Czechoslovak Mathematical Journal

Otomar Hájek

Notes on meromorphic dynamical systems, I

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 1, 14-27

Persistent URL: http://dml.cz/dmlcz/100705

Terms of use:

© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

NOTES ON MEROMORPHIC DYNAMICAL SYSTEMS, I

Otomar HÁJek

(Received January 9, 1964)
In the theory of dynamical systems in the plane, one naturally needs examples; the most elementary are linear systems (and, possibly, 'polar" systems). However, it seems a giant step from linear systems, with an entirely trivial theory in the large, to say polynomial systems, where even the local theory is rather involved (and the theory in the large is quite formidable; e.g., the van der Pol equation). A possible candidate for a class intermediate in complexity are the systems

$$
\frac{\mathrm{d} \xi_{1}}{\mathrm{~d} \theta}=\varphi_{1}\left(\xi_{1}, \xi_{2}\right), \quad \frac{\mathrm{d} \xi_{2}}{\mathrm{~d} \theta}=\varphi_{2}\left(\xi_{1}, \xi_{2}\right)
$$

$\left(\theta, \xi_{j}, \varphi_{j}\right.$ real) with $f=\varphi_{1}+i \varphi_{2}$ a polynomial in $z=\xi_{1}+i \xi_{2}$; and the immediate generalisations to f holomorphic, or rational, meromorphic. (The linear systems are not a subclass.)

The restriction of the vector-field function f to these classes naturally has as consequence special properties of the dynamical system, and some of these are the subject of the present paper. Specifically, this paper is devoted to the qualitative theory of cycles of these systems. It appears that ' f holomorphic' is a rather too strict restriction (there are then no saddle points, etc.). Now, poles of f are "saddlepoints"; but it may not be immediately apparent whether these have any connection with the concept of saddle point customary in differential equation theory. However, this is simple: if f has a pole of order k at 0 , then

$$
z^{\prime}=f(z), \quad z^{\prime}=|z|^{\alpha} f(z) \quad(\alpha>k)
$$

have the same trajectories (with distinct parametrisations), and the second of these has a critical point at 0 , namely a saddle point.

Let there be given a nonvoid open subset G of the 2 -sphere S^{2}; a meromorphic system in G is determined by a meromorphic function f on G, or by the differential equation (in a local complex coordinate z)

$$
\begin{equation*}
\frac{\mathrm{d} z}{\mathrm{~d} \theta}=f(z) \tag{1}
\end{equation*}
$$

with θ real.

A solution of (1) is a mapping $z: I \rightarrow G$ of a nonvoid open interval $I \subset \mathrm{E}^{1}$, which has $f(z(\theta)) \neq \infty$ for $\theta \in I$, and which satisfies equation (1) whenever $z(\theta) \neq \infty$; if $z(\theta)=\infty$ we of course require, instead of (1), that $1 / z($.$) be a solution of$

$$
\frac{\mathrm{d} w}{\mathrm{~d} \theta}=-w^{2} f\left(\frac{1}{w}\right)
$$

at θ. It seems convenient not to define solutions through poles of f, since then unicity of solution would not be preserved.

A trajectory of (1) is the image of a nonconstant solution of (1) with a maximal open interval as domain of definition. A cycle of (1) is the image of a solution with a (finite positive primitive) period. From unicity it follows that we may speak of the period (e.g., primitive) of a cycle. A singular point of (1) is a pole or zero of f in $G \subset S^{2}$; zeros of f are, in a more general sense than ours, often called the critical points of f.

As an example, consider the system in S^{2}, defined on $\mathrm{E}^{2}=\mathrm{S}^{2}-\infty$ by $z^{\prime}=$ $=i z^{2} /(z-1)$, and described near ∞ by $1 / z=w, w^{\prime}=i w /(w-1)$. Thus there are three singular points in S^{2}, zeros at 0 and ∞, and a pole at 1 . We do not introduce the concept of "singular points at infinity", since this would lead to difficulties (thus the former system would then have three, and the latter two singular points).

The local theory of these systems was established by Gregor [2]. Several of his results may be summarised as follows.

Lemma 1. Let (1) be a meromorphic system. Then

1. Every pole of f is a saddle point;
2. Multiple zeros of f are nodes if res $1 / f=0$;
3. A zero of multiplicity one is either a dicritical node (iff f^{\prime} is real), a center (iff f^{\prime} is pure imaginary) or a focus; moreover, then, $\operatorname{Re} f^{\prime}<0$ iff the critical point is asymptotically stable;
4. If z_{0} is a center, i.e. if $f\left(z_{0}\right)=\operatorname{Re} f^{\prime}\left(z_{0}\right)=0 \neq \operatorname{Im} f^{\prime}\left(z_{0}\right)$, then all cycles C near z_{0} have the same primitive period T,

$$
\begin{equation*}
T=\frac{2 \pi i}{f^{\prime}\left(z_{0}\right)} \operatorname{ind}_{C} z_{0} \tag{2}
\end{equation*}
$$

