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1. INTRODUCTION, NOTATION 

Recently I. HONG [1], [2], [3] investigated the continuous dependence of eigen-
functions and eigevalues for the Laplace operator on the domain. We employ the 
variational method, which enables us to prove the continuous dependence of eigen­
values and eigenfunctions on the domain for selfadjoint elliptic operators of higher 
orders. 

We employ the following notation: G will be an open bounded set of the r-
dimensional Euclidean space £ ,̂ G the closure of G, G the boundary of G; D{G) the 
set of infinitely continuously differentiable functions with compact support in G, for 
the elements of D{G) small Greek letters will be used. The symbol D\ where i = 
= (ï'i, 12,..., /V) {is being nonnegative integers), will denote the weak derivative of 
order i ~ (fj, i2,..., Q 

D^ = 
^Xl^Xl^ • ••> ^Xr 

Let m and n be nonnegative integers, m > n. Let йф bij be bounded measurable 
function on E„ üij = aji, Ьц = bji. For cp G D{G), \j/ e D{G) we put 

(1) {ср,Ф)гп= Y f D'cpD'yjjdx, 

(2) (<?»„ = I f 0'9В'фах, 

(3) {ср.Ф} = I (* a.jD'çD^^dx, 

(4) 1ср,Ф] = 1 f b^jD'çD^dx. 
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Let us assume that the equations (3) and (4) define scalar products. Completing D(G) 
under the norms which are associated with scalar products (1)~(4) we obtain the 
spaces Ж2^ И̂2> ^m? ^« respectively. Denoting the norm of an element и belonging 
to W2, W2, Hj„, H,j by \и\цгпг, \u\wnlul^, lit/IL respectively, we see immediately that 

We shall assume once and for all that the opposite inequalities are also true, i.e. that 
there are constants C3, С4 such that 

for any и belonging to Я,„, H„ respectively. Under these restrictions Я,„ and Я„ are 
Hilbert spaces. 

We say the function и is the generalized eigenfunction provided, there is a number À 
such that for any (p G D(G) the relation 

{u, (p} = A[w, (p] 

holds. The number Я is by definition generalized eigenvalue. Sometimes we shall omit 
the word generalized. 

If the coefficients and the domain are suitably regular generalized eigenfunctions 
satisfy the equation 

(-1У" Y D'üijDJu ={-1)4 X D'bijDJu 
\i\ = \j\=m | i | = ! j l = « 

and the normal derivatives of и up to the order m vanish on the boundary. In this 
paper we shall avoid the regularity problem of eigenfunctions, because such consider­
ations would involve some restrictions on the open set G and we are going to consider 
most general regions. 

We now summarize some known results, which can be proved using Hilbert space 
technique [4] [5]. 

I. The smallest eigenvalue Я̂  is the greatest lower bound of the functional 

{w, u} 
(1) [щи'] 

for и G H „J, îi ф 0. The greatest lower bound is attained by the function u^, which is 
the eigenfunction. 

n . The eigenvalues (if suitably arranged) form a nondecreasing divergent sequence. 
To every eigenvalue there corresponds an eigenfunction. If Я ,̂ ..., Я^-i, are the first 
eigenvalues and t/^, ..., ŵ _jf the corresponding eigenfunction, then the /^ eigen­
function gives the minimum value to the functional (1) between all functions и 
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satisfying following conditions [w, wj = 0 , t = 1, 2, ..., r — 1. The eigenfunctions 
obtained in such a way are orthogonal and obviously, they can be supposed to be 
orthonormal. The set {w J is complete in Я„, i. e. for every x e Я^ the formula 

OO 

is valid (where ĉ- = {x, w,}) the convergence being understood in Я„,. 

Ш. The 77-th eigenvalue and p-th eigenfunction can be obtained also in the 
following way. One choose /7—1 linear independent function v^ and looks for the 
minimum of the functional 

{w, u} 
under the conditions 

[w, u] = 1 , [w, i;.] = 0 , / = 1, ..., /7 — 1 . 

This minimum A depends on the choice ofv^; A = A^v^, V2, •.., Vp-i) • The inequality 

A(vi,V2,...,Vp_i) s Я̂ , 

is always vahd and A attains its maximum value Àp for u^ = v^, t = 1, 2, ..., /7 — 1̂  

An immediate consequence of IIL is that the eigenvalues are nonincreasing 

functions of the domain, i.e. ïï XJ^G^ is the 5-th eigenvalue for the region G ,̂ /c = 1, 2 

and Gl с: G2, then /.(Gj) ^ KiGi)-

2. LEMMAS 

Lemma 1. Let p be a positive integer, A positive number. There exists a constant M 
depending only on A and p (and diameter of G) such that, if 

1) u,eH,,„ [w„wj = S,,, \\ut\ln uA,t,s = l,2,,..,p, 

2) for y^ e Я,„ and sufficiently small г > 0 

hs - ys\\m < s . 5 = 1,2, . . . , / 7 . 

