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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

NOTES ON MEROMORPHIC DYNAMICAL SYSTEMS, I 

O T O M A R HÂJEK 

(Received January 9, 1964) 

In the theory of dynamical systems in the plane, one naturally needs examples; the 
most elementary are linear systems (and, possibly, "polar" systems). However, it 
seems a giant step from linear systems, with an entirely trivial theory in the large, to 
say polynomial systems, where even the local theory is rather involved (and the theory 
in the large is quite formidable; e.g., the van der Pol equation). A possible candidate 
for a class intermediate in complexity are the systems 

do dO 

(Ö, ^p (pj real) with/ = cp^ + щ^ a polynomial in z = (̂ i + 1̂ 25 ^^^ ^^^ immediate 
generalisations t o / holomorphic, or rational, meromorphic. (The Hnear systems are 
not a subclass.) 

The restriction of the vector-field function / to these classes naturally has as con
sequence special properties of the dynamical system, and some of these are the 
subject of the present paper. Specifically, this paper is devoted to the quaUtative 
theory of cycles of these systems. It appears that ' / holomorphic' is a rather too 
strict restriction (there are then no saddle points, etc?). Now, poles of/ are "saddle-
points"; but it may not be immediately apparent whether these have any connection 
with the concept of saddle point customary in differential equation theory. However, 
this is simple: if/ has a pole of order к at 0, then 

z^=f{z), z' = \zff{z) {a>k) 

have the same trajectories (with distinct parametrisations), and the second of these 
has a critical point at 0, namely a saddle point. 

Let there be given a nonvoid open subset G of the 2-sphere S ;̂ a meromorphic 
system in G is determined by a meromorphic function / on G, or by the differential 
equation (in a local complex coordinate z) 

(1) ^ = /W 

with в real. 
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A solution of (1) is a mapping z : / -> G of a nonvoid open interval / с E \ which 
has/(z(ö)) Ф 00 for ö e / , and which satisfies equation (l) whenever z(ö) Ф oo; if 
z(9) — 00 we of course require, instead of (l), that l/z(.) be a solution of 

do V^, 
at Ö. It seems convenient not to define solution? through poles of/, since then unicity 
of solution would not be preserved. 

A trajectory of (1) is the image of a nonconstant solution of (l) with a maximal 
open interval as domain of definition. A cycle of (1) is the image of a solution with 
a (finite positive primitive) period. From unicity it follows that we may speak of the 
period (e.g., primitive) of a cycle. A singular point of (l) is a pole or zero of / in 
G c: S^; zeros of / are, in a more general sense than ours, often called the critical 
points of/. 

As an example, consider the system in S ,̂ defined on Ê  = Ŝ  — oo by z' = 
= iz^l(z — 1), and described near oo by l/z = w, w' = iwjÇw — 1). Thus there are 
three singular points in S ,̂ zeros at 0 and oo, and a pole at 1. We do not introduce the 
concept of "singular points at infinity", since this would lead to difficulties (thus the 
former system would then have three, and the latter two singular points). 

The local theory of these systems was established by Gregor [2]. Several of his 
results may be summarised as follows. 

Lemma 1. Let {i) be a meromorphic system. Then 

1. Every pole of f is a saddle point; 

2. Multiple zeros of f are nodes if res 1// = 0; 

3. A. zero of multiplicity one is either a dicritical node {iff f is real), a center 
{ifff is pure imaginary) or a focus; moreover, then, R e / ' < 0 iff the critical point 
is asymptotically stable; 

4. / / ZQ is a center, i.e. if f(zo) = Re/'(zo) = 0 ф Im/ ' (ZQ) , then all cycles С 
near ZQ have the same primitive period T, 

(2) T = — ^ indc ZQ . 

In particular, since T > 0, sgnIm/ '(zo) determines ind^ ZQ, the orientation of C. 
The basic idea in [2] is that the trajectories of (1) are similar (in some respect at 

least) locally at a singular point e.g. ZQ = 0, to those of "canonic" systems of the form 

(3) z' = az"* 

where |m| is the multiplicity of the zero (m > 0) or pole (m < 0) of/, and a — 
= lim/(z) z""". For m Ф 1 there are then 2|m — l| exceptional directions, defined 
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as (unit vectors) w e E ,̂ solutions of w^""" = +(ßf/|ö|) (entrant or exitant according 
as =Fl is the sign taken); these have the property that if a solution z(ö) tends to 
ZQ = 0, then z{e)l\z{Q)\ tends to an exceptional direction, entrant for increasing 0, 
exitant for decreasing в. 

