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Чехословацкий математический журнал, т. 15 (90) 1965, Прага 

EXTENSIONS OF ADDITIVE MAPPINGS 

JAN MARIK, Praha 
(Received January 16, 1964) 

Let Z be a Boolean ring and (B an'Abelian group. Further, let Л be a certain 
class of additive mappings from Z into @. To each element of Л we construct 
an additive extension. By this method the Lebesgue integral can be extended 
(see [2]). 

1. Let Z be a Boolean ring (see, e.g., [ l ] , section 2). We don't suppose that Z has 
a unit. If P cz Z, Ö с Z, then P 4- ß is the set of all x + y, where XG P, у e Q; the 
meaning of PQ is defined similarly. (The union, the intersection and the difference of 
sets S, F will be denoted by S и V, S r\ Fand S — F respectively.) 

Further let @ be an Abehan group. The zeros of Z and @ will be denoted by the 
same symbol 0. 

A mapping С of a set M с Z into ® is called additive, when the implication 

(x, J, X + j ; 6 M, xy = 0)=> (C(x + y) = C{x) + С{у)) 
is vaHd. 

If ^ is a mapping of a set M с Z and if z G Z, we define mappings Cz^ Cz î ^ the 
following way: Cz(^) = C{^x) for all x v/ith zxe M and Czi^) ~ C(^ + ^x) for all x 
with X + ZXE M. 

2, Let Л be a subring of Z and let 0 be a set of mappings 9 with the following 
properties: S is defined on a subring M(5) of Z such that AM{S) с M{S), 9(M(S)) с 
с @ and S is additive. Let y be a transformation of a set Л с 0 into G. For each 

Я e Л put С(Я) = M{y{À)) and for each x G C{À) write {y{X)) (x) = y(X, x). Instead 
of "x e С(Я)" we shall sometimes write "y{À, x) has a meaning" (or similarly). If we 
say, e.g., that y(/l, x) = 0, we mean, of course, that Яе Л, x e C{X). Further, let со 
be a homomorphism of @ into ®. Assume that the following conditions are fulfilled: 

Rl) If Я G Л, z G Z, then À, G Л, л', G Л. 
R2) For each Я G Л we have - ÀeA, C{- Я) = C{X) с Л. 
R3) If ÀeA, хеАп М{Х), then y{À, x) = Я(х) (so that Л n М(Я) с С(Я)). 
R4) If Я, jLi,vG А and if v(x) = Я(х) + /x(x) for each x G М ( Я ) n M(ju), then 

y(v, x) = 7(Я, x) + y(^, x) for each x G С(Я) n C(/i). 
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R5) If Д, /г G Л and if fi{x) = шЯ(х) for each x e М(Я), then y{fi, x) = соу{Л, x) for 
each X G С(Я). 

3. Suppose that a convergence on Z and a convergence on @, fulfilhng the con
ditions of \1\, 3 and 5, are defined. Construct the set *F and the transformation ß 
of 4^ into *F according to [1\, 24. Let со be a continuous homomorphism of ® into ®; 
let A be a subset of W such that the impUcation Xe A=> —XE A and the condition Rl ) 
are valid. It follows from [ l ] , 20, 29, 25 and 26 that the conditions R2) —R5) are 
fulfilled, if we put у = ß. (If we use the notation of [1], 24, then, of course, C{X) = 
= ß(i).) 

4. For each Xe A we have y( — X) = —y{X). 

Proof. Choose a Я G A. It follows easily from the additivity of Я that Я(0) = 0. The 
mapping Ào{x) = 0 (x G Z ) belongs, by Rl), to A and X{x) + ( -Я) (x) = 0 = XQ{X) 
for each x G M{X). Further, by R3), y{Xo, x) = Xo{x) for each xeA = An М(Яо). It 
follows from R4) that y{X, x) + у(-Я, x) = 7(^0, x) = 0 for each x G С(Я) = C{-X) 
(see R2)). 