In particular, since $T>0, \operatorname{sgn} \operatorname{Im} f^{\prime}\left(z_{0}\right)$ determines $\operatorname{ind}_{C} z_{0}$, the orientation of C.
The basic idea in [2] is that the trajectories of (1) are similar (in some respect at least) locally at a singular point e.g. $z_{0}=0$, to those of "canonic" systems of the form

$$
\begin{equation*}
z^{\prime}=a z^{m} \tag{3}
\end{equation*}
$$

where $|m|$ is the multiplicity of the zero $(m>0)$ or pole $(m<0)$ of f, and $a=$ $=\lim f(z) z^{-m}$. For $m \neq 1$ there are then $2|m-1|$ exceptional directions, defined
as (unit vectors) $w \in \mathrm{E}^{2}$, solutions of $w^{1-m}=\mp(a \| a \mid)$ (entrant or exitant according as ∓ 1 is the sign taken); these have the property that if a solution $z(\theta)$ tends to $z_{0}=0$, then $z(\theta)||z(\theta)|$ tends to an exceptional direction, entrant for increasing θ, exitant for decreasing θ.

Example 1. Consider again the system (1) with

$$
f(z)=\frac{i z^{2}}{z-1}, \quad G=S^{2}
$$

Then we have the following information about the singular points of this system

singular point	m	type	entrant ex. dir.	exitant ex. dir.	res $1 / f$
0	2	node	$-i$	i	$-i$
1	-1	saddle	$\pm e^{-i \pi / 4}$	$\pm e^{i \pi / 4}$	0
∞	1	center	none	none	i

This example will be examined further later.
Shortly later, the present author announced [3] that there exists a homeomorphism mapping the field of trajectories of (1) into that of (3), locally at the singular point 0 (in fact, the homeomorphism is piecewise conformal), thus removing the restriction res $1 / f=0$ assertion in 2 of lemma 1 . It is intended to give detailed proofs in a subsequent paper.

We will need two further results; both are trivial consequences of this local homeomorphism of (1) and (3).

Lemma 2. Let 0 be a singular point of (1). Then there exist arbitrarily small neighbourhoods U of 0 such that:

1. If 0 is a zero of f, then separately for each solution $z($.$) of (1) with z(0) \in U$, $z(\theta) \in U$ either for all $\theta \geqq 0$ or for all $\theta \leqq 0$;
2. If 0 is a pole of f, then in U, the set of trajectories which have 0 as accumulation point is finite nonempty.

Two "indices" will be used. The first is the notion familiar from complex variable theory: the index of a point $z_{0} \in \mathrm{E}^{2}$ with respect to a closed rectifiable parametric curve $C \subset \mathrm{E}^{2}-z_{0}$ is

$$
\operatorname{ind}_{C} z_{0}=\frac{1}{2 \pi i} \int_{c} \frac{\mathrm{~d} z}{z-z_{0}} .
$$

If, furthermore, C is simple closed, then let int C be the bounded component of $\mathrm{E}^{2}-C$, and set ind $C=\operatorname{ind}_{C} z_{0}$ for any $z_{0} \in \operatorname{int} C$.

The second is a generalisation of this notion, the Kronecker index of a point in a vector field. For our purposes it may be defined as follows. Given a meromorphic
function f in G, define $m(z)$ or $m_{f}(z)$ for $z \in G$ thus: if z is a zero of f of multiplicity k, set $m(z)=k$; if z is a pole of f of multiplicity k, set $m(z)=-k$; in the remaining cases, set $m(z)=0$. Thus $|m(z)|$, if nonzero, is the multiplicity of z in the usual sense. Obviously

$$
m_{f g}=m_{f}+m_{\boldsymbol{g}}
$$

for meromorphic f, g in G; also (if $C_{r}=\left\{z+r e^{i \theta}: C \leqq \theta \leqq 2 \pi\right\}$)

$$
\begin{aligned}
m_{f}(z) & =\operatorname{res}_{z} \frac{f^{\prime}}{f}=\frac{1}{2 \pi i} \lim _{r \rightarrow 0+} \int_{C_{r}} \frac{f^{\prime}}{f} \mathrm{~d} z= \\
& =\frac{1}{2 \pi} \lim _{r \rightarrow 0^{+}} \operatorname{Im} \int_{C_{r}} \frac{f^{\prime}}{f} \mathrm{~d} z=\frac{1}{2 \pi} \lim _{r \rightarrow 0+} \int_{C_{r}} \mathrm{~d} \arg f
\end{aligned}
$$

and thus $m_{f}(z)$ is indeed the Kronecker index of z in $f[1$, XVI, §4].
A general theorem going back to Poincare (and with well known topological generalisations) states that the (Kronecker) index of a cycle is 1 . For meromorphic systems this specialises to the

Lemma 3. Let C be a cycle of (1) with int $C \subset G$. Then

$$
\sum_{z \notin C} m(z)\left|\operatorname{ind}_{C} z\right|=1 .
$$

Proof. The Kronecker index of C in the vector field of (1) is defined [1, XVI, § 4], essentially, as the number

$$
\text { ind } C \cdot \frac{1}{2 \pi} \int_{C} \mathrm{~d} \arg f
$$

where $\arg f$ is any branch of $\arg f(z)$, single-valued and piecewise continuous along C. In the usual definition (l.c.) there is a convention on the orientation of C. However C may be oriented otherwise, e.g. by the solution of (1) which parametrises C; the ind factor corrects for this effect on the \int_{C}.

