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YexocsoBallkHii MaTeMaTH4ecKkuii aypHau, T. 15 (90) 1965, Ipara

EXTENSIONS OF ADDITIVE MAPPINGS

JAN MaRik, Praha
(Received January 16, 1964)

Let Z be a Boolean ring and & an*Abelian group. Further, let A be a certain
class of additive mappings from Z into (. To each element of A we construct
an additive extension. By this method the Lebesgue integral can be extended

(see [2]).

1. Let Z be a Boolean ring (see, e.g., [1], section 2). We don’t suppose that Z has
aunit. If P = Z, Q = Z, then P + Q is the set of all x + y, where x€ P, y € Q; the
meaning of PQ is defined similarly. (The union, the intersection and the difference of
sets S, V will be denoted by SU ¥, Sn Vand S — Vrespectively.)

Further let & be an Abelian group. The zeros of Z and & will be denoted by the
same symbol 0.

A mapping { of a set M = Z into & is called additive, when the implication

(X, 9. x + yeM, xy = 0) = ({(x + y) = {(x) + {(»)
is valid.
If { is a mapping of a set M < Z and if z € Z, we define mappings {,, {. in the
following way: {,(x) = {(zx) for all x with zx e M and {(x) = {(x + zx) for all x
with x + zxe M.

2. Let 4 be a subring of Z and let @ be a set of mappings 3 with the following
properties: 3 is defined on a subring M(9) of Z such that AM(9) = M(9), I(M(9)) =
< & and 9 is additive. Let y be a transformation of a set 4 = © into @. For each
2.€ A put C(4) = M(y(2)) and for each x e C(%) write (p(2)) (x) = y(4, x). Instead
of “x € C(4)” we shall sometimes write “p(4, x) has a meaning” (or similarly). If we
say, e.g., that (4, x) = 0, we mean, of course, that A€ A, x € C(4). Further, let
be a homomorphism of & into &. Assume that the following conditions are fulfilled:

R1) If le A, zeZ, then A,e A, 2. € A.
R2) For each A€ A we have — L€ A4, C(— 1) = C() = A.
R3) If A€ A, x€ A n M(2), then y(2, x) = A(x) (so that A n M(%) C(/l))
R4) If Z,p,ve A and if w(x) = A(x) + p(x) for each xe€ M(2) n M(n), then
(v, x) = (%, x) + y(u, x) for each x € C(4) N C(p).
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R5) If 4, pe A and if p(x) = wA(x) for each x € M(4), then y(u, x) = wy(4, x) for
each x € C(1).

3. Suppose that a convergence on Z and a convergence on &, fulfilling the con-
ditions of \'_1], 3 and 5, are defined. Construct the set ¥ and the transformation f
of ¥ into ¥ according to [ 1], 24. Let o be a continuous homomorphism of & into &;
let A be a subset of ¥ such that the implication A€ A = — 1 € A and the condition R1)
are valid. It follows from [1], 20, 29, 25 and 26 that the conditions R2)—RS5) are
fulfilled, if we put y = B. (If we use the notation of [1], 24, then, of course, C(2) =

= B(2).)
4. For each 1€ A we have y(—2) = —y().

Proof. Choose a A € A. It follows easily from the additivity of 1 that A4(0) = 0. The
mapping Ao(x) = 0 (x € Z) belongs, by R1), to A and A(x) + (=12) (x) = 0 = 2o(x)
for each x € M(#). Further, by R3), (%, x) = Ao(x) for each xe 4 = A n M(%,). It
follows from R4) that y(4, x) + y(—4, x) = y(40, x) = 0 for each x € C(1) = C(—4)
(see R2)).

5. Suppose that a,s€ Z, as = a. Then y(4, a) = (4, a), whenever at least one
side of this equality has a meaning.

Proof. We may assume that a € A. Since a + sa = 0, we have 1(a) = 0, whence
y(2,, a) = (=2, a) = 0. Evidently A(x) + 4(x) = A(x), A(x) + (=4 (x) = 4(x),
whenever the corresponding sum has a meaning. Now, our assertion follows easily
from R4).

6. If ze Z and 1€ 4, put
H(A,z) = {a€C(,); z + aze M(A)} .

For each a € H(4, z) write
o4, a,z) = y(A,, a) + Mz + az).

