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THE FREDHOLM RADIUS OF AN OPERATOR
IN POTENTIAL THEORY

Joser KRAL, Praha

(Received December 12, 1964)

Let D be a domain in the plane bounded by a finite number of non-inter-
secting rectifiable Jordan curves and let B be the oriented boundary of D. In
[10] a simple necessary and sufficient condition was established for the
logarithmic potential

F©©
W(z, F) = Imf —(C— d¢
B¢ 7
of the double distribution with an arbitrary continuous density F to admit a
continuous extension from D to D U B. If this condition holds then the
potential W ({, F) can be defined for { € B also and fulfils the usual equation

W(, F)=1lim W(z, F) - n F(), {(€B.

z-¢
zeD

The operator
W F(Q&) — W, F)

acting on the Banach space of all continuous functions F on B with the
supremum norm plays an important réle in connection with some boundary
value problems. In the present paper an expression for the Fredholm radius
of W is derived exhibiting its dependence on the shape of B. This result is
applied to obtain a solution of the modified Dirichlet problem for a sufficiently
wide class of domains.

INTRODUCTION

Let K4, ..., K, be clockwise oriented rectifiable Jordan curves in the plane and let
D; be the bounded complementary domain of K; (j = 1, ..., g). We suppose that the
corresponding closed regions D; = D; U K; (1 £ j £ g) are mutually disjoint. Let
E be either the whole Euclidean plane or a bounded complementary domain of

q
a counterclockwise oriented rectifiable Jordan curve K, such that (J D; < E and put

j=1

q
D=E-UD.
j=1

=
q
Let B = U K; be the oriented boundary of D. (We put K, = @ if D is unbounded;
j=0



in case K, + 0 we allow g = 0 so that D may coincide with the bounded complement-

ary domain of K,.) Denoting by C(B) the Banach space of all continuous real-valued

functions F on B with the norm |[F|| = max ]F(C)| we consider, for every F € C(B),
leB

the corresponding logarithmic potential of the double distribution

(1) W(z,F)=ImJ FO g zep.

Bl —z

It follows from [10] that a necessary and sufficient condition securing the uniform
continuity of (1) (or, which is the same, its continuous extendability from D to 5)
for every F € C(B) can be expressed in the following manner. Given {€ B, R > 0
and o € €0, 2n) denote by ug({, &) the number (0 < pg((, ) £ +o0) of points in
B {{ + rexpia; 0 <r < R}; pug({, «) being Lebesgue measurable with respect to
a (cf. [11]) we may put

2n
2 FrB = supJ pr(€, o) dot .

B Jo
Now the above mentioned condition reads as follows:
(3) FoB < 0.
Imposing (3) on B we form the operator Won C(B) by
4) WF(() = lim W(z, F) — n F({), FeC(B), (€B;

z=
zeD

in fact, WF({) is merely the direct value of the logarithmic potential of the double
distribution with density F at { € B. It is well known that some important boundary
value problems reduce to solution of an equaiton of the form

%) (I+=n'W+T)F=G

(with a prescribed G € C(B) and unknown F), where I stands for the identity operator

and Tis a compact operator acting on C(B). In order to be able to apply the Riesz-

Schauder theory to the equation (5) it is useful to know the Fredholm radius of W

which is the reciprocal of wW = inf | W — T||, T ranging over all compact operators
T

acting on C(B). We show that

oW = lim FzB (= ZBex definitione).
R-0+
As an application we treat the modified Dirichlet proBlem consisting in determin-
ing — to a prescribed G € C(B) — a single-valued analytic function @ in D such that
Im @ extends continuously to a function @, on D U B in such a way that ¢, = G
on K, (®5(0) = 0if Ky = §) and &, — G reduces to a constant on every K;, j =
=1...,4.
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We require @ to be expressible in the form

(6) &(z) =n"? CF—EC)-dC, zeD

with an F € C(B). Following an idea of N.I. MUSKHELISHVILI we introduce an operator
T mapping C(B) onto the subspace of all the functions vanishing K, and remaining
constant on every K; (j = 1, ..., q) and reduce the problem to the equation (5). In
view of the Riesz-Schauder theory it is now natural to impose

7 FB<m

on B. Then, by the Fredholm theorem, it is sufficient to show that the corresponding
homogeneous equation
(I+7a'"W+T)Fy=0

has F, = 0 for its unique solution in order to obtain that, for every G € C(B), there
is a unique F satisfying (5) This is done by means of the following theorem concerning
the modified logarithmic potential of the single distribution

Re f FO g - Mz, F)

{—z
established in § 2:

Assume (7). Then, for F € C(B), the following conditions (1) and (II) are equivalent
to each other:

(I) M(z, F) is uniformly continuous in D.
(II) The integral

M(n, F) = V.p. ReJ FO 4~ tim Re J @) o,
sC—n o+ Jpml—1
where B/n) = {{; (€ B, ]C - r]| > r}, converges uniformly in n€ B.
If (I1) holds then M(z, F) is uniformly continuous in the whole plane.