Now for meromorphic functions f,

$$
\int_{C} \mathrm{~d} \arg f=\int_{C} \mathrm{~d} \operatorname{Im} \log f=\operatorname{Im} \int_{C} \frac{f^{\prime}}{f} \mathrm{~d} z=2 \pi \sum m(z) \operatorname{ind}_{C} z
$$

When multiplying through by the ind factor, notice that ind $C . \operatorname{ind}_{C} z=\left|\operatorname{ind}_{C} z\right|$, since $\operatorname{ind}_{C} z=0$ outside C, and in int C both factors coincide.

Our second result states that the primitive period of a cycle is completely determined by the behaviour of f at its zeros inside the cycle.

Lemma 4. If C is a cycle of (1) with int $C \subset G$, then its primitive period T satisfies

$$
T=2 \pi i \sum_{z \notin C} \operatorname{res}_{z}(1 / f) \operatorname{ind}_{C} z=2 \pi i . \text { ind } C . \sum_{z \in \operatorname{int} C} \operatorname{res}_{z} 1 / f .
$$

Proof. This is almost trivial: from $z^{\prime}=f(z)$ it follows that

$$
\frac{1}{f(z(\theta))} z^{\prime}(\theta)=1, \quad \int_{c} \frac{\mathrm{~d} z}{f(z)}=T
$$

and the residue theorem yields our formula immediately.
Notice that formula (2) is a special case. The results of lemmas 3 and 4 may be put in another - possibly more convenient - form.

Theorem 1. Let C be a cycle of the meromorphic system $z^{\prime}=f(z)$, int $C \subset G$. Then

$$
\begin{gathered}
\sum^{Z}|m(z)|-\sum^{P}|m(z)|=1 \\
\sum^{Z} \operatorname{Re}^{\operatorname{res}} 1 / f=0, \quad \sum^{P} \operatorname{Im~res}_{z} 1 / f \neq 0
\end{gathered}
$$

here \sum^{Z} and \sum^{P} denote summation over all zeros and poles, respectively, of f in int C.

Obviously $\operatorname{sgn} \sum^{\mathrm{Z}} \operatorname{Im} \operatorname{res}_{z} 1 / f$ determines the orientation of C.
Corollary. Under the same assumptions,

1. int C contains at least one zero; if it contains more than one zero, it must also contain a pole;
2. If int C contains at most one singular point, then it must be a center;
3. If f is holomorphic in int C (e.g. a polynomial), then the case described in 2 obtains;

Example 1 (contd.). We may apply theorem 1 to the case $f(z)=i z^{2} /(z-1)$ considered previously. Since ∞ is a center, there do exist cycles C in E^{2}; for every such cycle, int C must contain the unique zero 0 (corollary, 1); since $m(0)=2$, int C must also contain a pole, i.e. the pole 1 . (Since ∞ is a center, this is obvious for cycles sufficiently near ∞; however, we have proved it for all cycles of the system.) The formula of lemma 4 then yields, for the period T of every cycle, $T=2 \pi i .1$. . $(-i+0)=2 \pi$.
Theorem 1 then suggests, as most theorems do, several further questions.
In the situation described in 2 above, is int C completely filled by cycles encircling the singular point? (An affirmative answer follows from theorem 2 or 3 .)

Problem 1. Do there exist other types of cycles except these?
If the statement of theorem 1 is interpreted as a necessary condition, is it sufficient? This is vaguely put, and the answer is negative; however, we may formulate a less ambitions problem:

Problem 2. Given a meromorphic system (1), and some zeros and poles z_{k} of f with $\sum m\left(z_{k}\right)=1, \sum \operatorname{res}_{z_{k}} 1 / f=i \alpha, \alpha \neq 0$ real. Find effective conditions for existence of cycles C with $\operatorname{ind}_{C} z_{k} \neq 0$.

Now we will notice the neighbourhood of a cycle. Given the meromorphic system (1), take a point $z \in G$ (not a pole) and consider the solution $z($.$) of (1) with z(0)=z$. This solution may be prolonged, either indefinitely, or until it meets a pole of f or approaches the boundary of G. In any case we may define a function X on a subset of $E^{1} \times G$ such that

$$
\begin{equation*}
\frac{\partial}{\partial \theta} X(\theta, z)=f(X(\theta, z)), \quad X(0, z)=z, \quad X(\theta, z) \in G \tag{4}
\end{equation*}
$$

X is defined for all $z \in G$ not poles of f, and for all θ in some open interval $I_{z} \subset \mathrm{E}^{1}$ containing 0 . (Then $\varphi\left(\theta, \theta_{0} ; \xi, \eta\right)=X\left(\theta-\theta_{0}, \xi+i \eta\right)$ is the familiar "characteristic function").

Lemma 5. If $X\left(\theta_{0}, z_{0}\right)$ is defined for given θ_{0}, z_{0}, then $X\left(\theta_{0}, z\right)$ is holomorphic in z near z_{0}.

The proof may be carried out directly; however, the assertion is a special case of a theorem on the analytic dependence on initial data, e.g. [1, chap. I, th. 8.2].