Then there exists a set of elements v^ G Я,„ S = 1,2, ..., p such that 

I. Vf are linear combinations of y^ 

IL [v,, V,] = Ô,, 

IIL IIw,, - t;,||,„ < Me, t = l,2,,..,p. 

R e m a r k . The assertion III. of lemma 1 will be abbreviated by \\и^ — Vt\\,„ = 0[s), 

Proof. The case /7 = 1 is obvious. Assuming the theorem is true for p we shall 
prove it for /7 + 1. First of all it follows from the assumption 2) that \\ui ~ y,||„ = 
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= 0(e) and hence \\Уг\\п == 1 "̂  ^(^)' t = ^^^^---^ P^ P + L By induction hypothesis 
we have \\щ - v,\\^ = 0{^), t = l,2,,,.,p and hence ||w, - г;̂ ||„ = o(e). Therefore 

= [t/p+i, ^t] + ^(^) = ["p+b ^ J + [^P+i' ^t - Щ] + 0(8) = 0(e). 

Putting 
p - i 

we obtain successively 

Now, we are allowed to put 

\v„ '^p+l\\n 

The set of functions t^i, i;2» •••» ^P '^P + I is the desired one. As a matter of fact 
l^t ~ ^r|U = ^(^)' ^ = 1» •••' P^ ^y induction hypothesis and 

l|wp+i - ^p^ilm й ||wp+i - 3^p+i.|U + IUP+I - î p+i.|U + ||i^p+i. - î̂ p+i.||m = 0(г). 

Lemma 2. Let us assume the hypothesis \) from lemma 1. Then there is a system 
\j/^,..., i/̂ p G D(G) such, that 

(1) ht - ^tbn < e 

(2) [<A„ JAS] = r̂s 

/, 5 = 1,2, ..., p. 

Lemma 2 follows immediately from lemma 1 using the definition of the space Я^. 

Lemma 3. Let u^ (r = 1, 2, ..., p) be a set of elements of H^ such that 

(3) [w„ M J = è^^ t,s = 1,2, ...,p . 

If for any (p G D(G) 

(4) {щ, cp} = À^u,, cp] , 

then to every e > 0 there exists a system of functions фи Фг^ •••» 'Аг ̂  ^ ( ^ ) ^^^^ 
that in addition to (l) and (2) the relation 

(5) {Фг, ^s} = S,X + 0(s) 

is valid. 
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Proof. The existence of ij/^ satisfying (l) and (2) is insured by lemma 2. Since 
obviously {Uf, M J = ^r.sA, the desired inequality (5) follows from 

{Фп ^s} = {Фt-lh> ^s} + Wt, Фз} = {^o Us} + Wt, lAs" Щ} + 0{s) = À,ô,,+ 0(e), 

In the sequel we shall keep the following notation; s is positive integer, p is non-
negative integer, Kp is the subspace of Я^ spanned on the first p eigenfunctions 
Ui, U2, ...,Up (for convenience we put KQ = 0 and XQ — 0), Kp denotes orthogonal 
complement of Kp in H„,. 

Lemma 4. / / weH^, ||w||„ = 1, w = x + у + z, XEK,.^, уеК,+рПК,_^, 
zeK,,.p,\\w\\'^ = XM\xluöandif 

4 й 4+1 ^ . . . ^ K+p = K+p+i - a , a > 0 

0,f being the t-th eigenvalue), then 

\\z\\l g 1 [Я* - Я̂  + оЧ,-] . 
ОС 

Proof. Obviously 

(6) я* = {w,w}^||^'||^ + | |z | |^ 

By the definition of у and z we have 

(7) \\у\Ц^фГ„, 
(8) ||z|j,U4.p..lk||„^ 
In view of the evident equation 

(9) 1 = hVn = ll-ll.̂  + \\УГП + И' 
and the assumption ||x|J„ < <5 we obtain from (6), (7) (8) 

Я* è 4(1 - 5^) + a | | z | | ^ 

The lemma has been proved. 

Lemma 5. Let us suppose in addition to the assumptions of lemma 4 ||z[|„ ^ Ô. 
Then 

(10) \\х\\1йЛ,_,о' 

(11) ||z|if„ ^ Я* - Я, + 2.5Ч . 

Proof. The inequality (10) follows from the definition of x. Further, we have 
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and since | | j | | ^ ^ 1 — 2^^, we obtain 

X* Ш U\ - 23') + \\z\\'„ , 
which is the inequality we wanted to prove. 

R e m a r k . In the proof of lemma 5 we did not make use of the assumption a > 0 
from lemma 4 and this assumption may be omitted in lemma 5. 