As a final result we obtain that, for B submitted to (7) and every G € C(B), there is
an F € C(B) such that (6) provides a solution of the corresponding modified Dirichlet
problem, F | k, being uniquely determined up to an additive constant a;, where
ao = 0 (provided K, #+ 0) and ay, .., a, are arbitrary (compare [4], chapter III).

Let us remark that every B consisting of Lyapunov contours fulfils (3) and (7).
If B consists of curves with bounded rotation (Kurven beschrénkter Drehung) then
(3) holds and, by the Radon theorem, #B < = if and only if there are no pin-points
in B (cf. [6], n® 91). It is interesting to observe that the Radon theorem is no longer
valid for more general B submitted to (3) only. In § 1 an example is given showing
that #B > n is possible for a B without angular points fulfilling (3).
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§1

In the present paragraph we shall derive the above indicated results concerning the
Fredholm radius of W for the case of a simply connected Jordan domain.

1.1. Notation. We shall assume throughout that i is a continuous complex-valued
function of period 2k > O on the real line E, satisfying the following condition:

0 < |u—o| <2k=y(u) + y(v).

We put K = (<0, 2k). The same symbol K will be used to denote the simple closed
oriented curve determined in an obvious way by . Given z ¢ K we denote by 3,(1)
a single-valued continuous argument of Y(f) — z on E;; 9, is uniquely determined
up to an additive constant. Noting that 2k is a period of { we see that

(8) 9,(t + 2k) — 8,(1) = 4, arg [Y(u) — z; {1, t + 2k)]

must be constant on E,. Since (8) is independent of ¢ and of the choice of 9, we are
justified to define

ind (z, K) = 51— A,arg [Y(u) — z; {6, t + 2k)] .
n

We have then ind (z, K) = 0 for z in the unbounded complementary domain of K
while ind (z, K) = ¢ for every z in the bounded complementary domain of K; the
constant ¢ (= 1) characterizing the orientation of K will always have the meaning
we have just described.

The variation of a (complex- or real-valued) function f on a set U open in an interval
J < E; will be denoted by var [f; U]; it is defined as the least upper bound of all

the sums Y |f(b;) — f(a;)|, <ay, by), ..., <a,, b, ranging over all finite systems of
=1

non-overlapping compact intervals contained in U. We suppose that
var [; €0, 2k)] < + oo (which amounts the same as the rectifiability of K); clearly,
also var [y; J] < + oo for every bounded interval J. It follows from 1.12 in [10]
that var [9,; J] < + oo for any bounded interval J provided z ¢ K.

If M + 0 is a subset in the plane then C(M) stands for the Banach space of all
bounded continuous real-valued functions F on M with the norm |F| =
= sup {|F(z)|; ze M}.

Given F € C(K) and z ¢ K we define
(e, F) = [P0 a5, (= m| o).
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Noting that (8) is constant on E, we see that

e ) = | Foto) as.9
1
for any interval I of length 2k.

The points (= vectors) in E,, the Euclidean plane, are identified with the corre-
sponding complex numbers. Given { € E,, R€ (0, + ) and o € <0, 2z) we denote
by pg(e, () the number (0 < pg(a, {) £ +00) of points in K n {{ + rexp in;
0 < r < R}. Since pg(a, {) is Lebesgue measurable with respect to o (cf. [11]) we

may put
2n

oK(Q) = f (o ) dot
0
We write v¥({) instead of v’ (().

D will be a fixed component of E, — K. We know from [10] that
9) sup v¥(¢) < 4+
teK
is a necessary and sufficient condition to secure the uniform continuity of Wy(z, F)
on D for every F € C(K). Throughout § 1 we suppose (9) to be imposed on K. This
implies that, for every F € C(K) and { € K, the limit
(10) lim W(z, F)

z={
zeD

exists. To obtain an expression for (10) we denote, for { € K, by 9, a function on E,
defined in the following manner. Fix a t, € E; with ¥(t,) = {. Then y(t) — { is con-
tinuous and different from zero on (to, t, + 2k). Let 3/t) be a single-valued continu-
ous argument of ¥(t) — { on (to, to + 2k). In view of

(11) var [9; (to, 1y + 2k)] = v*({) < + 0

(cf. [11]), the limits |

(12) lim 9f) = 9to+), 9((to +2k)=) = lim 941
toto+ t—(to+2k) -

are available. We define 9,(t,) = 9,(t,+) and extend 9, from <t,, t, + 2k) to E, by
the requirement

(13) 9t + 2k) = 9t) + on, teE,.

It is easily seen that 9, is uniquely determined up to an additive constant of the form
mmn, where m is an integer. On account of (11) and (13) we are justified to define for
FeC(K)and { = Y(t))eK

I
where I denotes an arbitrary compact interval of length 2k.
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Now (10) can be calculated as follows.
1.2. Proposition. Given F € C(K) and { € K we have

(14) lim Wy(z, F) = Wi((, F) + on F((),

2L
zeD
where the sign “+” or “—" is taken according as D is bounded or not.