5. Suppose that a, seZ, as = a. Then у(Я, a) = 7(4, a), whenever at least one 
side of this equality has a meaning. 

Proof. We may assume that aE A. Since a + sa = 0, we have Я (̂а) = 0, whence 
у(Я;, a) = y{-X:, a) = 0. Evidently X,{x) + Я;(х) = Я(х), Я(х) + (-Я;) (x) = Я,(х), 
whenever the corresponding sum has a meaning. Now, our assertion follows easily 
fromR4). 

6. If z G Z and XE A, put 

H{X, z) = {aE C{X,); z + az E M{X)} . 

For each a E H[X, Z) write 

а(Я, a, z) = 7(Я ,̂ a) + Я(г + az) . 

We see that H[X, z) is the set of all a such that а(Я, a, z) has a meaning. Further, let 
5(Я) be the set of all s such that H{X, s) Ф 0. 

Remark . L e t / b e a function on the Euclidean space E^ and let z be a measurable 
set in Ef. L e t / , be a function that coincides w i t h / on z and equals zero on E^ — z. 
Let, further, Я be the (indefinite) Lebesgue integral of / and let ^(Я) be a suitable 
"improper integral" of/. Then Я̂ , is the Lebesgue integral oïf^. Suppose that there 
exists a set a such that а(Я, a, z) has a meaning. In the next section we show that 
а(Я, a, z) does not depend on the choice of a; the number a{X, z), defined in 8, is then 
a certain generalized integral of/ over z (see [2]). 
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1. If ae A, b, ceH{X, s), ab — b, then a eЯ(Я, s), а(Я, Ь, s) = а(Я, с, s). 

Proof. Since s{a + Ь) = a(s + bs)G ЛМ(Я) с М(Я) and a + Ь G Л, we have 
A(s(fl + Ь)) = 4 (а + Ь) = 7(4, fl + Ь); now, from the relations b + (a + b) = a, 
b{a + b) = 0 we infer that 

(1) 7(Я„ a) = y(4, b) + 7(4, a + b) = у(Я„ b) + Ща + b)) . 

Clearly {s{a + b)) (s + as) = 0, s(a + b) + {s -i- as) = s + bs and so A(s(a + b)) + 
+ A(s + as) = A(S + bs). Hence it follows from (1) that а(Я, a, s) = a(/l, b, 5). If we 
choose a = Ь + с + be, we have ab = b, ac — с and so а(Я, с, s) = а(Я, а, s) = 
= a(/l, Ь, s). 

8. For each s e 5(Я) we may put, according to 7, ^(Я, s) == а(Я, a, s), where a is 
an arbitrary element of Я(Я, s). 

9. T/ie mapping (т(Я, .) is 0« extension of both mappings Я, у(Я). 

Proof. Choose a c e C{})) and an m бМ(Я). By 5 we have y{X, c) = 7(4, c), so 
that 7(2, c) = a(A, c, c); clearly X{m) = а(Я, 0, m). 

10. Suppose that À, ?S'\/P^ e A, s e S{À^'^) n S{À^^^) and that X{x) = Y^^) 
2 

Œ = Ü ) /^^ ^«^^ ^ ^ М(Я^'^) n M{À,^^^) with SX = X, Then a{X, s) = Y^{X^'\ «)• 
i = 1 

Proof. Choose a^e H(^X^'\ s) and put a = a^ + «2 + «102. By 7 we have a G 
G H{À^% whence 

(2) (т(А̂ >̂, 5) = y{Äi'\ а) + Я<'>(5 + as) {i == 1, 2) . 

If X G M ( 4 ^ ^ ) n M(;4^>), then, by assumption, Y.:^i%x) = Y.^^%sx) = X{sx) = Цх) 
and so, on account of R4), ^ 7 ( 4 ' ^ a) = 7(4, a). Now, it follows from (2) that 
^сг(Я^О, s) = 7(4, a) + À{s + as) = а{Л, s). 

11. Suppose that Я, ß G Л, s G 5(Я) and that /х(х) = со Я(х) /o r eac/i x G М(Я) 
wif/г xs = X. Then а^/л, s) = œ сг(Я, s). 

(This follows easily from R5).) 