Example 1. Consider again the system (1) with 

/ (z ) = - ^ , G = SK 
z — 1 

Then we have the following information about the singular points of this system 

singular entrant exitant 
point m type ex. dir. ex. dir. res 1/ / 

0 2 node —i i —i 
1 - 1 saddle ±e~^'^/'* ±e^""/^ 0 
00 1 center none none i 

This example will be examined further later. 
Shortly later, the present author announced [3] that there exists a homeomorphism 

mapping the field of trajectories of (l) into that of (3), locally at the singular point 0 
(in fact, the homeomorphism is piece wise conformai), thus removing the restriction 
res 1// = 0 assertion in 2 of lemma 1. It is intended to give detailed proofs in a sub
sequent paper. 

We will need two further results; both are trivial consequences of this local 
homeomorphism of (l) and (3). 

Lemma 2. Let 0 be a singular point of (l). Then there exist arbitrarily small 
neighbourhoods U of 0 such that: 

1. / / 0 is a zero of f, then separately for each solution z(.) of (1) with z(0) e U, 
z{e) e и either for all 0 ^ 0 or for all 0 ^ 0 ; 

2. If 0 is a pole off, then in U, the set of trajectories which have 0 as accumulation 
point is finite nonempty. 

Two "indices" will be used. The first is the notion familiar from complex variable 
theory: the index of a point ZQ e Ê  with respect to a closed rectifiable parametric 
curve С cz Ê  — Zo is 

•A 1 f dz mdc zo = - - \ . 
2711J ^ Z - Zo 

If, furthermore, С is simple closed, then let int С be the bounded component 
of Ê  — C, and set ind С = ind^ ZQ for any ZQ e int С 

The second is a generalisation of this notion, the Kronecker index of a point in 
a vector field. For our purposes it may be defined as follows. Given a meromorphic 
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function / i n G, define m(z) or mf(z) for z e G thus: if z is a zero of / of multiplicity fc, 
set m{z) = /c; if z is a pole of/ of multiplicity k, set m(z) = — fc; in the remaining 
cases, set m{z) = 0. Thus |m(z)|, if nonzero, is the multiplicity of z in the usual 
sense. Obviously 

^fg = Щ + ^9 

for meromorphic/, g in G; also (if Q = {z + re'^ : G ^ Ö g 27г}) 

mf{z) — res^ — = — lim — dz = 
/ Ini r->o+Jc, f 

1 С r I f 
= — lim Im — dz = — Um d arg/ 

and thus mf{z) is indeed the Kronecker index of z i n / [1, XVI, § 4]. 
A general theorem going back to Poincaré (and with well known topological 

generalisations) states that the (Kronecker) index of a cycle is 1. For meromorphic 
systems this specialises to the 

Lemma 3. Let С be a cycle of (l) with int С a G. Then 

гфС 

Proof. The Kronecker index of С in the vector field of (l) is defined [1, XVI, § 4], 
essentially, as the number 

If. 
27rJc 

ind С . — I d arg / 
2n 

where arg/is any branch of arg/(z), single-valued and piecewise continuous along C. 
In the usual definition (/.c.) there is a convention on the orientation of C. However С 
may be oriented otherwise, e.g. by the solution of (l) which parametrises C; the ind 
factor corrects for this effect on the J .̂ 

Now for meromorphic functions / , 

d arg/ = d Im log/ = Im — dz = 27г Y,^{^) ^^^c ^ • 
V с %) с ш) с J 

When multiplying through by the ind factor, notice that ind С . indc z = lindc zl, 
since indc z = 0 outside C, and in int С both factors coincide. 

Our second result states that the primitive period of a cycle is completely determined 
by the behaviour of/ at its zeros inside the cycle. 
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Lemma 4. / / С is a cycle of (l) with int С a G, then its primitive period T 
satisfies 

T = 2ni X res^ (1//) indc z ^Ini.indC . ^ res^ 1/ / . 
гфС zeintC 

Proof. This is almost trivial: from z' = f{z) it follows that 

/c m) ^' Jc/(z) 
and the residue theorem yields our formula immediately. 

Notice that formula (2) is a special case. The results of lemmas 3 and 4 may be put 
in another — possibly more convenient — form. 

Theorem 1. Let С be a cycle of the meromörphic system z' = f{z), int С c:. G, 
Then 

i : ^ R e r e s , l / / = 0 , Y ^^^^^^\f ^ ^ \ 

here ^ ^ and YI denote summation over all zeros and poles, respectively, of f 
in int C. 