Proof. For the sake of brevity, let us consider here the case of a bounded domain
only; the reader himself will easily complete the proof for an unbounded D. Let
{ = Y(to). If F reduces to a constant y on K then z € D = Wy(z, F) = 2noy ; on the
other hand, Wi({, F) = y. (3{to + 2k) — 9/t,)) = noy , whence (14) follows at once.
To complete the proof it is clearly sufficient to verify (14) for F € C(K) satisfying
(15) F¢)=0.

Assuming (15) we shall show that

(16) lim W(z, F) = W((, F).
sehr oK
By theorem 1.11 in [10] it follows from (9) that
sup var [9,; <to, to + 2k)] = sup v¥(z) =c < +o0.
zeE>;—K zeE>— K
Given ¢ > 0 we have a 6 > 0, 0 < k, such that

tE {to, to + 6) Ulto + 2k — 6, to + 2ky = |[F(Y(1))| S .

Hence we conclude that, for every z€ E, — K, ,

S ec,

j " F() 49,00

to

[ICEIERS

to+2k—9

Since { ¢ Y(<to + 8, to + 2k — 8)) we have by 1.12in [10]

z={

lim var [9, — 8 <t + 8, to + 2k — )] =0
so that ’ ’

im [ o) o940 - 841) = 0.

228 Jio+o
Summing up we obtain ‘
lim zup |Wi(z, F) — Wi(l, F)| <
zeE>—K

j " Fp(0) as.(0)

to

+

< lim sup { +

[ o a0

to
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+ + +

f " R() ds)

to+2k—3d

[ " R() a9

tot+2k—-5
} < 4ec.

1.3. Notation. Given { = y(t,) then, as noted above, the limits (12) exist. Hence
it follows that the following limits

+

j " R 0) 450 - 340)

to+d

Since & > 0 was arbitrary we see that (16) is true.

im '/’(t) - C—- =15 im __—!ﬁ(t) —¢ = —1g
(1) el 70 B R el 7 B

exist as well; it is easily seen that (17) do not depend upon the choice of ¢, € ¥ ~*({).
We shall denote by aK(C) (e <o, n)) the radian measure of the non-oriented angle
enclosed by the vectors £ ({), tx ().

We are going to prove that ax({) = |9,(t5) — 9(to—)|; first we prove two lemmas.

1.4. Lemma. Let z', z2€ E, — K and denote by S the segment with end-points
z!, z2. Suppose that S n K = {Y(t,)}. Then there is a 5, > O such that

Ilﬁ !//(t)z— '//Sto) = h(z)

z- —Z

has a constant sign on both (t, — 8, to) and (to, to + 0); writing S . = sign h(t, + 16,),
S_ = sign h(ty — 16,) we have

(18) ind (2, K) — ind (2!, K) = (S~ — §.).

Proof. Noting that ind (z, K) does not change if both z and K are submitted to
a translation or rotation (cf. [8], chap. IV., § 6) we may clearly suppose that

z' = Re z! <0 = yY(t,) < Rez? =z%.

Put §, = Re ¥, ¥, = Im y and fixa € (0, k) with ¥(({t, — 9, t, + 6)) = (2, z%).
Then sign y, = sign h is constant on both {t, — J, to) and (¢, to + ). Let ¢ be
an arbitrary positive constant. There are points (' € (z*,0), {*€(0, z%) such that

(19) |4 arg [W(t) — 0% <t — k, to— 8Y] — darg [y(t) — (% <to — k, t,— 8)]| < ¢,
(20) |4 arg [y(t) — ¢ <to+ 8, to+ kY] — darg [y(t) — (%5 {to+ 6, to+ kD] <&
We have :

(21) ind (7, K) = ind (¢, K), j=1,2,
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because the segment with end-points z/, { does not meet K. We may clearly assume
{1, ¢* to be so close to each other that

Vilto — 9) = U Yoty —6) =
2 o= =0 V-9 -0,
(22) arCCOS‘l/I(tO S arccos (10— 8) = |
@) arecos Uil £ 9) L arccos Yty +6) = &2 <e.
oo +3) =01~ oo +9)

Let 1, €(ty — 0, to), t; € (1o, to + 5). We have by (21)
(24) 2nind (27, K) = darg [Y(t) — (% {tg — k, to — 0)] +
+ darg [Y(t) — U; <to — 6, t,)] + Adarg [Y(t) — U5 {ty, t,0] +
+ darg [Y(t) — U; (ty, to + 6)] + Aarg [Y(t) — s {ty + 6, tg + kD] .
Further we have
tety — 9, to) = sign Y,(t) = signIm (y(t) — /) = S_,
t€(to, to + 0) = sign Y,(1) = signIm (Y(t) — ) = S, .