12. IFe /iflue ö'( —Я, x) = — (т(Я, x), whenever at least one side of this equality has 
a meaning. 

(This follows easily from 4.) 

13. We have ^(x^, x) = а(Я, 5x), whenever at least one side of this equality has 
a meaning. 

Proof. If either а{А^, x) or ^(Я, sx) has a meaning, then there exists an a such that 
a[À^, x) = 7((4)x' ^) + "^si^ + <̂ )̂ = y{Kx^ ̂ ) + (̂'̂ •̂  + ^^x) = (т(Я, sx). 
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14. If there is no danger of misunderstanding, we omit the symbol X and write 
C(/l) = C, a{X, x) = a{x) etc. 

15. If se S, a e A, as = a, then a e C. 

Proof. Choose a b e H(s). Then ЬеС{А^), whence ab e C(À^). Since abs = ab, 
we have by 5 abeC and from s -f- bsGM we infer that a + ab = a(s + bs) e 
G M n Л c= C; therefore a = (a -\- ab) + abe С. 

16. Suppose that a s A. Then y{a) = ^(a), whenever at least one side of this 
equality has a meaning. Especially, A n S = С 

(This follows immediately from 9 and 15.) 

17o Suppose that 
1 2 — 1' Л^Л^ = 0, Then a{xi + ^2) = cr(x2) — o'(^:i), 

a(x^ + X4) = (т(хз) + cr(x4), whenever the corresponding right-hand side has 
a meaning. 

Proof. Put X = Xi + X2. If t e M{X^^) n M ( 4 j , then À^^^) - A^^{t) = X{x2t) -
— À(xit) = À,{xt) = ЯД^). Now, if Xi G S, X2 G S, we get, with the help of 13, 12 and 
10, ö'(x2) — (y{xi) = (T(>̂ X2' ^2) + ^(~~Kt^ ^2) = ^{^x-» ^2) — (у{х). The second rela
tion can be proved similarly. 

18. We have a{xi + X2) = Ö'(XI) + Ö'(X2) — 2(T(XIX2), whenever the right-hand 
side has a meaning. 

Proof. Put у I = Xi 4- X1X2. As x^XiX2 = X1X2 and У1У2 = 0, it follows from 17 
that a{xi) - a{x^X2) + ^{xj) - (T(XIX2) = a{yi) + а{у2) = cr(yi + У2) = o{x^ + X2). 

19. С + M с 5*. 

Proof. Choose cGC^meM. As cm e AM с M, it follows from 9 that c, m, cm G 
G 5 and by 18 we get с + me S. 

20. If a e A, be H(s), then ab e H{as). 

Proof. Since ЬеС{А^), we have ab e С(А^) and by 5 (where we write а,аЬ,Х^ 
instead of s, a, Я) we obtain abe C((4)^) = ^(Яд^). From 5 + bs G M it follows that 
as + abas — a(s + bs) e M, which completes the proof. 

21. AS с S. 

(This follows from 20.) 

22. Suppose that a convergence on Z and a convergence on @ with the same sup
port are given (in the sense of [ l ] , 1). Let the convergence on Z fulfil the conditions 1), 
2) of [1], 3 and let the convergence on ® fulfil the condition 3) of [1], 5. Suppose 
that X is continuous and that y{X^ is continuous for each s e S. Then a is continuous 
as well. 
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Proof. Let s„ -^ s, 
j 

(3) a[s) = y(4, a) + X[s + as) . 

Since s + s„ = s(s + 5„) e б'Л c: S (see 21), s„ = 5 + (s + s„), we get by 17 s„ G S. 
Put a„ = a + as + as^. From the relations as„ -> «5, as(a + as) = 0 it follows 
that a„ -^ a + as + as = a. As as„ G ÄS cz 5, we get by 17 

(4) a{s„) = a{as^) + a{s„ + a5„) . 

The equalities sa„ = as„ imply, by 13 and 16, that o(as„) = cr(5a„) = а[А^, a„) = 
= (̂Я ,̂ a„) -> у (As, a). Since 5,, + Ö5„ + s + as = (s,, + s) (s + as) G AM c= M, we 
have also s„ + as„ G M, so that, by 9, cr(s„ + as„) = A(s„ + as„) -^ À[s + as). Hence 
it follows from (4) that (7(s„) -^ у{А^, a) + À{s + as) = a(s). 