3. APPROXIMATION OF THE DOMAIN FROM INTERIOR 

Let G^ be a sequence of open set. Let us denote by Я ,̂ Я̂  the p-th generalized 
eigenvalue and w ,̂ Up the p-th eigenfunction for the set G ,̂ G respectively. 

Theorem 1. / / G^ Œ G^+' a G and if G Œ \J Ĝ  then 
k = 

(1) lim 4 = ^P 
k-* 00 

/ c = l 

Proof. First of all À^ й ^l^^ й Яр, hence there exists lim /l* = I 
k-* 00 

(2) 1 , ^ 1 . 

Let us consider the function ф^ (t = 1,2, ..., p) from lemma 3 

А(ф,, ф2. .••, Фр-i) ^ {Фр, Фр} й^р+ 0(e). 

If к is large enough, i.e. if Ĝ  contains supports of all ф1 (t = 1, 2, ..., p) then by 
III. section 1 

and hence 

(3) ХйЛр+о{8). 

The inequalities (2) and (3) prove the theorem. 

We say lim G^ = G provided that 
Л-*оо 

i) to every compact set F cz G there is a number kg such that F cz Ĝ  for /c > kQ. 
ii) to every open set 0 з G there exists a number kg such that Ĝ  cz 0 for к > kQ. 

Theorem 2. IfG^czG and if lim G^ = G then (1) holds. 
k~^ 00 

Theorem 2 follows immediately from theorem 1. 
Let Lj and L2 be 5-dimensional subspaces of Я,„ and ŵ ^ VV2, •.., w ,̂ î i, ^i^ •••? 4v 

orthonormal bases in L^, L2 respectively. We put 

i = 1 
T(LI , L2) = MY, 

i = 1 

where the greatest lower bound is taken over all bases of L̂  and L2. 
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The following assertion is quite an obvious one. If W|, ..., w^ is a bases of L^ and 
if T(LI, L2) < s then there exists a basis Vi,V2,'",VpOfL2 such that 

p 

E ht ~ Vt\\ < ps. 

Definition. Let L;̂ , L be ^^-dimensional subspaces of Я„,. We say lim Lj, = L, 
if И т т ( Ь ь Ь ) = 0. ^^^ 

k->- 00 

Theorem 3. / / Ĝ  cz G, G = lim G^ on J // 

K-l ^ ^s — ^s+1. — ••• — ^s + p < Л + p+J 
then 

limi^^ + p n K^-i = i^s+p ^ ^ s - i 

where we have denoted by К], K^ r/ze space i^ ,̂ K̂  respectively for the set G '̂. 

As a corollary of theorem 3 we obtain Theorem 4. 

Theorem 4. Le/ u^, ^s+i-> •••? ^s+p ^^ ^he system of eigenf unctions associated with 
the eigenvalue 4 of multiplicity p + 1. If 4 _ i < Я̂  = Я +̂р < 4 + p+i '̂ '̂ '̂  ^/ 
Ĝ  cz G, lim G^ — G then there exists a sequence of sets of eigenf unctions wj, u^+i,..., 

. . . , u^s+p ^^^h that 
lim ||w,+, - w,+J| = 0 

t = 0 , 1 , 2 , . . . , p. 

P roo f of theorem 3. We decompose м̂  as follows (ŵ  being r-th eigenfunction for 
the set G )̂ 

u^t = ^1 + y'i + z'l. 

Let us consider first the case s = L By lemma 4 

1 

By lemma 5 

4L'^-W-A,). 

u) - y',\\f„ u^4-h + - {ХЧ - A,) Я, = n. 

Using lemma 1 we find functions v, 6 Xp+, such that [v„ y j = 5,, and 

t = s, s + 1, ...,s + p. Clearly 

= o(^*) + o ( A j - i o ­
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The theorem has been proved for s = 1. We proceed by induction. Using induction 
hypothesis we find functions w^, W2, ..., w,_i ei^s_i such that 

and 

ЯГ < e , 

?, ^ = 1, 2, ..., 5 — 1. Let us choose kg such that for к > UQ the inequality 

Af — Я̂  < 8 , t = 1, 2 , . . . , s + p 

holds. The elements w^, W2,..., w^.^ form a orthonormal basis oîK^^^^ hence 

s - l 

where ĉ ^ = {м ,̂ w^}. Since ĉ ^ = 0(e), it is ||x^||^ = 0(e) and also ||JCJ||^ = 0(e), 
f = s, s + 1 , . . . , s + p. Applying lemma 4 one obtains Ц̂ Ц̂̂  = 0(e) and making use 
of lemma 5 ||z^||^ = 0(e). Hence 

Iht ~ ^fiP = Ö(ß) . t = s , s + 1, ..., 5 + JP . 

Having functions y^ one can complete the proof in the same way as in the case s = 1. 