Noting that (sign y).arccos ————
Ix + iy|

{x + iy; x, ye E;, y + 0} we conclude that

is a continuous argument of x + iy on

Aarg [Y(t) — U5 <tg — 6, 1,)] =

=S_ .(arccos M — arccos ‘//1—(10:—6—)——_——C:> ,
u(t,) - U] |W(to — 6) = ¢

Aarg [Y(t) — U5 <ty ty + 6)] =

Yilto +0) = U _ arccos ¥alt2) — Cj)‘

=S,. (arccos - -
Il/’(to +9) - C"l |‘/’(t2) - C"I

Hence it follows by (24)

(25) 2n(ind (2%, K) — ind (2%, K)) = darg [y(t) — {%; {ty, t,)] —
— Aarg [Y(t) — ' <1y, 1] + '

+ 8- .(arccos Yalt) =& arccos M) -

[v(t,) - ¢ W(t) — O
-5, .(arccosw — arccos ¥at) = 8 Cl) +c,

|¥(t2) - ¢ |w(e2) - &'
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where we put
c=darg[Y(t) — %<ty — k, to — 6)] —
— darg [Y(t) — 5 <tg =k, tg — 9] —

- S_ .(arccosL//—IQ(’—_—(SZ—:——C—2 — arccos Yilto ) - ¢ Cl)
|¥(to — 0) = | [v(to — 8) — ¢

+ S+ . <arccos M — arccos M)
[W(to + 0) — 7| [W(to + 0) — O]

+ darg [Y(t) — (%5 {to + 0, to + kp] — Aarg [Y(t) — ('5<to + 6, 1o + ky] .

Clearly,

lim (arccosbg‘)—"—%2 — arccos w) = arccos (—1) — arccos 1 = 7,
fito- y(t,) = | l(t) — ']

lim (arccos'—le(t—Z)—:iz2 — arccos M) = arccos (—1) — arccos 1 = 7,
t2>tot I'//(tz) - C I I‘//(tz) - Cll

while 4 arg [Y(t) — {; (11, 1,0] > 0 as t; > to—, t, > to+ (j=1,2).

Noting that ¢ does not depend on t,, t, and making ¢, — to—, t, = to+ in (25) we
obtain 2n(ind (22, K) — ind (z', K)) = ¢ + n(S_ — S,).

Now (19), (20), (22) and (23) imply [c] < 4e; since ¢ > 0 was arbitrary, (18) is
proved.

Remark. In the above proof, neither (9) nor the rectifiability of K were exploited.
For another proof of a similar lemma concerning rectifiable curves cf. section 7

in [2].
1.5. Lemma. Let { = y(to). Then |[9to) — I(to—)| < .
Proof. Consider r fulfilling )
(26) 0<r<|l—y(to = k)| = [0~ ylto + k)
and put

inf {t; 1€ (to — k. to), [W(t) = (| < 1},
d, = sup {t; te (1o, to + k), [Y(2) — (| < 7}.

It is easily seen that c,€(ty — k, o), d, €(to, to + k) (so that y(c,) + ¥(d,)),
[W(c,) = ¢ = r =|¥(d,) — ¢| and lim ¢, = t, = lim d, .
r=+0+

r—>0+

Cr

We shall denote by K, the simple closed oriented curve which is obtained by replacing
the arc Y({c,, d,) in K by the arc of the circle {z; |z— (| = r} with origin at y(c,)
and end at Y(d,) whose orientation coincides with that of K; to be more precise we
proceed as follows. Put ¢,(t) = { + rexpi(e,t + B,), ¢, £t < d,, where a,, f, are
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real numbers which are so chosen that ¢, be simple on {c,, d,) and the following
conditions be satisfied: sign o, = o, ¢(c,) = ¥(c,), o(d,) = ¥(d,).
We have then

(27) ‘TL'O' -4 arg [(pr(t) - Ca <C,., dr>]| <7.

Next denote by " the continuous complex-valued function of period 2k on E; which

coincides with ¥ and ¢, on {t, — k, ¢,) u {d,, t, + k) and {c,, d,) respectively.

It is easily seen that " determines a simple closed oriented curve which, as well a

the set Y'({to — k, to + kD) = Y'(E;), will be denoted by K, If z¢K and

ind (z, K) = o then limind(z,K,) = ¢ because y" - y uniformly as r— 0+
r-0+

(cf. [8], chap. IV, (6.3)). In particular, ind (..., K,) assumes the value o for sufficiently
small r. Let us fix such an r with (26). We have

l//r(<t0 - k> C,.> v <dr’ tO + k>) < {Z; IZ - Cl g r} - (pr((crv dr)) .
Let {, = ¢,(3(c, + d,)). Then there is a 6, > O such that
L+ -0;02t21+63n0yY(tg —k eyuld,to +k))=0.

Put z = { + (1 + 4,) ({, — {). Applying 1.4, where z', z%, K and ¢, are changed for
{,z, K, and ¥(c, + d,) respectively, we obtain ind (z, K,) — ind ({, K,) = —¢ . No-
ting that ind (..., K,) cannot assume a value different from 0 and ¢ we conclude that
ind ({,K,) = ¢ (andind(z, K,) = 0). We have thus

4 arg [ll/(t) - C; <t0 - k9 C,.>] + 4 arg [q’r(t) - C: <C,., dr)] +
+ Adarg [Y(1) — 5 <d,, to + kY] = 2n0,
9c,) — 9to — k) + darg[(t) — {; {ew d, D] +
+ 9ty + k) — 3(d,) = 270,

whence 9,(c,) — 9/d,) = no — Adarg[¢/t) — {; {c,, d,>] . It follows from (27) that
[94c,) — 9/d,)| < =. Making r — 0 + we obtain [3,(to—) — 91, +)| = [9to—) —
9to)| < m which concludes the proof.