We see that H(Z, z) is the set of all a such that «(1, a, z) has a meaning. Further, let
S(2) be the set of all s such that H(4, s) =% 0.

Remark. Let f be a function on the Euclidean space E, and let z be a measurable
set in E,. Let f, be a function that coincides with f on z and equals zero on E, — z.
Let, further, A be the (indefinite) Lebesgue integral of f and let y(1) be a suitable
“improper integral” of f. Then 1, is the Lebesgue integral of f,. Suppose that there .
exists a set a such that oc(/l, a, z) has a meaning. In the next section we show that
(2, a, z) does not depend on the choice of a; the number o(4, z), defined in 8, is then
a certain generalized integral of f over z (see [2]).
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7.If ac A, b,ce H(A,s), ab = b, then a€ H(4, s), (4, b, s) = a4, ¢, 5).

Proof. Since s(a + b) = a(s + bs)€ AM(4) = M(4) and a + be A, we have
Ms(a + b)) = Afa + b) = y(A, a + b); now, from the relations b + (a + b) = a,
b(a + b) = 0 we infer that
(1) YAs a) = y(As b) + ¥(A a + b) = (A, b) + As(a + b)).

Clearly (s(a + b)) (s + as) = 0,s(a + b) + (s + as) = s + bsand so A(s(a + b)) +
+ A(s + as) = i(s + bs). Hence it follows from (1) that (4, a, s) = «(4, b, s). If we
choose a = b + ¢ + bc, we have ab = b, ac = ¢ and so a4, ¢, s) = o4, a, s) =
= of4, b, s).

8. For each s e S(1) we may put, according to 7, o(4, s) = a(4, a, s), where a is
an arbitrary element of H(Z, s).
9. The mapping o(2, .) is an extension of both mappings 2, y(2).
Proof. Choose a c€ C(4) and an m € M(Z). By 5 we have y(4, ¢) = y(4,, ¢), so
that p(2, ¢) = o4, c, c); clearly A(m) = (4, 0, m).
10. Suppose that 2,2V, 1P e A, se S(A") A S(A®) and that I(x) = Y AD(x)
2
& =Y) for each x e M(2A) A M(A®) with sx = x. Then o(4, s) = Y o(A®, s).
i=1
Proof. Choose a;€ H(A”,s) and put a = a; + a, + a,;a,. By 7 we have a€
€ H(A), whence
(2 o(29, s) = y(A”, a) + A9(s + as) (i=1,2).

If x € M(ZV) A M(2{?), then, by assumption, Y A9(x) = Y A (sx) = A(sx) = A(x)
and so, on account of R4), Y y(A”, a) = y(4,, a). Now, it follows from (2) that
Y.o(AD, 5) = y(,, a) + As + as) = o(4, s).

11. Suppose that A, pe A, s€S(A) and that p(x) = w A(x) for each x e M(%)
with xs = x. Then o(u, s) = w o(4, s).
(This follows easily from R5).)

12. We have o(— 4, x) = — (2, x), whenever at least one side of this equality has
a meaning.

(This follows easily from 4.)

13. We have o(Z, x) = o(2, sx), whenever at least one side of this equality has
a meaning.

Proof. If either (r().s, x) or a(ll, sx) has a meaning, then there exists an a such that
(%, x) = P((A)e @) + A(x + ax) = p(Ae a) + Asx + asx) = o(4, sx).
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14. If there is no danger of misunderstanding, we omit the symbol A and write
C(%) = C, o4, x) = o(x) etc.

15. If seS,a€ A, as = a, thenaec C.

Proof. Choose a be H(s). Then be C(4;), whence ab € C(4,). Since abs = ab,
we have by 5 abe C and from s + bse M we infer that a + ab = a(s + bs)e
€M n A < C; therefore a = (a + ab) + abeC.

16. Suppose that a€ A. Then y(a) = o(a), whenever at least one side of this
equality has a meaning. Especially, An S = C.

(This follows immediately from 9 and 15.)

17. Suppose that xyx, = Xy, X3x4 =0. Then o(x; + x,) = o(x;) — o(x,),
o(x3 + x4) = o(x3) + o(x,), whenever the corresponding right-hand side has
a meaning.