Theorem 2. Let C be a cycle of the meromorphic system (1). Then there is an annular neighbourhood U of C consisting of complete cycles of (1), with the same primitive period.

Proof. By definition, $C \subset G$ and there is no pole on C. Let T be the primitive period of C; then

$$
\begin{equation*}
X(T, z)=z \quad \text { for } \quad z \in C . \tag{5}
\end{equation*}
$$

Both sides of this equation are holomorphic in z near C (lemma 5), so that (5) must hold in a neighbourhood U of C. Thus each $z \in U$ is on a cycle of (1) with period T.

It remains to prove that T is the primitive period, at least for small $U \supset C$. Assume the contrary; then there are z arbitrarily near C and cycles $C(z)$ passing through z with primitive periods $T(z) \neq T$; however, since T is at least some period of $C(z)$, we have $T=n(z) T(z), 2 \leqq n(z)$ integral. There are then two possibilities (and both lead to contradictions).

Either the $n(z)$ are bounded; then we may take convergent subsequences $n(z) \rightarrow n_{0}$; $T(z) \rightarrow T_{0}$ (since $0<T(z)<n(z) T(z)=T$), whereupon $n_{0} \geqq 2, T=n_{0} T_{0}$, hencè
$T>T_{0}>0$; also, by continuity, T_{0} is a period of C; however T is the primitive period, a contradiction.
The second possibility is that some subsequence $n(z) \rightarrow+\infty$. Now, for any two points $z\left(\theta_{1}\right), z\left(\theta_{2}\right)$ on $C(z)$,

$$
\left|z\left(\theta_{2}\right)-z\left(\theta_{1}\right)\right|=\left|\int_{\theta_{1}}^{\theta_{2}} f(z(\theta)) \mathrm{d} \theta\right| \leqq M T(z)=M T / n(z) \rightarrow 0
$$

where $M=\sup _{U}|f|<+\infty$ for small $U \supset C$. Therefore there is a point z_{0} on C such that any disc neighbourhood of z_{0} contains complete trajectories (the cycles $C(z)$); in particular, there are zeros of f arbitrarily near z_{0}, a contradiction.

This completes the proof of theorem 2.
More information may be had concerning the neighbourhood U :
Theorem 3. Let C be a cycle of the meromorphic system (1). Then there is a (maximal) neighbourhood U of C consisting of complete cycles of (1), such that U is a region, the boundary U consists of two components K_{1}, K_{2} separated by C; furthermore, each K_{j} is a closed parametric curve consisting of complete trajectories, singular points and boundary points of G; and either

1. K_{j} is a single point, a center; or
2. K_{j} consists of a finite set of complete trajectories and poles of f, at least one of each; or
3. K_{j} contains no zeros of f and intersects the boundary of G.

Sketch of proof. Assume $z_{0} \in K_{j} \cap G$ is a zero of f. Since every neighbourhood of z_{0} intersects U, from 1 of lemma 2 it follows that arbitrarily small neighbourhood of z_{0} contain cycles. Hence z_{0} is a center ($c f$. lemma 1), and as K_{j} is connected, $K_{j}=z_{0}$. Thus the only zeros on K_{j} are centers, whereupon K_{j} degenerates.

If a nondegenerate $K_{j} \subset G$ were to contain no poles, then the function $X(\theta, z)$ would be holomorphic on K_{j}, and thus K_{j} would itself be a cycle (theorem 2); application of theorem 2 to K_{j} then yields a contradiction.

If a $K_{j} \subset G$ were to contain infinitely many poles or trajectories, then it would also contain an essential singularity of $f\left(K_{j}\right.$ closed in compact $\left.\mathrm{S}^{2}\right)$.

Example 1 (contd.) We now have that cycles fill out region H in S^{2} with ∞ as the "outer" boundary, and with a closed parametric curve S through the saddle point 1 as "inner" boundary. Since 0 is a zero of f, it is not in H, nor on S. Finally S can enter 1 only with direction $e^{-i \pi / 4}$ or $-e^{-i \pi / 4}$, and exit from 1 only with directions $\pm e^{i \pi / 4}$.

The last group of results concerns separatrices, by which we shall understand parametric curves consisting of a finite set of complete trajectories and singular points of (1), containing at least one of each and oriented in agreement with the
constituent trajectories. The components K_{j} of theorem 3 are an instance of these, at least if $K_{j} \subset G$ and K_{j} contains at least two points. The following lemma is immediate.

Lemma 6. Assume that $z($.$) is a solution of (1) and$

$$
z(\theta) \rightarrow z_{0} \quad \text { as } \quad \theta \rightarrow \theta_{0},
$$

with z_{0} a singular point and $\left|\theta_{0}\right|=+\infty$ not excluded. Then

1. z_{0} is not a center;
2. If z_{0} is not a focus, then

$$
\frac{z(\theta)-z_{0}}{i\left|z(\theta)-z_{0}\right|}
$$

tends to an exceptional direction as $\theta \rightarrow \theta_{0}$;
3. If z_{0} is a zero of f, then $\left|\theta_{0}\right|=+\infty$; however, if z_{0} is not a focus, then the trajectory determined by $z($.$) at least has finite arc-length near z_{0}$,

$$
\int^{\theta_{0}}\left|\frac{\mathrm{~d} z(\theta)}{\mathrm{d} \theta}\right| \mathrm{d} \theta<+\infty ;
$$

4. If z_{0} is a pole of f, then $\left|\theta_{0}\right|<+\infty$.

Lemma 7. A closed separatrix cannot contain simple zeros of f.
Proof. A simple zero z_{0} of f, not a center, is either stable or unstable, according as $\operatorname{Re} f^{\prime}\left(z_{0}\right)<0$ or >0. Thus a separatrix cannot both enter and exit from z_{0}.