Now we are able to prove the promised

1.6. Proposition. Given { = (1,) then ax(£) = [9,(to) — 9(t,—)| .

Proof. We may suppose that §(t) is an argument of ¥(t) — { on (to, to + 2k).
Then y(t) — { = |xp(t) - CI expidft), te(ty, to + 2k), whence

+ : l//(t) -¢ i
= lim — 9.(t s
K (C) t—vlto+ |!//(t) - q P (( 0)

. L= y(n) - (=¥
O =IOl e v
= —expi9(to + 2k)—) = exp i 9(to~).
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Using 1.5 we conclude that the non-oriented angle enclosed by t£({) and 1% ()
equals |9,(to) — 9(to—)|-

Remark. Every { € K with ax({) > 0 will be called an angular point. Let us
include here the proof of the following

1.7. Proposition. The set of all angular points in K is at most countable.

Proof. With every angular point { € K we can associate rational numbers ¢{(),
a(¢), b(() with () >0, 0 < b{) — al{) < n such that, for A'{, ¢, a, b) =
={z; <o}—{C+rexpiy; 0<r<g,a() <y < b{)} onehas KN A, 0,a,b) =
= 0. Let us admit that the set o/ of all angular points in K is non-denumerable.
Then there must be a triple of rational numbers g, a, b such that

(28) o) =0, alQ)=a, b =b

for an infinity of { € o&/. In view of the compactness of K in the set of all { € & ful-
filling (28) there must be two points, to be denoted by ¢, and {,, such that

(29) 0<IC1“‘C2|<Q-

It is easily seen that (29) implies that either {, € A({, ¢, a, b) or {; € A((,, ¢, a, b)
which contradicts K n {A({y, ¢, a, b) U A(5, 0,a, b)} = 0.

As a consequence of the preceding proposition we obtain the following corollary
which will be needed below.

1.8. Corollary. The set of all { € K with ax({) = 0 is dense in K.

Remark. The above corollary could also be derived from the known fact that
a rectifiable curve K possesses a unique tangent almost everywhere with respect to
the linear measure (= length) on K.

1.9. Notation. We shall denote by C,, the Banach space of all real-valued continuous
functions on E; with period p; the norm of an f € C,, is defined by Hf]] = max |f\t ,
With every F € C(K) we can associate an f € C,; deﬁned by

(30) f(1) = F(y(1)), teE,.

It is easily seen that, conversely, to any f € C,, there is a unique F € C(K) fulfilling
(30) and the correspondence

(31) Fof

determined by (30) is an isometric isomorphism between C(K) and C,.
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Given s € E; we put & = 3 and define for every f€ C,;

wi(s) = f”‘f(r) 4% (1) ;

-k
we have thus

w f(s) = Wi(W(s), F)

for F € C(K) corresponding to f in (31). It follows from 1.2 that Wx((, F) is a continu-
ous function of the variable { in K; consequently, wf € C,,.

If r > 0 we put

(32) M, = {t; t€ (s — k, s + k), |W(t) — y(s)| = r}
and define
w,f(s) = f(1)d9(t), feCy, s€E,.

M,
We shall show later that w,f € C,, whenever r does not belong to an at most countable
set # defined below; moreover, the operator

(33) W, f = wf

acting on C,, will be shown to be compact provided r ¢ Z.

The (outer) Hausdorff linear measure (= length) of a set M < E, (as defined in
[7], chap. 11, § 8) will be denoted by AM. It follows from known properties of A
that var [{; ] = Ay(I) for any interval I with length <2k (cf. [12] for references
on the subject). Extending var [; ...] by the standard procedure to a Carathéodory
outer measure (complare [11], section 1) we conclude easily that var [{; M] =
= AYy(M) for every M < E, with diameter not exceeding 2k. In particular,
var [; €0, 2k)] = 2K and, for M < E,, var [{; M] = 0 <> 2y(M) = 0 (compare
also 3.4 in [13]). We shall denote by var y the measure determined in a usual way
by the outer measure var [; ...] (cf. [7], chap. IT).

Let # be the set of all r > 0 for which there is a circumference S" with radius r
such that (K n S") > 0.

1.10. Lemma. Z is at most countable.

Proof. Let us denote by £, the set of all r > 0 for which there is a circumference
S" with radius r such that l(K nS) z1n. If ry, ..., r, are different elements of £,
then there are circumferences Sy, ..., S,, with radii ry, ..., r,, respectively such that
MK nS;)z1/n, 1=<j< m. Noting that S; n S; contains at most two points
(and, consequently, A(S; N S;) = 0) whenever i + j we conclude that m/n <
< ZA(KmS) = /I(UK N S;) < AK . We see that the number of elements in £,

does not exceed n/lK < 4+ so that # = (U4, is at most countable.

n
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1.11. Lemma. Given fe C,, and r > 0 define
- f(®)
wf(s) = —/——dy(t), s€E,
e W(1) — Y(s)
(¢f. (32); the integral is taken in the sense of Lebesgue-Stieltjes). Let

(34) B ={f;feCy ”f” =1

If re(0, +©) — & then all the functions W.f with f€ B are equicontinuous and
uniformly bounded.