Proof. Put x = x; + x,. If 1€ M(2,,) n M(4,,), then A.,(t) — A, (1) = A(x,t) —
— MNxyt) = Axt) = A(t). Now, if x, € S, x, €S, we get, with the help of 13, 12 and
10, o(x,) — o(xy) = (s, X3) + (=2, X;) = o(2,, x,) = o(x). The second rela-
tion can be proved similarly.

18. We have o(x, + x,) = o(x,) + o(x,;) — 20(x,x,), whenever the right-hand
side has a meaning.

Proof. Put y; = x; + x,;X,. As x;x,x, = x;x, and y,y, = 0, it follows from 17
that o(x,) — o(x;X,) + o(x,) — 0(x;%,) = o(yy) + o(y,) = o(yy + ¥,) = o(x; + X,).

19.C+ McS.

Proof. Choose ce C, me M. Ascme AM < M, it follows from 9 that ¢, m, cm €
e S and by 18 we get ¢ + m e S.

20. If a€ A, b H(s), then ab € H(as).

Proof. Since be C(4,), we have abe C(4,) and by 5 (where we write a, ab, A,
instead of s, a, ) we obtain ab € C((4,),) = C(,,). From s + bs€ M it follows that
as + abas = a(s + bs) € M, which completes the proof.

21. ASc< S.

(This follows from 20.)

22. Suppose that a convergence on Z and a convergence on & with the same sup-
port are given (in the sense of [1], 1). Let the convergence on Z fulfil the conditions 1),
2) of [1], 3 and let the convergence on & fulfil the condition 3) of [1], 5. Suppose

that A is continuous and that y(A,) is continuous for each s € S. Then o is continuous
as well.
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Proof. Lets, — s,
(3) o(s) = ¥(4s @) + A(s + as).

Since s + 5, = s(s + 5,)€SA = S (see 21), 5, = s + (s + s,), we get by 17 5,€ S.
Put a, = a + as + as,. From the relations as, — as, as(a + as) = 0 it follows
thata, > a + as + as = a. As as, € AS < S, we get by 17

4) o(s,) = o(as,) + ofs, + as,) .

The equalities sa, = as, imply, by 13 and 16, that o(as,) = o(sa,) = o(4, a,) =
= (A a,) = ¥(4s a). Since s, + as, + s + as = (s, + 5) (s + as)e AM = M, we
have also s, + as, € M, so that, by 9, o(s, + as,) = A(s, + as,) - A(s + as). Hence
it follows from (4) that o(s,) = ¥(4, a) + A(s + as) = o(s).

23. Remark. For each AeA put T(X) = C(2) + M(1). As AM() = M(2),
T(7) is a ring; it is evidently the smallest ring containing both C(4) and M(%). By 19
we have T(1) = S(4). In the following example (Theorem C) we show that S(4) is
not necessarily an additive group; then, of course, T() & S(2). If 4, u, ve 4 and if
A(x) + p(x) = v(x) for each x € M(%) N M(p), then, according to 10, S(2) N S(p) =
= S(v); we shall see, however, that the inclusion T(Z) n T(x) = T(v) may be false
(Theorem D).

24. Example. Let K, N be two copies of the set of all natural numbers and let Z
be the set of all functions x on K such that for each k € K either x(k) = 0 or x(k) = 1.
If x;, X, €Z, put X, + X, = X, x;%, = y, where x(k) = |x,(k) — x,(k)|, y(k) =
= x,(k) x,(k) (k € K). Evidently x, y € Z, x(k) = x,(k) + x,(k) (mod 2). If we put
Jj(k) = 1 (k € K), then j is the unit of Z. For each x € Z put

I = 3 569 = s(k + 1)

. n(x) = inf {k; x(k) = 1}

(so that »(0) = o). It is easy to see that

() [x + vl = =l + vl Iyl = sl + vl ) < )

for arbitrary x, y € Z.