Now we shall attempt to extend the formulas of theorem 1 to closed separatrices. First, we have as trivial generalisation of lemma 4,

Theorem 4. Let S be a closed parametric curve in G (not necessarily simple), consisting of a finite set of complete trajectories and poles of f, and assume that all points z with $\operatorname{ind}_{s} z \neq 0$ belong to G. Then there is a real $\alpha>0$ with $2 \pi i \sum_{z \notin S} \operatorname{res}(1 / f)$. $. \operatorname{ind}_{S} z=\alpha$.
Proof. From 4 of lemma 6 it follows that C may be parametrised using solutions of (1), with the parameter varying from 0 to a finite $\alpha>0$. Then, except at a finite number of points on S,

$$
2 \pi i \sum_{z \notin S} \operatorname{res}_{z} \frac{1}{f} \cdot \operatorname{ind}_{S} z=\int_{S} \frac{\mathrm{~d} z}{f(z)}=\int_{0}^{\alpha} \frac{z^{\prime}(\theta)}{f(z(\theta))} \mathrm{d} \theta=\int_{0}^{\alpha} \mathrm{d} \theta=\alpha .
$$

Problem 3. Let S be a simple closed curve consisting of complete trajectories and singular points of (1) (and containing at least one zero of f). Prove that $\operatorname{Re} \sum_{z \notin S} \operatorname{res}_{z}(1 / f)$. $. \operatorname{ind}_{S} z=0$.

In this connection, it is not true that $\operatorname{Im} \sum \operatorname{res}_{z}(1 / f) \cdot \operatorname{ind}_{s} z \neq 0$; a counterexample is provided by the system with $f(z)=i z^{2} /(z-1)$ treated in example 1 (cf. fig. 1).

Corollary. With the assumptions of theorem 4, in each component of $E^{2}-S$ relatively to which S has non-zero index, there is at least one zero of f.

We cannot conclude, in analogy with the corollary to theorem 1 , that if there is precisely one singular point in a component of $E^{2}-S$, then it must be a center. The example mentioned again affords a counter-example. The reason why the analogy fails may be traced to that closed separatrices need not (though cycles must) have unity Kronecker index.

Nevertheless, it is natural to inquire about the sum of Kronecker indices of singular points in the bounded component of a simple closed separatrix. The remaining part of the paper is devoted to this question.

Assume there is given a system (1), and a simple closed curve S consisting of a finite set of complete trajectories and singular points of (1); in particular, then, we have the results of lemma 7 and 6.

Lemma 8. Let $\left\{z_{j}\right\}_{1}^{n}$ be the singular points on S. Then

$$
\begin{equation*}
\sum_{z \notin S} m(z)\left|\operatorname{ind}_{S} z\right|=1+\operatorname{ind} S \sum_{j}\left(\left(m_{j}-1\right) v_{j}+\left(\frac{1}{2}-m_{j} \delta_{j}\right) \operatorname{sgn} v_{j}\right), \tag{6}
\end{equation*}
$$

with the following notation:

$$
m_{j}=m\left(z_{j}\right) ; \quad v_{j}=\frac{1}{2 \pi} \operatorname{Arg} \frac{w_{0}}{w_{i}} ;
$$

w_{0}, w_{i} are the exceptional directions (entrant, resp. exitant) of S at $z_{j} ; \delta_{j}$ is defined as follows: S separates sufficiently small disc neighbourhoods of z_{j} into two curvilinear sectors; then $\delta_{j}=0$ or 1 according as int S is or not within the sector with convex angle at vertex (within $(-\pi, \pi\rangle)$, locally at z_{j}.

Proof. Please refer to Hopf's proof [1, chap. XVI, th. 4,3] of the "cycle index is 1 " theorem.

Given a simple closed positively oriented parametric curve $C=\{z(\sigma): 0 \leqq \sigma \leqq 1\} ;$ omit the hypothesis that C have a smoothly varying tangent, and assume only that $z^{\prime}(0) \neq 0$ exists. Then the proof yields, at least, that the variation of argument of the vector $u(\sigma, \tau)=z(\tau)-z(\sigma)$ is 2π along any simple curve Q in the $\sigma-\tau$ plane leading from $(0,0)$ to $(1,1)$, and except for these end-points, entirely within the triangle $0<\sigma<\tau<1$. However, if a continuous $z^{\prime}(\sigma)$ exists for $\sigma_{1} \leqq \sigma \leqq \sigma_{2}$ (some $0 \leqq \sigma_{1}<\sigma_{2} \leqq 1$), then we may also admit simple curves Q which touch the diagonal $\sigma=\tau$ along $\sigma_{1} \leqq \sigma \leqq \sigma_{2}$. (The original proof in [1] consists in taking for Q the whole diagonal $0 \leqq \sigma=\tau \leqq 1$.)