Proof. It is easily seen that, for every f€ C,, r > Oand s€ E,,

|ﬁzrf(s)| = ”f” crTtovar [Ys M, ] < [[f“ K .

Fix now r € (0, +00) — £. In order to make the proof or our lemma complete it is
sufficient to verify

(35) lim sup |, f(x) — W, f(s)| =0, se€E,.
@

x—s fe

Making use of the uniform continuity of y we fix a 6 € (0, k) such that
l|a — b] < &= |¥(a) — Y(b)| <.

Fix s€E, and consider x€(s — d, s + 8). Let x}(¢) stand for the characteristic
function of {t;t€Ey, [y(t) — Y(x)| = r}. If |t —s| <& then |y(r) — Y(x)| <
< [w(®) — ¥(s)| + |¥(s) — ¥(x)| < r and, consequently, x(t) = 0. We see that

o f(x) = s—r’M x+k _ s+2k— "f(t)x(t)
S =L O Il I e

) e s+2k—6 0 B %) =
(36) v%rf(S) P f(x) LH f(t)<¢(z)—n//(s) W) — v (")>d¢()

= Jy(x, f) + Jo(x, f),

where we put

- s+2k—0 2(8) — Xr(t)
67) e = LI =L 0 MO
() Jinf) = j T 50 20 () = W) — (00 — v (o).

Taking ¢ > 0 small enough we have

s+O0St<s+2k—=[Yt) - Y(s)| = ¢
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whence we conclude on account of (37)

(39)  eh) = e j

s+d

s+2k—9o

xﬁ~x’,‘]dvarlp, lx—sl<6.

It is easily seen that {t; s <t <'s + 2k, lim sup |x{(t) — x(t)] > 0} = {5 s <t <
<'s + 2k, |y(t) = ¥(s)| = r}; let us denote the last set by M. Since r ¢ 2 we have

0= LeK, ¢ — ¥(s)| = r} = (M) = var [y; M]
so that, by (39),

(40) lim sup |J,(x,f)| = 0.

x-s fedB

Employing (38) and defining

ho(t) = |(w(1) = ¥(s) ™" = (1) = ¥(x) 7',
s+6=t<s+ 2k -9, |x—s|<5,
we arrive at

s+2k—46
e 0)| < 171 j hodvary, Jx—s| <5.
s+
Since h,(t) — O uniformly in t€ {s + &, s + 2k — ) as x — s we obtain

(41) - lim sup |J,(x,f)]| = 0.

x=s feRB

Finally, (40) and (41) together with (36) imply (35) which concludes the proof.
The following remark will be used later:

Remark. Put N,(s) = {t; t € €0, 2k), |y(t) — ¥(s)| > 2r} . If 2r € (0, + c0) — Z then

O i sen . fecn.
L,m 70— 9 V0 = B f(9), s€Ey, f€Cu

Indeed, we have with the notation from the proof of 1.11

oo f(s) = R (OFX() _ (P () x.(0)
2 f(s) J V0 = 9 dy(t) L m_—_tl/(t)—l//(s) ay(t).

Noting that the variation of “on {t; te <0, 2k), x5,(t) + 0} — NJ(s) = {t; te
€ <0, 2k, |y(r) — ¥(s)| = 2r} vanishes (cf. 1.9) we obtain that the last integral

equals
f(t)
S 75— 24O
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1.12. Lemma. If r € (0, +0) —% then
(42) feCy=wfeCy
and the operator (33) acting on C,, is compact.

Proof. Let r€ (0, + o) — # and let x} have the meaning described in the proof
of 1.11. We have then

", f(s) _ va+2kf(t) Xr(t) dss S) fs-l— 2k f t) Xr:\[/t() ) dl/l(t), se El , fE Czk .

Noting that, for any pair of points a < b in (s, s + 2k),

%(b) - 9a) = 4, arg [Y()) — ¥(): <a, b] = Im f b lp(‘;*'/i(?b(;)',

we see that
w,f(s) =Imw,f(s), s€E;, feCy,

whence it follows (42) by 1.11. On account of 1.11 we conclude that all the functions
w,f with fe # are equicontinuous and uniformly bounded which, by the Arzela
theorem, implies the compactness of w,.

1.13. Lemma. Let Y(s) = {, r > 0 and put

(43) Uy ={t;teds —k, s + k), [y(t) = ¢| < r}.
Defining # by (34) we have
(44) o) + ax(l) = var [9%5 U;] = fsu; (wf(s) — w, f(s)) 5

if r ¢ R then v\({) + ax({) is a lower-semicontinuous function of the variable { in K.