Obviously sgn YJ^ Im res^ 1// determines the orientation of С 

Corollary. Under the same assumptions, 

1. int С contains at least one zero; if it contains more than one zero, it must also 
contain a pole; 

2. / / i n t С contains at most one singular point, then it must be a center; 

3. / / / is holomorphic in int С {e.g. a polynomial), then the case described in 2 
obtains; 

Example 1 (contd.). We may apply theorem 1 to the case / (z ) = iz^j{z ~- 1) 
considered previously. Since oo is a center, there do exist cycles С in E^; for every 
such cycle, int С must contain the unique zero 0 (corollary, 1); since m(0) = 2, 
int С must also contain a pole, i.e. the pole 1. (Since GO is a center, this is obvious for 
cycles sufficiently near GO; however, we have proved it for all cycles of the system.) 
The formula of lemma 4 then yields, for the period T of every cycle, T = 2ni. 1 . 
. ( _ i + 0) == 271. 

Theorem 1 then suggests, as most theorems do, several further questions. 

In the situation described in 2 above, is int С completely filled by cycles encircHng 
the singular point? (An affirmative answer follows from theorem 2 or 3.) 
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Problem 1. Do there exist other types of cycles except these? 

If the statement of theorem 1 is interpreted as a necessary condition, is it suf
ficient? This is vaguely put, and the answer is negative; however, we may formulate 
a less ambitions problem: 

Problem 2. Given a meromorphic system (1), and some zeros and poles z^ of / 
with ^ m(zfc) = 1, X! ^̂ ẑfc V/ ^ ^ '̂ 0̂  + 0 real. Find effective conditions for existence 
of cycles С with ind^ z^ Ф 0. 

Now we will notice the neighbourhood of a cycle. Given the meromorphic system 
(1), take a point z e G (not a pole) and consider the solution z(.) of (l) with z(0) = z. 
This solution may be prolonged, either indefinitely, or until it meets a pole of / or 
approaches the boundary of G. In any case we may define a function Z on a subset 
of Ê  X G such that 

(4) ~X{e,z)=f{X{e,z)), X(0,z) = z , X{9,z)eG; 
80 

X is defined for all z G G not poles of/, and for all в in some open interval /^ c: Ê  
containing 0. (Then (р(в, OQ] ^, rj) = X{9 — OQ, ^ + irj) is the famihar "characteristic 
function"). 

Lemma 5. / / X{9Q, ZQ) is defined for given ÖQ, ZQ, then X(9Q, Z) is holomorphic 
in z near ZQ. 

The p roo f may be carried out directly; however, the assertion is a special case of 
a theorem on the analytic dependence on initial data, e.g. [1, chap. I, th. 8.2]. 

Theorem 2. Let С be a cycle of the meromorphic system (1). Then there is an 
annular neighbourhood U of С consisting of complete cycles of (l), with the same 
primitive period. 

Proof. By definition, С a G and there is no pole on C. Let T be the primitive 
period of C; then 

(5) X{T, z) = z for zeC, 

Both sides of this equation are holomorphic in z near С (lemma 5), so that (5) must 
hold in a neighbourhood U of C. Thus each z G C/ is on a cycle of (l) with period T. 

It remains to prove that Tis the primitive period, at least for small l/ з С Assume 
the contrary; then there are z arbitrarily near С and cycles C(z) passing through z 
with primitive periods T(z) Ф T; however, since T is at least some period of C{z)y 
we have T = n(z) T{z), 2 ^ n(z) integral. There are then two possibilities (and both 
lead to contradictions). 

Either the n(z) are bounded; then we may take convergent subsequences n{z) -> HQ; 
T{z) -> To (since 0 < T{z) < n{z) T{z) = T), whereupon «o ^ 2, Г = WOTQ, hence 
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г > Го > 0; also, by continuity, TQ is a period of C; however Tis the primitive period, 
a contradiction. 

The second possibility is that some subsequence n{z) -> +00. Now, for any two 
points 2(01), 7(^2) on C(z), 

\z{e,) - z{e,)\ = /(z(ö))d9 й MT{z) = MTln{z) -> 0 , 

where M = supu \f\ < +00 for small U ID C. Therefore there is a point ZQ on С 
such that any disc neighbourhood of ZQ contains complete trajectories (the cycles 
C{z)); in particular, there are zeros of/ arbitrarily near ZQ, a contradiction. 

This completes the proof of theorem 2. 
More information may be had concerning the neighbourhood U: 

Theorem 3. Let С be a cycle of the meromorphic system (1). Then there is 
a (maximal) neighbourhood U of С consisting of complete cycles of (1), such 
that и is a region, the boundary U consists of two components Ki,K2 separated 
by C; furthermore, each Kj is a closed parametric curve consisting of complete 
trajectories, singular points and boundary points of G; and either 

1. Kj is a single point, a center; or 
2. KJ consists of a finite set of complete trajectories and poles off, at least one of 

each; or 
3. Kj contains no zeros off and intersects the boundary of G. 

Ske tch of proof. Assume ZQ G K ^ n G is a zero of/. Since every neighbourhood 
of ZQ intersects U, from 1 of lemma 2 it follows that arbitrarily small neighbourhood 
of ZQ contain cycles. Hence ZQ is a center [cf. lemma 1), and as Kj is connected, 
Kj = ZQ. Thus the only zeros on Kj are centers, whereupon Kj degenerates. 