23. R e m a r k . For each AG Л put T{X) = C{X) + M{X). As ЛМ(Я) с М(Я), 
Т(Я) is а ring; it is evidently the smallest ring containing both C(X) and M(A). By 19 
we have T(X) с S(X). In the following example (Theorem C) we show that S(X) is 
not necessarily an additive group; then, of course, Т(Я) ф S[X). If Я, /x, v 6 Л and if 
À{X) + /i(x) = v(x) for each x G M(X) n M(/x), then, according to 10, S{À) n S(ij) cz 
с S'(v); we shall see, however, that the inclusion Т(Я) n T(ju) с T(y) may be false 
(Theorem D). 

24. Example . Let X, N be two copies of the set of all natural numbers and let Z 
be the set of all functions xonK such that for each kG К either x(/c) = 0 or x{k) = 1. 
If XI,X2GZ, put Xi + X2 = X, X1X2 = y, where x(k) = |xi(/c) -- X2(/c)|, y{k) = 
= Xi(/c) X2{k) (k G к). Evidently x, у G Z, x[k) ~ Xi{k) + X2{k) (mod 2). If we put 
j(^k) = l(kG K), then j is the unit of Z. For each x 6 Z put 

00 

||x|| = Y НЩ - x(k + 1)1 , rj{x) = inf {k; x(k) = 1} 

(so that ?/(0) = 00). It is easy to see that 

(5) ||x + y\\ й \\x\\ + \\y\\ , \\xy\\ g !|x|| + \\y\\ , 4x) S rj{xy) 

for arbitrary x, y GZ. 

Put, further, Л = {x; ||x|| < 00} and let ^ be the system of all sequences {x„} 
(HGN, X^GZ) such that sup ||x„|| < 00, rj^Xn) -^ 00. It follows from (5) that Л is 

n 

a ring and that {ax„} G ^ , {x„ + ax„} = {{j + a) x„} G ^ for each a G Л and each 
{x„} G ф. Now we define a convergence x„ -> x on Z by the relations xx„ = x„, 
{x„ + x} G^. By [1], 4 this convergence fulfils the conditions l) and 2) of [1], 3. 
Further let ® be the additive group of real numbers with the usual convergence. 
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An element zÇ:Z belongs to A if and only if there exists the limit lim z(/c); we 
fc->oo 

denote it by z(oo). Let Aç^ be the set of all z e A such that z(oo) = 0. Now define 

(6) jXk) = 1 for кип, j'Xk) = 0 for k> n. 

It is easy to see that aj„ e AQ and aj„ -> a for each ae A. Thus we get UAQ = A; AQÏS 
clearly an ideal in Z. 

Let {öfcjfcGK: be an arbitrary sequence of finite real numbers. Let M be the set of all 
CX) 

ZGZ such that ^ |a t̂z(/c)j < oo. To each z e M we attach the number i(z) = 
00 k=l 

= У]с1^ z{k). Thus we have defined a mapping Я of M into ®. It is obvious that M 

is an ideal in Z and that Я is additive. If ze M and {h„} e^, then |Я(/î^z)| ^ 
00 00 

^ Z kfc hn{k) z{k)\ ^ Y, \^k ^{Щ^ so that À{h„z) -^ 0. According to [1], 6, Я is 
k=l ' k = tj(hn) 

continuous. 
We say that Я is determined by the sequence {aj,}. Let A be the set of all mappings 

determined by a sequence of real numbers. If Я is determined by {a^} and if z G Z, 
then Я̂  is determined by {aj, z{k)} so that Я̂  G Л as well. Evidently Я̂  = Я ,̂ where 
V = j + z. 

With each Я G Л we can associate, according to [1], 24, a set Б(Я) and a mapping 
ß(A). If we put, e.g., cot = t for each ^ G @, then, by 3, the conditions Rl) —R5) of 2 
are fulfilled (we have, of course, y = ß, C[X) = ^(Я)). Now, by 6 and 8, a set S{X) 
and a mapping a[X, .) can be attached to each Xe A. 