4. APPROXIMATION OF THE DOMAIN FROM OUTSIDE 

Throughout this section we shall assume that the boundary of G has no inner 
boundary points i.e. the sets G and G have the same boundary. Further, we shall 
assume that the w-dimensional measure of G is zero. 

Let G^ be a sequence of open sets satisfying G с G^^^ a G^ and lim Ĝ  = G. We 

say that the set G is stable provided Я,„ = f) Hf„, where Я^ is the space Я^ for the 
se tG^ '=' 

It was proved by L Babuska [6] that the concept of stability does not depend on 
the choice of the sequence G .̂ It was also shown in that paper that (for certain class 
of elliptic operators) the stability of the domain is a necessary and sufficient condition 
for the continuous dependence of the solution of the Dirichlet problem on the 
domain G. 

00 

Let us denote by Я* = f) Я^ and by ^f the minimum of the functional {u,u} 

under the conditions [w, w] = 1, и E Я*. Let us denote the function, which gives the 
minimum by w*. As soon as Я^' ^t^ •••Д* and м ?̂ "*» •••» ^̂ * are defined, we define 
Я*+1 by the relations 

Я*+1 = Min {w, и} 
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for и e Я*, [и, и] = 1, [w, M*] :;= О, Г = 1, 2, ..., p. As soon as A*+i is defined, we 
define Up+i as a function which gives minimum to the functional {w, u} and which 
satisfies [w*+i, M*+I] = 1, [w*+i, wj = 0, t = 1,2,,.., p. The usual argument used 
in the proof of existence of eigenvalues shows, that Xf and w* are well defined. 

Theorem 4. If G a G^"^' с G^ lim G^ = G then lim Я? = Я*, г = 1, 2, . . . 
к-* 00 

Proof. Since Я̂  ^ Я^^^ ^ Af ^ Я, there exists lim Я̂  = 1, ^ ^t- Since every set 
bounded in the norm of Я ^ is compact in H^ one can choose a subsequence of 
W\}k=i,2,... which is convergent in H^. We may assume that {wj}jk=i,2,... î i itself is 
convergent in H^. By the usual procedure one can show that then {Wf}/t-i,2,... is 
convergent in Я^, lim w, = м̂  e Я*. 

Clearly lim \\u^t\\m = \\^t\\m = Hm Я̂  = Я .̂ Since ||wj„ = 1, we have Я̂  ^ Я'̂  in 
fc-^ 00 k~* 00 

view of the definition of Я*. Hence 

(4) X, = At 

and 

(5) w, = t/f 

for t = 1. The relations (4) and (5) can be now proved by induction. 
As a consequence of theorem 4 we obtain Theorem 5. 

Theorem 5. If G с G^+i cz G^ lim G'̂  = G a«d г/ G fs s^ab/e, r/iew 
fe-» 00 

(6) lim A? = A,. 
fc-* 00 

for every t = 1,2, ... 

Combining Theorem 5 and Theorem 2 we have 

Theorem 6. / / l i m G^ = G and if G is stable, then lim Я̂  = Я̂  for t = 1,2,... 
k-*-oci 

An analogue of Theorem 3 is the following 

Theorem 7 . / / G с G'+^ с G^ i/Я, = Я^ (r = 1,2, ..., s + p) and if 

v ) я^.^ < я̂  = À^+i = ... = я^+р < я ,̂+р+1 
then 
(8) l imi^ . t+ ,nX^_i = K , ^ , n / C s - l 

fc-*oo 

The proof is very similar to the proof of the theorem 3 and therefore we shall omit it. 
As a consequence of Theorem 7 we have Theorem 8. 
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Theorem S. If G с: G^+i с: G^ lim G"" = G if (7) /5 valid and if G is stable then 
(8) holds. -̂-«̂  

By Theorem 5 the stabiHty of G is a sufficient condition for (6). The following 
theorem shows, that this condition is in certain sense also necessary. 

Theorem 9. / / G с Ĝ  c: G^-^^ and If {6) holds for t = 1, 2, ..., then G is stable. 
Proof. The functions й^ {t = 1,2,...) form a complete system in Я*. By Theorem 7 

й^Е H^ for t — 1, 2, .... Hence Я* c: Я,„. The reversed inclusion is trivial. Hence 
Я* = Я^ and G is stable. 
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Резюме 

НЕПРЕРЫВНАЯ ЗАВИСИМОСТЬ СОБСТВЕННЫХ ЗНАЧЕНИЙ 
ОТ ОБЛАСТИ 

ИВО БАБУШКА (Ivo Babuska), РУДОЛФ ВЫБОРНЫ (Rudolf Vyborny), Прага 

В статье исследуется непрерывная зависимость собственных чисел (и в опре­
деленном смысле и собственных функций) самосопряженного положительно 
определенного эллиптического оператора от областр!. Исследуется также связь 
с понятием устойчивой области для задачи Дирихле. 
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