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1. INTRODUCTION, NOTATION

Recently I. HonG [1], [2], [3] investigated the continuous dependence of eigen-
functions and eigevalues for the Laplace operator on the domain. We employ the
variational method, which enables us to prove the continuous dependence of eigen-
values and eigenfunctions on the domain for selfadjoint elliptic operators of higher
orders.

We employ the following notation: G will be an open bounded set of the r-
dimensional Euclidean space E,, G the closure of G, G the boundary of G; D(G) the
set of infinitely continuously differentiable functions with compact support in G, for
the elements of D(G) small Greek letters will be used. The symbol D’, where i =
= (iy, i3, ..., i,) (i; being nonnegative integers), will denote the weak derivative of

order i = (iy, iz, ..., iy)
Ali]
i1 Aiz i |
0,0, vy O,

Let m and n be nonnegative integers, m > n. Let a,;, b;; be bounded measurable
function on E,, a;; = aj;, bi; = bj;. For ¢ € D(G), Y € D(G) we put

® (0¥ = % | DpDy dx,
2 (@, ¥)a o '2; DipD'y dx,
(3) {o, ¥} = l'i=‘|:l= a,DipD¥y dx,

f b;;D'eDy dx .

lif=1jl=n J E,

“ [0 91 =
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Let us assume that the equations (3) and (4) define scalar products. Completing D(G)
under the norms which are associated with scalar products (1)—(4) we obtain the
spaces W2, W4, H,, H, respectively. Denoting the norm of an element u belonging
to Wi, Wi, H,,, H, by ulw,,., |”an| unm, I u|, respectively, we see immediately that

Julo = Caluhwo [l S Cofulre.

We shall assume once and for all that the opposite inequalities are also true, i.e. that
there are constants C, C, such that

lulw = Cslulyn s ulls 2 Calu

wn

for any u belonging to H,,, H, respectively. Under these restrictions H,, and H, are
Hilbert spaces.

We say the function u is the generalized eigenfunction provided, there is a number 4
such that for any ¢ € D(G) the relation

{u, o} = Au, 9]

holds. The number 4 is by definition generalized eigenvalue. Sometimes we shall omit
the word generalized.

If the coefficients and the domain are suitably regular generalized eigenfunctions
satisfy the equation

(=™ Y Dla;Diu=(-1"4 Y D'b;;D'u
lil=1jl=m lil=1jl=n
and the normal derivatives of u up to the order m vanish on the boundary. In this
paper we shall avoid the regularity problem of eigenfunctions, because such consider-
ations would involve some restrictions on the open set G and we are going to consider
most general regions.

We now summarize some known results, which can be proved using Hilbert space
technique [4] [5].

1. The smallest eigenvalue 2, is the greatest lower bound of the functional
{u, u}
(1) s
[u, u]

for ue H,,, u #+ 0. The greatest lower bound is attained by the function u,, which is
the eigenfunction. :

II. The eigenvalues (if suitably arranged) form a nondecreasing divergent sequence.
To every eigenvalue there corresponds an eigenfunction. If 44, ..., A,_,, are the first
eigenvalues and u,, ..., u,_; the corresponding eigenfunction, then the r'" eigen-
function gives the minimum value to the functional (1) between all functions u
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satisfying following conditions [u, u,] = 0, t = 1,2,...,r — 1. The eigenfunctions
obtained in such a way are orthogonal and obviously, they can be supposed to be
orthonormal. The set {u,} is complete in H,, i. e. for every x € H,, the formula

m

o0
X =) cu,
=1
is valid (where ¢; = {x, u;}) the convergence being understood in H,,.

1II. The p-th eigenvalue and p-th eigenfunction can be obtained also in the
following way. One choose p — 1 linear independent function v, and looks for the
minimum of the functional

{u, u}

under the conditions
[u,u] =1, [u,0]=0, i=1,..,p—1.
This minimum A depends on the choice of v,; A = A(vy, v, ..., v,—,) . The inequality
Ay, 055 00 0,_4) £ 4,

is always valid and A4 attains its maximum value 4, foru, = v,,t =1,2,...,p — 1,

An immediate consequence of III. is that the eigenvalues are nonincreasing
functions of the domain, i.e. if ).S(Gk) is the s-th eigenvalue for the region G, k = 1,2
and G, = G,, then A(G,) = A(G,).