Put, further, 4 = {x; |x| < o} and let P be the system of all sequences {x,}
(neN, x,€eZ) such that sup |x,|| < o0, n(x,) > oo. It follows from (5) that 4 is
n

a ring and that {ax,} €Y, {x, + ax,} = {(j + a) x,} €Y for each a € 4 and each
{x,} €P. Now we define a convergence x, » x on Z by the relations xx, = x,,
{x, + x} €. By [1], 4 this convergence fulfils the conditions 1) and 2) of [1], 3.
Further let & be the additive group of real numbers with the usual convergence.
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An clement z € Z belongs to A if and only if there exists the limit lim z(k); we
k= oo

denote it by z(0). Let 4, be the set of all z € A4 such that z(o0) = 0. Now define
(6) julk) =1 for k<n, j(k)=0 for k>n.

It is easy to see that aj, € A, and aj, — a for each a € A. Thus we get ud, = 4; A, is
clearly an ideal in Z.

Let {a,};x be an arbitrary sequence of finite real numbers. Let M be the set of all
z€Z such that i layz(k)| < 0. To each ze M we attach the number A(z) =
= i a, z(k). Thljszive have defined a mapping 4 of M into &. It is obvious that M
is ka=n1 ideal in Z and that A is additive. If ze M and {h,} €, then [A(h,z)| <
< Z|akh (k) z(k)| < Z Iak z(k)|, so that A(h,z) > 0. According to [1], 6, A is

=n(hn)
contmuous.

We say that A is determined by the sequence {a,}. Let A4 be the set of all mappings
determined by a sequence of real numbers. If 1 is determined by {a,} and if z€ Z,
then 4, is determined by {a, z(k)} so that A, € A as well. Evidently A, = 1,, where
v=j+z

With each 4 € A we can associate, according to [1], 24, a set B(4) and a mapping
B(2). If we put, e.g., wt =t for each t € &, then, by 3, the conditions R1)—RS5) of 2
are fulfilled (we have, of course, y = B, C(1) = B(4)). Now, by 6 and 8, a set S(1)
and a mapping cr(l .) can be attached to each A € A.

Lemma a). Letz a, be a convergent series. For k = 1,2, ... put r(k) = max | Z a; |
k=1 i=

Surther put r(c0) = 0. Then, for each x € A, the series Z a, x(k) is convergent and
o) |5 a0 (8] 5 (1 + 2l ).

Proof. The convergence of ). a, x(k) is obvious. We may suppose that n = n(x) <
K=1
<oo Put s, =a, +... +a, s=a, + a, + ... For each p > p, Zakx(k)—

= Z (sk — Sy-1) (x(k) —x(k + 1)) + (s, — s,— 1) x(p) hence
(8) ’Z:lak x(k) =k§ (e = sy-1) (x(k) — x(k + 1)) + (s — 5,-4) x(c0) .

As |x(o0)| £ Land |sy — 5,4 < |s — 5] + |s — 5,-4] § 2r(n) for each k = n, (7) is
an easy consequence of (8).

Theorem A. Let 1 be determined by {a,}. Then B(2) is the set of all b € A such that
the series Y. ay b(k) converges; its sum is B(, b) for each b € B(2).
k=1
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@0
Proof. Let B, be the set of all b € 4 such that Z a b(k) converges; we denote this
k=1

sum by ¢(b). It is easy to see that By is an ideal in 4. If be By, {h,} €%, bh, = h,,
then, by lemma a), ¢@(h,) > 0. According to [1], 6, ¢ is continuous. Evidently -
o(x) = A(x) for each xe€ B, n M(1). Since A, = M(1), we have A = u(4,) =
< u(M(2)). It follows from [1], 19 that B, < B(2).

Choose, convelsely, a beB(4) and define j, by means of (6). Then bj, — b,

z a, b(k) = 2 a, b(k) j,(k) = A(bj,) = B(4, bj,) — B(A, b),  whence be B,
2 ai b(k) = B(%, b).

Theorem B. Let A be determined by {a,}. Then S(A) is the set of all z € Z such that
Y. a, z(k) converges; its sum is o(4, z) for each z € S(2).
k=1

Proof. If ze S(2), then o(4, z) = o(A, j) = B(A..j) = Y. a, z(k) by 13, 16 and
C k=1
by Theorem A. The same is true, if z a, z(k) converges.

Lemma b). If a, = 0, z a, = o and if lim a, = 0, then there exist x, y € Z such

k- oo

that x + y = j, Z ay(x(k) — y(k)) = 0.