Returning to our case, we have that the variation along Q is 2π ind S (since S may well be negatively oriented). Also, a continuous $z^{\prime}(\sigma)$ exists except at a finite set of σ_{j} 's with $z\left(\sigma_{j}\right)=z_{j}$, the singular points on S. Thus, for sufficiently small positive α_{j}, β_{j},

$$
\begin{aligned}
2 \pi \text { ind } S & =\sum_{j}\left\{\operatorname{Var} \arg z^{\prime}(\sigma): \sigma_{j-1}+\alpha_{j-1} \leqq \sigma \leqq \sigma_{j}-\beta_{j}\right\}+ \\
& +\sum_{j}\left\{\operatorname{Var} \arg (z(\tau)-z(\sigma)): \sigma_{j}-\beta_{j} \leqq \sigma \leqq \sigma_{j}+\alpha_{j},(\sigma, \tau) \in Q\right\}
\end{aligned}
$$

(with obvious changes in the first and last summands near $\sigma=0$ or $\sigma=1$.) The first sum then constitutes a curvilinear integral over a finite set-join S^{\prime} of disjoint subarcs of S missing the singular z_{j}; thus

$$
\begin{equation*}
2 \pi \text { ind } S=\operatorname{Im} \int_{S^{\prime}} \frac{f^{\prime}}{f} \mathrm{~d} z+\sum_{j} \operatorname{Var}_{j} \tag{7}
\end{equation*}
$$

where Var_{j} has the obvious meaning.
Next, describe a circle K_{j} around each z_{j} with radius sufficiently small to have K_{j} intersect S at exactly two points ($c f$. assertion 2 in lemma 6); these then separate K_{j} into two arcs, of which precisely one, say A_{j}, has $A_{j} \subset \operatorname{int} S$. Obviously $S-U$ int K_{j} is a curve S^{\prime} of the type described above, and $S^{\prime \prime}=S^{\prime} \cup \bigcup A_{j}$ is a piecewise smooth closed curve; if the radii of K_{j} are taken sufficiently small, int $S^{\prime \prime}$ contains all the singular points in int S and none other. Thus by the residue theorem,

$$
\int_{S^{\prime \prime}} \frac{f^{\prime}}{f} \mathrm{~d} z=2 \pi i \sum m(z) \operatorname{ind}_{S} z=2 \pi i \sum m(z) \operatorname{ind}_{S} z
$$

and therefore

$$
\begin{equation*}
2 \pi \sum_{z \notin S} m(z) \operatorname{ind}_{S} z=\operatorname{Im} \int_{S^{\prime}} \frac{f^{\prime}}{f} \mathrm{~d} z+\sum \operatorname{Im} \int_{A_{j}} \frac{f^{\prime}}{f} \mathrm{~d} z \tag{8}
\end{equation*}
$$

From (7) and (8) (on multiplying by $1 / 2 \pi$ ind S),

$$
\begin{equation*}
\sum_{z \notin S} m(z)\left|\operatorname{ind}_{S} z\right|=1+\operatorname{ind} S \sum_{j}\left(\frac{1}{2 \pi} \operatorname{Im} \int_{A_{j}} \frac{f^{\prime}}{f} \mathrm{~d} z-\frac{1}{2 \pi} \operatorname{Var}_{j}\right) . \tag{9}
\end{equation*}
$$

Here the left side is independent of choice of the $\alpha_{j}, \beta_{j}, A_{j}$; and a j-th summand on the right depends only on $\alpha_{j}, \beta_{j}, A_{j}$. In particular, we may take $\alpha_{j} \rightarrow 0, \beta_{j} \rightarrow 0$, radius $A_{j} \rightarrow 0$ for each j separately.

Now consider any j; for simplicity assume $z_{j}=0$, and set $m\left(z_{j}\right)=m$. Then, near $z_{j}=0$,

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m}{z}(1+o(|z|)),
$$

so that, as radius $A \rightarrow 0$,

$$
\int_{A} \frac{f^{\prime}}{f} \mathrm{~d} z \rightarrow \operatorname{Im}\left(\varphi_{o}-\varphi_{i}\right)
$$

here obviously

$$
\varphi_{o}-\varphi_{i}=\operatorname{Arg} \frac{w_{o}}{w_{i}}-2 \pi \delta \operatorname{sgn} \operatorname{Arg} \frac{w_{o}}{w_{i}}
$$

where w_{i}, w_{o} are the exceptional directions under which S enters (exits from) 0 , and $\delta=0$ or 1 according as int S is or not within the convex sector (with apex angle within $(-\pi, \pi\rangle)$. Thus, for each j,

$$
\begin{equation*}
\frac{1}{2 \pi} \operatorname{Im} \int_{A_{j}} \frac{f^{\prime}}{f} \mathrm{~d} z \rightarrow m_{j}\left(v_{j}-\delta_{j} \operatorname{sgn} v_{j}\right) \tag{10}
\end{equation*}
$$

where m_{j}, v_{j}, δ_{j} are as in the statement of the lemma.
Finally we are to consider Var_{j}. Quite obviously, as $\alpha_{j} \rightarrow 0, \beta_{j} \rightarrow 0$ with radius $A_{j} \rightarrow 0$,

$$
\operatorname{Var}_{j} \rightarrow \operatorname{Arg} \frac{w_{o}}{w_{i}},
$$

where w_{o}, w_{i} have the previous meaning, so that (since $w_{o} \neq w_{i}$)

$$
\operatorname{Var}_{j} \rightarrow 2 \pi v_{j}-\pi \operatorname{sgn} v_{j} .
$$

