), ßa{x^)) . 

From relations (3) we obtain 

Based on the fact that i/̂  is a rectriction of (p and on relations (6), the first component 
of the second member of (4) respectively (5), is the result of the action on к of the 
transformation 

= ф(Та"/о-2Тд(Т1ТЛя) 

respectively of the transformation 

Here we used the definition of {л^^^ namely 

So it was proved that ?/ is a group homomorphism. 

3) Suppose that ат^, ax^ e 21, has the property that YI{OT^ is the identical trans
formation of M; consequently 

/7((7T,) (ic, X * ) = (/C, X* ) 
for any (/c, X*) e M. 

According to definition (2), this impHes, firstly, a = e. Let x* = a^(e*); since è^^ 
is the identical transformation of K, we obtain from the same definition (2) that 
i//(ö-''̂ ) is the identical transformation of X; since x* is arbitrarily chosen in M*, Я may 
be considered as an arbitrary element of Л, so that we may apply hypothesis (5^) and 
obtain (J = 1. 
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So ff is not merely a homomorphism, but a monomorphism. 
While identifying ат^ with /̂(CJT )̂ and, consequently, % with rj{W) we may say that 21 

is an (effective) transformation group of M. Moreover, if we choose in iC a well-
determined but otherwise arbitrary element kQ, we obtain the transi-group (M, 9(, e) 
where e = (/co, <?*)• 

4) We define in M the following equivalence relation which we denote by ^ : 
let (/cj, X*), (A:2, >̂ *) e M; then, by definition (/cj, jc*) '^ (/c2, .v*)if and only if x* = y*. 

Considering the subgroup 93щ('^) associated with ^, if ат^, (TT^E%, belongs to 
this subgroup, then, according to (2), a(x*) = x* for any x* e M* and then a = г 
and сгт^еЗЗ; conversely, every element of 93 nftay be written in the form ат^ and, 
consequently, belongs to 93QI('^); hence '^ç^{^) = 93. 

It is easily seen that the equivalence ^ is imprimitive with respect to 21. 
On the other hand, the equivalence class of e is К x {e*}; if we identify the 

couple (/c, e*) with /c, for any ke K, then К x {e*} is obtained to be identified with K. 
So we have to do with the normal subtransi-group (K, 93, e, ^) of (M, 21, e). 

Let (TTg e 93; then, from (2) we have 

(7) <7ф,е*) = {{фа){к),е*) 

so that <T, considered as an element of 21, induces in К the transformation ф{(7). 
Consequently, the transi-group associated with (K, 93, e, ^) is (K, 93*, e) where, 
namely, to a, G e 93, we associate \l/{a). 

Now, we define a homomorphism of transi-groups, (/i, / ) , (^, ;/) : (M, 21, e) -^ 
-> (M*, 21*, e*), through the relations: 

h(k, X*) = X* , z(<7T„) = a , /< e К , X* e M* , a e « , a e 21* . 

It was no error while anticipating on the homomorphism character of (/i, x)^ since 
according to definition (2), we have 

к{аф, X*)) = a(x*) = (z((7T,)) (й(/с, x*)) 

and there is no difficulty to prove the other properties of transi-group homomorphisms. 
Obviously, the kernel of (h, x) is (J^, 93, e, ^ ) . 

5) To summarize, we have constructed a transi-group (M, 21, e) with the following 
properties: 

i) Denoting by ^ the equivalence defined as at 4), the subtransi-group generated 
by --' is (K, 95, e, ^) where К appears through identification with К x {e*}, the 
identification having been done as at 4). 

ii) For any cr e 93, к G K, we have (7), hence the transi-group associated with 
(K, 93, e, ^) is (K, 93*, e) where to tj, a G 93, we associate i/̂ fcr). 

iii) The couple (/г, %) as defined at 4) is a transi-group homomorphism (/?, x) * 
(M, 21, ^) -> (M*, 21*, e*), whose kernel is (X, 93, e, - ) . 
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4. With the data and notations of point 1, let us suppose that there exists a transi-
group (M, 21, e), where ^ = (/CQ, e*) such that conditions i) —hi) from 3.5) are 
fulfilled. 

Let (TT̂  = Шо, where a e 25, a G З!*» f̂ (̂ ^ ^*) ^ ^ then, according to condition iii) 
from 3.5), we have 

h{ax^{k, e*)) = a(e*) = e* . 

Hence (JT̂  maps any element of К in an element of K. Since %Q is a group, it is 
not difficult to prove that ox^ induces quite a transformation (p{ox^ of K. So, we have 
constructed a mapping cp, <p : 2Io -^ ^{К), which is obviously a group homomorphism. 

If (ТТд G Э5, then a = 8 and, by definition, (p{ax^) (/c, e*) = axj^k, e*) (where in the 
second member we mean the result of the action of ax^ on (/c, e*) as in (M, 21, é»)). 
But according to condition ii) from 3.5) this implies that 

(8) <pK)(/c,e*) = ( [ H ( f c ) , e * ) -

With the convention of identification (see i) from 3.5)) and on account of the fact 
that Tg = 1, relation (8) becomes 

(<pa)(/c) = (H(fc) ; 

as this is valid for any ke K/it follows that ф is the restriction of cp to 95. 

5. We are now quite ready to formulate our fundamental result (we are given the 
data and notations of point 1): 

Theorem. In order that a transi-group (M, 21, e) {where e = (̂ o? ^*)? ^o ^ ^ ) 
should exist, so that conditions i) —iii) from 3.5) be satisfied, it is necessary and 
sufficient that there should exist a group homomorphism cp, <p : 2lo "^ ^{^)y 
whose restriction to 95 be ф. 

6. As particular cases we may consider the following quite trivial ones. Suppose 
in addition to the conditions stipulated at point 1, that: 

1) 21* is a regular^) transformation group of M'^; in this case 21* is the identity 
subgroup, hence 2[o = 95 and we may take cp = ф. 

2) 21 is the direct product 95 x 21*; in this case we may define ^ ( ( T T J = Ф{о')р 
(7G95, (XE%. 

References 

fl] O. Boruvka: Lehrbuch der Gruppoid und Gruppentheorie, DVW, Berlin, 1960. 
[2] P. Dubreil: Algèbre, Il-ème edition, Gauthier-Villars, Paris, 1954. 

) For the definition see, for instance, [3], p. 36. 

35 



[3] A. Г. Курош: Теория групп, Издание второе, переработанное, ГИТТЛ, Москва, 1953. 
[4] А. Solian: Théorie des transi-groupes I. Relations d'équivalence et sous-groupes associés. 

Revue Roumaine de math. p. et appL, 9, 1964, 211—228. 
[5] A. Solian: Théorie des transi-groupes IL Définitions fondamentales et théorèmes d'isomorp-

hisme. Revue Roumaine de math. p. et appL, 9, 1964, 677 — 695. 

Резюме 

О РАСШИРЕНИИ ТРАНЗИГРУПП 

АЛЕКСАНДРУ СОЛИАН (Alexandru Solian), Бухарест 

Автор обобш;ает теорию расширения групп на случай транзигрупп, введенных 
им в работе [5]. 
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