Proof. We have .
(45) w£(s) = w, £(s) = f 1) 4500
whence '
(46) var [9%; Uj] = jlelg (wf(s) — w.f(5)) -

It follows from 1.6 that var [9% US| = ax({) + var [9,; U; — {s}] which together
with the equality var [9% U — {s}] = v(¢) (cf. section 2 in [11]) and (46) provides
(44).
Suppose now that r ¢ 2. Then, by 1.12, (45) is continuous in s whenever f € Cy.
Consequently, sup (w f(s) — w, f(s)) = v;(¥(s)) + ax(y(s)) is lower semicontinuous
Se®

in s whence our assertion easily follows.
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1.14. Notation. If A4 is a linear operator defined on a Banach space E with norm
]]|| we let T range over all compact linear operators acting on E and put

wA =inf |4 - T|.

1.15. Proposition. Put #,K = sup vf‘(() , FK =lim &#,K . Then ow < FK and
{eK r—0+

(47 re(0, +o) — 2= %,K = ?L:(p (WK(©) + ax(0)) .

Proof. Fix r€ (0, +00) — 2 and denote by H the set of all { € K with a({) = 0.
We know from 1.8 that H is dense in K. In view of the lower-semicontinuity of (44)

we have #,K = sup v} ({) = sup (vS(0) + ax(()) = sup WKQ) + ax(Q)) = |w — w,|
leH teH ek

whence (47) easily follows; w, being compact (cf. 1.12) we obtain
F.Kzow, re(0, +o) - 2.

Noting that £ is at most countable (cf. 1.10) and &, K is non-decreasing in r we con-
clude that also K = ww.

Now we are going to prove the opposite inequality. Its proof will be based on ap-
proximation of compact operators acting on C,, by operators of finite rank which
is enabled by known results of J. Radon.

1.16. Notation. Let us denote by B the class of all the operators P: f — Pf having
the form

(48) Pi =, 54 ") dg,f), seE, .

where f4, ..., f, € Cy and g; are (real-valued) functions with locally finite variation
on E; fulfilling the following conditions (I), (II):

o) gft+) =g[t), tek,,

(Ir) g;(t + 2k) — g,(t) is constant on E,

(j = 1,...,n). Thus P is the class of all operators of finite rank acting on Cy,.

It follows from results established by J. Radon (cf. [6], chap. V, n° 90) that the
following assertion is true:

1.17. Proposition. Let R be a linear operator acting on C,,. Then (cf. 1.14 for
notation) wR = inf {|R — P||; Pe P} .

Using this proposition we shall derive the following lemma which will be useful
below:
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L18. Lemma. Let & < P be the class of all the operators P of the form (48)

where fy,....f,€Cy and g,, ..., g, are continuous functions with locally finite
variation fulfilling (II). Then

(49) ow = inf {|jw —

; QeG}.
.Proof. Let P be an arbitrary operator in 9 and suppose that P has the form (48)
with fy, ..., f,€ Cy and g, ..., g, fulfilling (T) and (II). Put
h(s) = var, [95(t) — Y. f{(s) 9(t); <s — k, s + kp], s€E,.
j=1

Defining # by (34) we have h(s) = sup w—=P)f(s) = hm mf sup (w—P)f(x) =
fe®

= lim inf h(x) so that h is lower semlcontmuous on E;. Clearly, [w—P]| = sup {h(s);

s€E}. Let & be the set of all s € E; with ag(¥(s)) = 0. It follows from 1.8 that &

is dense in E,; whence

(50) [w = P| = sup {h(s); se £}.
Put for ¢ € (0, 2k)

sft) = ;[g,-(u) —gju-)], ue(© 6

(the sum being extended over u € (0, t) with gfu) — g;(u—) + 0) and extend s;
to E, by the requirement

sf(t + 2k) — sj(t) = sj(2k), t€E,.

Thus s; is the saltus-function of g; and we obtain the decomposition g; = q; + sj,
where g; is continuous on E; and gt + 2k) — q,(t) is constant on E; (compare
(), (I1)), j = 1, ..., n. Further define the operator Q € & by

056 = 1) [ 9 day
and put H
o) = var, [9°) = 21 a0s <x = ko x + 1]
(= sup(w — Q) f())-

Then p is lower-semicontinuous on E; (compare the argument used for the proof
of the lower-semicontinuity of k) so that '

(51) [w — Q| = sup {p(s); s€ &}.
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Fix now s € &. Noting that §* is continuous on E, (cf. 1.6) we have the following
decomposition .

¥ - L1006 = 0 = T4 0) = (3505

where 9° — Z f(s) q; is continuous and z fi(s) s; is a saltus-function. Consequently,
=)

h(s) = var, [5°(}) —jg"lf,.(s) a0 s =k s + kO] +
+ var,[ZfJ(s) si{t); s —k, s+ kY] = p(s), se&.

Combining this with (51) and (50) we arrive at

(52) w—Plz]w-2f.
We have thus seen that with any P € P there can be associated a Q € ® fulfilling (52).
Hence it follows by 1.17 the equality (49).

1.19. Theorem. ww = FK = lim sup (v}({) + ax(()) .

r-0+ leK

Proof. Let Q be an arbitrary operator in ®,
n s+k
01 = 249 [ 10 dago),
J= s—k

where fi,...,f,€ Cy and ¢4, ..., g, are continuous functions with locally finite
variation fulfilling (IT). Define US by (43). In view of 1.13, 1.15 and 1.18 it is sufficient
to show that

(53) [w - Q| z lim sup var [$%; U7]

r-0+ seE;

Clearly,
w— Q| = sup var [ - Zlf,(s) gj; s—k, s+ k)],

var [9 = $1/9) 05 <5 — o 5 + 0] 2 var [ = £ 0 U] 2
> var [9; U] — var [."ij(s) gj; Uil.