This and (10) in (9) yield (6), which was to be proved.
Formula (6) may be simplified further. By definition of exceptional directions, we have, at the singular point $z_{j}, w_{i}^{1-m}=-(a \||a|), w_{\sigma}^{1-m}=a \||a|$ where $a=\lim _{z \rightarrow z_{j}} f(z)$. .$\left(z-z_{j}\right)^{-m}$ and $m=m_{j}=m\left(z_{j}\right)$. Then

$$
v_{j}=\frac{1}{2 \pi} \operatorname{Arg} \frac{w_{o}}{w_{i}}=\frac{1}{2} \frac{k_{j}}{\left|m_{j}-1\right|}
$$

with k_{j} an odd integer, $-\left|m_{j}-1\right|<k_{j} \leqq\left|m_{j}-1\right|$. It is easily seen that $\left|k_{j}\right|$ is the smaller number of sectors (bounded by consecutive exceptional directions at z_{j}), counted from the subarc of S entering z_{j} to that exiting from z_{j}; and $k_{j}>0$ iff this order is in the positive direction. Obviously $\operatorname{sgn} v_{j}=\operatorname{sgn} k_{j}$. Since $0 \neq m_{j} \neq 1$ (lemma 7), sgn $m_{j}=\operatorname{sgn}\left(m_{j}-1\right)$.

Furthermore, there is a connection between δ_{j} and $\operatorname{sgn} v_{j}$. It is easily seen that if ind $S=1$, then

$$
v_{j}<0 \quad \text { if } \quad \delta_{j}=0, \quad v_{j}>0 \quad \text { if } \quad \delta_{j}=1
$$

i.e. $2 \delta_{j}-1=\operatorname{sgn} v_{j}$. If ind $S=-1$, then the v_{j} 's change sign, and δ_{j} 's remain unchanged; thus in every case,

$$
2 \delta_{j}-1=\operatorname{sgn} v_{j} \text { ind } S .
$$

These results are formulated below.

Theorem 5. Let S be a simple closed curve, consisting of a finite set of complete trajectories and singular points z_{j}; assume int $S \subset G$. Then

$$
\begin{equation*}
\sum_{z \notin S} m(z)\left|\operatorname{ind}_{S} z\right|=1+\sum_{j} \frac{1}{2}\left(1+\left|k_{j}\right| \operatorname{sgn} m_{j}-2 \delta_{j} m_{j}\right)\left(2 \delta_{j}-1\right), \tag{11}
\end{equation*}
$$

where k_{j} is an odd integer, $-\left|m_{j}-1\right|<k_{j} \leqq\left|m_{j}-1\right|$, and m_{j}, δ_{j} are as described in lemma 8. Furthermore, $2 \delta_{j}-1=\operatorname{sgn} k_{j}$ ind S.

Some rough estimates may be obtained from (11). For convenience, set $N_{Z}=\sum_{m_{j}>0} 1$, the number of zeros on S; and $M_{Z}=\sum_{m_{j}>0} m_{j}, M_{P}=\sum_{m_{j}<0}\left|m_{j}\right|$, the sums of (positive) multiplicities of zeros and poles, respectively, of f on S. For poles one has $m_{j}<0$ and $1 \leqq\left|k_{j}\right| \leqq\left|m_{j}-1\right|=\left|m_{j}\right|+1$; the corresponding terms in (11) are

$$
\sum_{m_{j}<0}=\frac{1}{2} \sum_{\delta=0}\left(\left|k_{j}\right|-1\right)+\frac{1}{2} \sum_{\delta=1}\left(1-\left|k_{j}\right|+2\left|m_{j}\right|\right) ;
$$

and one obtains the following estimates

$$
0 \leqq 0+\frac{1}{2} \sum_{\delta=1}\left|m_{j}\right| \leqq \sum_{m_{j}<0} \leqq \frac{1}{2} \sum_{\delta=0}\left|m_{j}\right|+\sum_{\delta=1}\left|m_{j}\right| \leqq M_{P} .
$$

Similarly, for zeros one has $m_{j}>0$ and $1 \leqq\left|k_{j}\right| \leqq\left|m_{j}-1\right|=m_{j}-1$ (in particular, $2 \leqq m_{j}, c f$. lemma 7); then from

$$
\sum_{m_{j}>0}=-\frac{1}{2} \sum_{\delta=0}\left(\left|k_{j}\right|+1\right)+\frac{1}{2} \sum_{\delta=1}\left(1+\left|k_{j}\right|-2\left|m_{j}\right|\right)
$$

there follow the estimates

$$
-M_{Z} \leqq-\frac{1}{2} \sum_{\delta=0}\left|m_{j}\right|+\sum_{\delta=1}\left(1-\left|m_{j}\right|\right) \leqq \sum_{m_{j}>0} \leqq-\frac{1}{2} \sum_{\delta=0} 2-\frac{1}{2} \sum_{\delta=1}\left|m_{j}\right| \leqq-\frac{1}{2} N_{\mathrm{Z}} .
$$

Using these, one obtains the following corollaries (the assumptions of theorem 5 and the preceding notation are preserved).