DO 00 

Lemma a). Let^j (^k ^^ ^ convergent series. For к — 1,2, . . . put r{k) = max | J^ û îj; 
fc=l 00 j ^ k i — j 

further put r(oo) = 0. Then, for each x G Л, the series ^ aj^ x(k) is convergent and 

00 

(7) \Y^a,x{k)\u{l + 2\\x\\)r(r,ix)). 
k=l 

oo 

Proof. The convergence of ^ a^ x(k) is obvious. We may suppose that rj = rj[x) < 
k=l p 

< 00. Put s^ = ai + ... + aj,, 5 = a^ + «2 + ••• For each p > rj, Yj ^к^{Щ — 
p-i fe-i 

= Y{^k~ 5,-1.) W^) - ^(^ + 0 ) + (̂ P - ^-i) ^{p)- î eî ce 
00 00 

(8) i :a , .</c) = X ( s , - s „ _ i ) W / c ) - x ( f e + l)) + ( s - s , _ , ) x ( c x ) ) . 
/< = 1 к = г] 

As |л:(оо)| ^ 1 and [s/, — s^_i[ ^ [s — 5̂ ]̂ + [5 — 5,,_i| ^ 2r(?/) for each к '^ rj, (7) is 
an easy consequence of (8). 

Theorem A. Let Я be determined by {a^}. Then B[X) is the set of all b e A such that 
00 

the series ^ % K^^) (converges; its sum is ß{A, b) for each b G Б(Я) . 
fc = i 
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Proof. Let ВI be the set of all Ь G Л such that Y, (^k КЩ converges; we denote this 

sum by (p{b). It is easy to see that B^ is an ideal in A, If be B^, {h,,} s ^ , bh„ = h„, 
then, by lemma a), (p{h„) -> 0. According to [1], 6, cp is continuous. Evidently 
(p[x) = A(x) for each xe B^ n M(X). Since ^o <= М(Я), we have A = U(^AQ) CZ 
с u(M{X}). It follows from [1], 19 that B^ с В(Х), 

Choose, conversely, a b e B(X) and define j„ by means of (6). Then bj„ -> b, 
/I 00 

2: a, K^ )̂ = I flifc b(/c) j„{k) = l(bj„) = Д(Я, bj„) -> )S(1, b), whence beB„ 
k=l k=i 

00 

i : a, b{k) = i?(;., b). 

fe=l 

Theorem B. Let A be determined by {а̂ ^}. Then S[l) is the set of all z e Z such that 

Y_, (^k K^) converges; its sum is (т(Я, z)for each z G 5(Я). 
00 Proof. If ZES{X}, then (Т(Я, Z) = ö'(4,j) == ß{KJ) = L «fc К^) У̂ 1^' ^̂  ^̂̂^̂  

00 ^ " k=l 

by Theorem A. The same is true, if ^ â^ ̂ (^) converges. 
00 

Lemma b). If a^ ^ 0,^а^ = со and if Hm aj, = 0, Йеп й^ге exist x, у eZ such 
fc=l Л->О0 

00 

that X + у = j,Y ^k{^{^) ~ y{k)) = 0-
00 

Proof. We find easily numbers b^ = ± 1 such that Y^a^bj, = 0. Now we put 
x{k) = i{l + b,), у{к) = i{l - b,). 

00 

Theorem С Let Y^k^^ ^ non-absolute!у convergent series of real numbers and 

let X be determined by {а^}. Then there exist x, у e 5(Я) such that 
00 00 

Y aj, x{k) y{k) = 00 , J] aj,\x{k) - y{k)\ = - oo ; 
k=l k=l 

hence xy, x + y G Z — S(X). 