2. LEMMAS
Lemma 1. Let p be a positive integer, A positive number. There exists a constant M
depending only on A and p (and diameter of G) such that, if
1).u,eH,, [u,u] =9, []u,” <A ts=1,2,...,p,

m =

2) for y € H,, and sufficiently small ¢ > 0
lug — y|lm<e, s=1,2,....p.
Then there exists a set of elements vy,e H,, s = 1,2, ..., p such that

I. v, are linear combinations of y,
1L [o,, o] = &,
L fu, — v, < Me, t =1,2,...,p.
Remark. The assertion III. of lemma 1 will be abbreviated by |lu, — Ullm = O(e)-

Proof. The case p = 1 is obvious. Assuming the theorem is true for p we shall
prove it for p + 1. First of all it follows from the assumption 2) that ||u; — y[|, =



= O(¢) and hence ||y [, =1+ O(e), t = 1,2, ..., p, p + 1. By induction hypothesis
we have [u, — v,]|. = O(e), t =1,2,..., p and hence u, - v;]l» = O(e). Therefore

[o+1s 0] = [p+15 0] + e = uprrso] =
= [u,,+1, Ut] + 0(8) = [UPH’ “t] + [up+1’ vy — “t] + 0(8) = 0(8)'

Putting

p—1
ﬁp+1 = Vp+1— Zl[yp+1,vr] Uy
t=

we obtain successively

“'7p+1 - J’p+1”n = 0(8)’ ”61’“”" =1+ 0(8)’ ”l—)l’“”" *0.

Now, we are allowed to put

Up+1

T ol

The set of functions vy, Uz, -+-» Up» Up41 is the desired one. As a matter of fact
““r - v,“m = o(g), t =1, ..., p, by induction hypothesis and

"upﬂ — v,,+1.[],,, = ”up+1 - ,Vp+1.”m + ”yp+1 - 5p+1.”m + “Ep-i-l - Up+1”m = 0(3) .

Lemma 2. Let us assume the hypothesis 1) from lemma 1. Then there is a system
V15 .- W, € D(G) such, that

(1) fue = ¥flmw <&
(2) ['//n l//;] = 5ts
t,s=1,2,...,p.

Lemma 2 follows immediately from lemma 1 using the definition of the space H,,.

Lemma 3. Let u, (t = 1,2, ..., p) be a set of elements of H,, such that

3) [u,u] =65 t,s=1,2,..,p.
If for any ¢ € D(G)
@ {us 0} = 4[u, o],

then to every ¢ > O there exists a system of functions Yy, V2, ..., Y, € D(G) such

that in addition to (1) and (2) the relation
) (Vi U} = 6, + O(e)

is valid.
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Proof. The existence of y, satisfying (1) and (2) is insured by lemma 2. Since
obviously {u,, u;} = 9,/ the desired inequality (5) follows from

{l/l,, '//v} = {'//t_un !//s} + {un l/ls} = {”n “s} + {”n Y— us} + 0(8) = Ab,+ 0(6)'

In the sequel we shall keep the following notation; s is positive integer, p is non-
negative integer, K, is the subspace of H,, spanned on the first p eigenfunctions
Uy, Uy, ..., u, (for convenience we put K, = 0 and 4, = 0), K, denotes orthogonal
complement of K, in H,,,.

Lemmad. If weH,, |[w|,=1, w=x+y+z xeK,_, yeKy,n Ky,
z€Ksips ”w”,f, = 2%, ”x”,, < dandif
Asi1 £ oot S Asup = Agaper — @, a>0

(l, being the t-th eigem;alue), then

Iz]% < i [A% — 2, + 6%A].

Proof. Obviously
(6) 2 = {w,wh z |yla + [z[n-
By the definition of y and z we have
(7) Iyla 2 450
(8) Iz0% 2 Aspeallz]i -

In view of the evident equation

) U= [wla = |xz + [¥]s + |2]a

and the assumption [x||, < & we obtain from (6), (7) (8)
2z A1 = 8% + afz]F.

The lemma has been proved.

Lemma 5. Let us suppose in addition to the assumptions of lemma 4 [[z",l <.
Then

(10) - Ixln = 4-15%
(11) I2]|2 < 2* = 2, + 2824,

m =

A

Proof. The inequality (10) follows from the definition of x. Further, we have

2* = {w,wh z Alyls + |z[a,
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and since “y”f > 1 — 2562, we obtain
2%z (1 —28%) + ||z]% .
which is the inequality we wanted to prove.

-Remark. In the proof of lemma 5 we did not make use of the assumption o > 0
from lemma 4 and this assumption may be omitted in lemma 5.