Corollary 1. $1-M_{\mathrm{Z}} \leqq \sum m(z)\left|\operatorname{ind}_{S} z\right| \leqq 1+M_{P}-\frac{1}{2} N_{\mathrm{Z}}$.
Corollary 2. If there are no zeros on S, then int S contains at least one zero. If, furthermore, there are no poles in int S, then the sum M of multiplicities of zeros in int S satisfies $1 \leqq M \leqq 1+M_{P}$.

Corollary 3. If there are no poles and at least three zeros on S, then int S contains at least one pole.
Sharper results may be obtained on restricting the separatrices S by requiring all δ_{j} to be equal.

Example 1 (contd.). Now we may complete our examination of the case $f(z)=$ $=\mathrm{i} z^{2} /(z-1), G=\mathrm{S}^{2}$. The existence of a closed separatrix $S \subset \mathrm{E}^{2}$ with $1 \in S \nexists 0$ has already been established. From the corollary to theorem 4, each component of $\mathrm{E}^{2}-S$ must contain a zero of f; thus there is a unique component and hence S is simple closed, and 0 is the unique singular point in int S. In particular, we may apply theorem 5; here $m_{1}=-1$, so that $-2<k_{1} \leqq 2$, i.e. $\left|k_{1}\right|=1$; and thus from (11)

$$
2=1+\frac{1}{2}\left(1-1+2 \delta_{1}\right)\left(2 \delta_{1}-1\right), \quad \delta_{1}=1
$$

Fig. 1.
From symmetry, if $z(\theta)$ is a solution of (1), then $\overline{z(-\theta)}$ is also a solution, so that S must be symmetric about the x-axis. Thus the exceptional directions of S at 1 are either $e^{ \pm i \pi / 4}$ or $-e^{ \pm i \pi / 4}$. If it were the latter, then necessarily $\delta_{1}=0$ (cf. the definition of δ_{j} in lemma 8), a contradiction. This establishes how S is situated.

All trajectories in int S tend towards and from 0, with the exception of the two trajectories which have exceptional directions $e^{i \pi / 4}$ and $-e^{-i \pi / 4}$ at 1 . Thus, finally, we have fig. 1.

Given a rational function f, we may define the type of the dynamical system (1) associated with f as the system of integers $\left\{m_{f}(z)\right\}_{z}$ with z varying over all the singular points of (1).

Thus the canonic systems $z^{\prime}=a z^{m}(m$ integer, $a \neq 0)$ have type $(m, 2-m)$ for $0 \neq m \neq 2$, type (2) for $m=2$, and empty type for $m=0$. The system of example 1 has type $(2,-1,1)$. (Obviously the sum of multiplicities is 2 except for empty type.)

Example 2. Any rational system (1) of type (2, -1, 1) is of the form

$$
\begin{equation*}
z^{\prime}=a \frac{z^{2}}{z-1}(a \neq 0) \tag{12}
\end{equation*}
$$

up to a homographic mapping taking the singular points to $0,1, \infty$ respectively.
Obviously the trajectories of (12) are isogonals to those of example 1 ; the angle between the trajectories is $\mathrm{Arg}-\mathrm{ia}$.

References

[1] Coddington E. A., Levinson N.: Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955.
[2] Gregor J.: Dynamical systems with regular right-hand side (in Czech). Pokroky MFA, III, No 2 (1958), 153-160.
[3] Hájek $O .:$ Conformal mapping of neighbourhoods of singular points in meromorphic dynamical systems, presented at the 1955 conference of the Prague Institute of Technology (unpublished).

Author's address: Praha 8 - Karlín, Sokolovská 83, ČSSR (Matematicko-fyzikální fakulta UK).

Резюме

О МЕРОМОРФНЫХ ДИНАМИЧЕСКИХ СИСТЕМАХ, I

ОТОМАР ГАЕК (Otomar Hájek), Прага

Изучается поведение в целом траекторий динамической системы $d z / d \theta=f(z)$ где функция f мероморфная в заданной области комилексной сферы, и θ вещественная переменная. (В [2] предложена локальная теория этих систем.)

Доказано, что у мероморфных систем не существуют изолированные циклы: всякий цикл погружен в полосу циклов того хе периода (теоремы 2 и 3). Результаты о кратностях и резидуумах сингулярных точек во внутренной области цикла (теорема 1; первый из них, по существу, классический) переносятся на более общий случай замкнутой сепаратрицы: теоремы 4 и 5. Отдельные результаты иллюстрированы на качественном анализе одного примера мероморфной системы (фиг. 1).