Proof. Put z^{k) = 1 for aj, > 0, z'^(/c) = 0 for a^ ^ 0, z-{k) = 1 - z'-{k) 
oo 00 ' 

{k = 1,2,...). Clear ly^ a;. z+(/c) = Yi~^k)z~{k) = oo, z+z" = 0, z+ + z" = j . 
fc=i fc=i 

n 
For each z G Z and each nG N put A„(z) = ^ aj^ z(/c). Then 

(9) Ц^'^) -^ 00 , A„(z~) -> - 0 0 

and by lemma b) there exist f^, v'^, t~, v~ GZ such that t'^ + v"" = t~ -\- v~, = j 
(hence t^v^ = t~v~ = 0) and that 

(10) X„{zU*) - Uz^v*) - 0 , Ä„{z-r) - Uz-v-) -> 0 . 
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We now define 
X = t^z'^ + t~z~ , x' = v'^z'^ + v~z~ , 

y == t'^z"'' + t;~z" , y' = v'^z'^ + f~z~ . 

It follows from (10) that 

l„{x) - ^(xO -> 0 , А„(з;) - Ц/) -. 0 . 

Since X + x' = у + y' = j , we have 

A„(x) + A,(xO = Ш + A,.(>̂ 0 = Щ -> /?(Я, j) , 

whence À„{x) -^ iß{^j), Я„(^) -^ ^ß{^^J)^ so that, by Theorem B, x, j ; G S(A). 

Clearly xj; = r^z"^, x + y = z~. According to (9), X„{x + j^) -> —oo. Since 
t'-z'- + v'-z-' = z"-, t^v^ = 0, we have AXf^z"-) + À^V^z^) = À„{z-') -^ со'and 
by (10) we get Àj[xy) = À„(Î'^Z'^) -> оо, which completes the proof. 

00 

Theorem D. Suppose that z, z' eZ — A, z -^ z' = j . Let Y, ^k ^^ ^^^^^ ^ ^^^" 
fc=i 

absolutely convergent series that a^ z(/c) = aj, for all k. Let the sequences {a^}, 
{z'(/c)}, {ajç + z'(/c)} determine mappings Я, ft, v respectively. Then Я(х) + JL((X) = 
= v(x) for each xe M{/^ n M(/x), but the relation Т(Я) n T(/z) c: T(v) (io^s wo? 
/îo/(i. 

Proof. Since ./ G Б(Я) , Z' G М ( Я ) , we have z = j + z' G Т(Я) ; evidently z G M(/i), 
whence z G Т Ц ) n Т(ц). Suppose that z G T(V). Then 

(11) z - Ь + w , Ь G B(v), m G M(v) . 
00 

As YJ i^k + ^'(^)) ^(^) converges by Theorem A, there exists a k^ such that 

Ь(/с) z'[k) = О for each к > k^. Since the set {k; z'(/c) = 1} is infinite and since be A, 
there exists a /ĉ  such that b(/c) = 0 for all к ^ ^^. By (11), z[k) = m(k) for these k; 
it follows that 

00 00 00 

X |«*| = I Ы m = ^\a, + z'{k)\mik) . 
k — ki k = ki k = ki 

00 

As m G M(V), we obtain X кл| ^ oo, in contradiction to our hypothesis. Thus we get 

z e ( Г ( ; . ) n Г ( ^ i ) ) - Г ( v ) . ' ' 
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Резюме 

ПРОДОЛЖЕНИЯ АДДИТИВНЫХ ОТОБРАЖЕНИЙ 

ЯН МАРЖИК (Jan Marik), Прага 

Пусть Z —кольцо Буля и пусть @ — абелева группа. Пусть Л —определен
ное семейство, элементы которого суть аддитивные отображения Я некоторого 
множества М(Я) с Z в группу О. Всякому ХеЛ поставим в соответствие его 
аддитивное продолжение о'(Я), отображающее множество S{X) cz Z в группу @, 
и для X Е S[X) положим (̂ (А)) {х) = сг(Я, х). Если 1, Xi, Х2Е Л и если Xi{x) + 
+ Х2{х) = Х(х) для X е M(Ai) п М(Я2), то (T(/II, Х) + а(Х2, х) = а(Х, х) для 
х Е S(X^) п S(X2). Эти результаты используются в дальнейшей работе для 
обобщения интеграла Лебега. 
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