3. APPROXIMATION OF THE DOMAIN FROM INTERIOR

Let G* be a sequence of open set. Let us denote by /Z’;,, /4, the p-th generalized
eigenvalue and u’,‘,, u, the p-th eigenfunction for the set G*, G respectively.

Theorem 1. If G* = G**' = G and if G = { G* then

k=1

M lim 25 = 7.

Proof. First of all 1, < /1';“ < }.,'ﬁ, hence there exists lim i:‘; =1
®) d, S 4. o
Let us consider the function ¥, (t = 1, 2, ..., p) from lemma 3

A(‘#l’ lr//27 e l»01;—1) g pr’ lpll} § ;'P + 0(8) *

If k is large enough, i.e. if G* contains supports of all ¥, (1 = 1,2, ..., p) then by

III. section 1
A< 2, + O(e)

and hence

(3) A< 2,4+ 0().

The inequalities (2) and (3) prove the theorem.
We say lim G* = G provided that

k— o0
i) to every compact set F < G there is a number k, such that F < G* for k > k.

ii) to every open set 0 o G there exists a number k, such that G* < 0 for k > k.
Theorem 2. If G* = G and if lim G* = G then (1) holds.

k— o0

Theorem 2 follows immediately from theorem 1.
Let L, and L, be s-dimensional subspaces of H,, and w,, w,, ..., W, Uy, U, ..., Uy
orthonormal bases in L,, L, respectively. We put

oLy, L) = inf ¥ [, — o],
i=1

where the greatest lower bound is taken over all bases of L, and L,.
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The following assertion is quite an obvious one. If w,, ..., w, is a bases of L, and
if 7(Ly, L,) < ¢ then there exists a basis v,, v,, ..., v, of L, such that

Sl = ol < pe.

Definition. Let L,, L be p-dimensional subspaces of H,. We say lim L, = L,

if lim ©(L,, L) = 0. ko
k— o
Theorem 3. If G* = G, G = lim G* and if
k- o
’Is—l < ls = As+l. = ... = )‘x+p < }‘s+p+l
then

limK¥, ,nK{_, = K, , n K,_,
where we have denoted by K¥, K* the space K,, K, respectively for the set G*.

As a corollary of theorem 3 we obtain Theorem 4.

Theorem 4. Let ug, gy, ..., Uss, be the system of eigenfunctions associated with
the eigenvalue A, of multiplicity p + 1. If Ay < A = Agyp < Ay pyy and if
G* < G,lim G* = G then there exists a sequence of sets of eigenfunctions u*, uz+ Ls eoos

k-
.s Usy , such that
lim ”ufH — us+,” =0
k— o
t=20,1,2,..., p.

Proof of theorem 3. We decompose u! as follows (u’,‘ being t-th eigenfunction for
the set G¥)
up =Xy + yi + 2,
xfeK,y, yeKy,nKy, zi€Ky,, t=s, s+1,..,5s+0p.

Let us consider first the case s = 1. By lemma 4

1
2412 52 (4 - 7).
By lemma 5

Jut =y < 2 — Ay + g(zf — )2y =

Using lemma 1 we find functions v, € K+, such that [v,, v,] = d,, and
uf = vl = O(n.)

t=s,s+1,....s + p. Clearly

1

= o) + O(A% — 2,).

m

k
e _ Uy
k
At

1
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The theorem has been proved for s = 1. We proceed by induction. Using induction

hypothesis we find functions wy, w,, ..., w,_; € K;_, such that
{wo Wq} = Jy
and
uy
Py wll <eég,
Ay i

t,q =1,2,...,s — 1. Let us choose k, such that for k > k, the inequality
Hod<e, t=1,2,..,5+p

holds. The elements w,, w,, ..., w,_; form a orthonormal basis of K;_,, hence

s=1
Xy = Z CiqWq
a=1

where ¢, = {u}, w,}. Since ¢, = O(g), it is |xi|2 = O(¢) and also |x;|2 = O(e),
t=s,5s+1,...,5 + p. Applying lemma 4 one obtains ||z}[|7 = O(e) and making use
of lemma 5 ||z,”m = O(e). Hence

““l:_}’z]P:O(E), t=§, s+1,..,s+p.

Having functions y, one can complete the proof in the same way as in the case s = 1.

4. APPROXIMATION OF THE DOMAIN FROM OUTSIDE

Throughout this section we shall assume that the boundary of G has no inner
boundary points i.e. the sets G-and G have the same boundary. Further, we shall
assume that the n-dimensional measure of G is zero.