Writing ¢ = max sup | f(s)| we have var [ Zf,(s) g U] sec Z var [g;; U;]
15jsn s
so that

(54) [w-0| 2 sup yar [95 Us] — csup Z var [g;; Us] .

s j=1
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r-0+
a je{l,n) and define h(s) = var [g;; (s — J,, s + 8,>]; h(s) is continuous in s
(for fixed r) and non-decreasing in r (for fixed s). Since lim h(s) = 0 we conclude
r—-0+

by the Dini theorem that lim sup h(s) = 0. Taking into account that U; <

r=0+ s

Put §, = sup diam U; (= diameter of U;). It is easily seen that lim d, = 0. Fix now

< (s — &, s + 6,y we see that lim sup ) var [g;; U;] = 0. Making r - 0+ in

r-0+ s j=1
(54) we arrive at (53) which concludes the proof.

Remark. As explained in 1.9, the operator Wy : F({) — Wi((, F) acting on C(K)
corresponds to w (acting on C,,) in the isometric isomorphism (31) between C(K)
and C,,. Hence we obtain easily that Wy = ww (cf. 1.14). In particular, we have the
following corollary of 1.19):

1.20. Theorem. oWy = FK = lim sup (v5(¢) + «(0)).
leK

r—>0+

1.21. Remark. Noting that Wy is compact if and only if @ Wy = 0 we see that there
must be no angular points in K in order that Wy be compact; on the other hand, we
shall show by an example that #K > 0 is possible for a K without angular points
fulfilling (9). Let us first prove a simple lemma.

1.22. Lemma. Let f be a (real-valued) continuous function of bounded variation
on {a, b), f(a) = 0. For every ¢ > 0 denote by f* the non-parametric curve which
is defined by the equation

y=¢(a+e(x—a), asx=Za+¢eb-a).
Then, for every { € E, and ¢ > 0,
(55) v (a + ) =v"(a + &)
and, for every ¢ > 0,

(56) lim v/(z) = 0 uniformly in {z;z€E,, [Rez — a| 2 ¢}.
&0+

Proof. Let us observe that the number of points at which a half-ray issuing at
a + { meets f! coincides with the number of points at which the parallel half-ray
issuing at a + &{ meets f°; hence (55) follows at once. It follows from 1.12 in [10]
that for any curve K of length AK and every z € E, with

dist (z, K) = inf {|z — {|; (€K} > 0
|

the following estimate
AK

e =g (z, K)

472



is valid. Since v/*(z) = v/'(a + ¢ *(z — a)) and 1/dist(a + ¢ '(z — a), f!) > 0
uniformly in {z; z € E,, |Re z — a[ = ¢} (¢ > 0)as e > 0+ we obtain (56).

1.23. Example. Let {a,},>, be a strictly decreasing sequence of positive real
numbers tending to 0 as n — oo and let f be a continuously differentiable (real-valued)
function on (0, 1) such that f(0) = f'(0) = f(1) = f'(1) = 0 and, with the notation
described in 1.22, »"'(0) = 6 > 0, sup {v/'(2); z€E,} =y < + 0.

Puta, = a; + 1 and, forevery n = 1, fixan ¢" > 0 such that
(57) a, + ¢ < ¥a, +a,-), a.& <27
Defining f, on <a,, a, + 1) by

f(x)=fx-a), a,Sx=a,+1,

we write K" = f=" for the non-parametric curve corresponding to f, and ¢" in the way
described in 1.22. It follows easily from 1.22 that we may assume &" to be small enough
to secure that

(58) Re z ¢ (May+1 + a,), Ha, + a,-,)) = 0*(z) < 27".

Now we denote by L the curve obtained by joining together all K" and the segments
{—1,0), <a, + & a,—1y (n =1,2,...). The reader will easily verify that Lis a
rectifiable curve without angular points (cf. (57)). If Reze(Ha,+; + au),
3(a, + a,-,)> then v*"(z) < y and, by (58), v*"(z) < 27" for n + m; hence we con-
clude easily that v(z) S+ y+ 327" <7+ 7y + L. If Rez¢ U3 (ap+1 + ap),

n¥m m

i(a, + a,_,) then, for every m, v*"(z) < 2™™ and, consequently, v*(z) <= +
+ Y 2™ < + 1. We see that sup {v(z); z€E,} <n+y+1< +.

Fix now an r > 0. Then thereis an n such that the diameter of K"is less then r. Employ-
ing 1.22 we obtain & = v*"(a,) < v’(a,) whence sup {v]({); (e L} 2 5.

The reader will easily observe that L can be completed by a suitable arc so as to obtain
a simple closed rectifiable curve K without angular points satisfying

sup {v*(z); z€ E,} < +o00, lim supvi({) =5.
ro0+ feK

(To be continued)
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