Proof. We find easily numbers b, = +1 such that Zakbk = 0. Now we put
x(k) = 51 + by), y(k) = 41 — by). k=1

Theorem C. Let ). a, be a non-absolutely convergent series of real numbers and
k=1

let A be determined by {a,}. Then there exist x, y € S(2) such that

SacxR) ) =, 3 a0 - ()

— 00 ;
hence xy,x + yeZ — S(4).
Proof. Put z7(k) =1 for a, >0, z*(k) = 0 for a, <0, z7(k) = 1 — z*(k)

(k=1,2,..). ClearlyZa,g*(k) —Z( a)z” (k) =00,2z7z2" =0,z +z7 =j.
For each z € Z and each n € N put 4,(z) = 2 ay z(k). Then

k=1
9) f(z¥)—> 0, A(z7)> —

and by lemma b) there exist t*,v*,¢t7,v” € Z such that t* + v" =t~ + v =
(hence t*v* = t"v~ = 0) and that

(10) AzTtY) = A(zF0T) > 0, Az7t7) = A (zTv7) > 0.
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We now define

’

x=ttzt +17z7, X' =vrzt 07z,

y=ttzt +o07z7, y =0zt +¢t7z"
It follows from (10) that

M(x) = A,(x) > 0, A(y) — 4(y') = 0.

Since x + x’ = y + y’' = j, we have

(x) + 2x') = A(3) + 20) = 4(0) = B(AJ) 5

whence 2,(x) - 3B(4, j), 2(y) = 1B(% j), so that, by Theorem B, x, y € S(4).

Clearly Xy = t+z+, x + y = z7. According to (9), 4,(x 4+ y) » —oo. Since
ttzt + ozt =z%, ttot =0, we have A,(t7z7) + A,(v*z*) = 2,(z%) > o0 and
by (10) we get 4,(xy) = 4,(t"z*) — oo, which completes the proof.

o0
Theorem D. Suppose that z, z’€Z — A, z + z' = j. Let ¥, a, be such a non-
K=1

absolutely convergent series that a, z(k) = a, for all k. Let the sequences {a,},
{z'(k)}, {ax + Z'(k)} determine mappings 2, i, v respectively. Then A(x) + p(x) =
= v(x) for each x € M(Z) n M(p), but the relation T() n T(u) = T(v) does not
hold.

Proof. Since j € B(2), z' € M(2), we have z = j + z’ € T(4); evidently z € M(n),
whence z € T(4) N T(u). Suppose that z € T(v). Then

(11) z=b+m, beB(v), meM(®).

s Y (a, + z'(k)) b(k) converges by Theorem A, there exists a k, such that

k=1
b(k) z'(k) = 0 for each k > k. Since the set {k; z'(k) = 1} is infinite and since b € 4,
there exists a k, such that b(k) = 0 for all k > k. By (11), z(k) = m(k) for these k;
it follows that

Z ] = Z Jae] 2(K) = Z |ax + ='(K)| m(K) .
As m € M(v), we obtain z Ia,,] < 0, in contradiction to our hypothesis. Thus we get
ze(T(2) n T(p) — T( v)
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Pes3rowme
MPOJJOJDKEHUA AJJUTHUBHBIX OTOBPAXEHUM

SIH MAPXMK (Jan Maiik), Ilpara

Iycts Z — kombuo Byns u nycte & — abeneBa rpynna. Ilycts A — onpe/eiien-
HOE CEMEHCTBO, 3JIEMEHTHI KOTOPOTO CYTh aJTMTUBHBIE OTOOPAXEHUsI A HEKOTOPOTO
MHOXECTBA M(A) < Z B rpynny &. Besikomy A € A TOCTaBUM B COOTBETCTBUE €TO
ajuTHBHOE mpojoinkenue o), oToGpaxarouee MHOXecTBo S(4) = Z B rpymny ©,
u s x € S(A) monoxum (o(2)) (x) = o(%, x). Ecom A, Ay, A, € A u ecmu Ay(x) +
+ Ao(x) = Ax) mms xe€M(Ay) A M(Z,), 10 0(Ay, X) + 0(Az, x) = (4, x) mn
x€S8(A;) N S(A,). DT pesymbTaTH HCIOJNB3YIOTCS B JabHeHei pabore s
00001ueHus uaTerpana Jledera.
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