Let G* be a sequence of open sets satlsfymg Gc Gt e G" and lim G* = G. We

k=0
say that the set G is stable provided H,, = ﬂ H*, where H* is the space H,, for the
set G,

It was proved by I. Babuska [6] that the concept of stability does not depend on
the choice of the sequence G*. It was also shown in that paper that (for certain class
of elliptic operators) the stability of the domain is a necessary and sufficient condition
for the continuous dependence of the solution of the Dirichlet problem on the
domain G.

o)
Let us denote by H* = (} HY and by A} the minimum of the functional {u, u}
k=1
under the conditions [u, u] = 1, u€ H*. Let us denote the function, which gives the
minimum by u}. As soon as A%, 43, ..., A¥ and uY, u3, ..., uj are defined, we define
23+ by the relations
Zy+1 = Min {u, u}
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fOTHGH* [u,u] =1, [u,u¥] = 0,1 =1,2,..., p. As soon as A%, is defined, we
define u,,+1 as a function which gives minimum to the functional {u, u} and which
satisfies [up+15 p+l] =1, [uPH, ] =0,t=1,2,..., p. The usual argument used
in the proof of existence of eigenvalues shows, that A and u¥ are well defined.

Theorem 4. If G = G**' < G*, lim G* = G then lim A¥ = 2}, t = 1,2, ...
k—
Proof. Since 2¥ < ! < A¥ < A, there exists lim 2¥ = [, < A¥. Since every set
bounded in the norm of HY, is compact in H} one can choose a subsequence of
{u':},‘=1_2 which is convergent in H.. We may assume that {u,}k 1,2,... in itself is

convergent in H}. By the usual procedure one can show that then {uf},_, , . is
convergent in H}, lim ut = i, e H*.

Clearly 11m ”u,[[m = ||u,",,, = llm % = 7,. Since “u,” =1, we have 1, = AT in

view of the deﬁmtlon of Af. Hence

©) 1, =2*
and
(5) i, = uf

for t = 1. The relations (4) and (5) can be now proved by induction.
As a consequence of theorem 4 we obtain Theorem 5.

Theorem 5. If G = G**! = G*, lim G* = G and if G is stable, then

k- o0

(6) lim A% = 2, .

k= oo
for everyt =1,2,...

Combining Theorem 5 and Theorem 2 we have

Theorem 6. If lim G* = G and if G is stable, then lim )L’,‘ =1 fort=1,2,...

k— o0

An analogue of Theorem 3 is the following

Theorem 7. If G = G**' = GY if A, = 4F (t = 1,2,...,s + p) and if

(7) ls—l <)'s=)'s+1 = "'=)“s+p<}'s+p+1

then

(8) limKS, , nKf_, =Ky, n K,y .
k= ©

The proof is very similar to the proof of the theorem 3 and therefore we shall omit it.
As a consequence of Theorem 7 we have Theorem 8.
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Theorem 8. If G = G**! = G lim G* = G if (7) is valid and if G is stable then
(8) holds. k= oo

By Theorem 5 the stability of G is a sufficient condition for (6) The following
theorem shows, that this condition is in certain sense also necessary.

Theorem 9. If G = G* < G**', and if (6) holds for t = 1,2, ..., then G is stable.

Proof. The functions i, (t = 1, 2, ...) form a complete system in H*. By Theorem 7
id,eH, for t =1,2,.... Hence H* = H,,. The reversed inclusion is trivial. Hence
H* = H,, and G is stable.
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Pe3rome

HETPEPBIBHAS 3ABUCUMOCTH COBCTBEHHBIX 3HAUEHUM
OT OBJIACTHA

MNBO BABVIIKA (Ivo Babuska), PYJOJI® BbIBOPHBI (Rudolf Vyborny), [1para

B cTaThe MCCIEMYETCs HEeMPEPhIBHASL 3aBUCUMOCTh COOCTBEHHBIX uuces (U B ompe-
JIeJIEHHOM CMBICIE M COGCTBEHHBIX (DYHKIHMIT) CAMOCOIPSDKCHHOTO IOJIOKHTEIIBHO
ONPEAETIEHHOTO IJUIMITHYECKOro orepaTopa ot obsactu. Mccieayercs Takxe CBS3b
C TIOHSITHEM YCTOMYMBOM oOnacTu s 3amauyn dupuxie.
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