If a nondegenerate Kj с G were to contain no poles, then the function Х{в, z) 
would be holomorphic on Kj, and thus Kj would itself be a cycle (theorem 2); 
application of theorem 2 to Kj then yields a contradiction. 

If a Kj c: G were to contain infinitely many poles or trajectories, then it would 
also contain an essential singularity of/ [Kj closed in compact S )̂. 

Example 1 (contd.) We now have that cycles fill out region H in Ŝ  with 00 as the 
"outer" boundary, and with a closed parametric curve S through the saddle point 1 
as ''inner" boundary. Since 0 is a zero of/, it is not in H, nor on S, Finally S can 
enter 1 only with direction e'^""^"^ or —e~'''^'^, and exit from 1 only with directions 

The last group of results concerns séparatrices, by which we shall understand 
parametric curves consisting of a finite set of complete trajectories and singular 
points of (1), containing at least one of each and oriented in agreement with the 
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constituent trajectories. The components Kj of theorem 3 are an instance of these, 
at least if Kj с G and Kj contains at least two points. The following lemma is 
immediate. 

Lemma 6. Assume that z(.) is a solution of (i) and 

z[e) -^ ZQ as в -^ 9Q , 

with ZQ a singular point and \вс)\ = + oo not excluded. Then 

1. ZQ is not a center; 
2. If Z(y is not a focus, then 

Z{e) - ZQ 

i\z{e) - zol 

tends to an exceptional direction as в -^ 6^; 
3. If ZQ is a zero off, then \9o\ = +oo; however, if ZQ is not a focus, then the 

trajectory determined by z(.) at least has finite arc-length near ZQ, 

I '' Ml) dO < + 00 ; 

4. If ZQ is a pole off, then |öo| < +oo. 

Lemma 7. Ä closed separatrix cannot contain simple zeros of f. :• 

Proof. A simple zero ZQ of/, not a center, is either stable or unstable, according 
as Re/'(zo) < 0 or >0 . Thus a separatrix cannot both enter and exit from ZQ. 

Now we shall attempt to extend the formulas of theorem 1 to closed séparatrices. 
First, we have as trivial generalisation of lemma 4, 

Theorem 4. Let S be a closed parametric curve in G (not necessarily simple), 
consisting of a finite set of complete trajectories and poles of f, and assume that all 
points z with ind^ z Ф 0 belong to G. Then there is a real a > 0 with Ini J] res ( l / / ) . 
. inds z = a. ^̂ ^ 

Proof. From 4 of lemma 6 it follows that С may be parametrised using solutions 
of (1), with the parameter varying from 0 to a finite a > 0. Then, except at a finite 
number of points on S, 

iTTiVres.^. indsZ = f 4 ^ - = f - - Ä ; d 0 = = {\в = а. 
k V J./(^ Jo/(̂ (ö)) Jo 

Problem 3. Let S be a simple closed curve consisting of complete trajectories and 
singular points of (1) (and containing at least one zero of/) . Prove that Re ^ reSj. ( l / / ) . 
. inds z = 0. *** 
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In this connection, it is not true that Im ^ res^ ( l / / ) . ind^ z 4= 0; a counter
example is provided by the system with /(z) = iz^'l(z — l) treated in example 1 
(cf. fig. 1). 

Corollary. With the assumptions of theorem 4, in each component of E^ — S 
relatively to which S has non-zero index, there is at least one zero off 

We cannot conclude, in analogy with the corollary to theorem 1, that if there is 
precisely one singular point in a component of Ê  — S, then it must be a center. 
The example mentioned again affords a counter-example. The reason why the 
analogy fails may be traced to that closed séparatrices need not (though cycles must) 
have unity Kronecker index. 

Nevertheless, it is natural to inquire about the sum of Kronecker indices of singular 
points in the bounded component of a simple closed separatrix. The remaining part 
of the paper is devoted to this question. 

Assume there is given a system (1), and a simple closed curve S consisting of 
a finite set of complete trajectories and singular points of (l); in particular, then, we 
have the results of lemma 7 and 6. 

Lemma 8. Let {zy}" be the singular points on S. Then 

(6) Y ^(Ю li^^s z| = 1 + ind 5 YJH^J - 1) ^j + (i - ^ßj) sgn ^j) , 

with the following notation: 

mj = m{zj) ; Vj = — Arg — ; 
2л Wi 

WQ, Wi are the exceptional directions (entrant, resp. exitani) of S at zy, Ôj is defined 
as follows: S separates sufficiently small disc neighbourhoods of Zj into two curvili
near sectors; then ôj = 0 or 1 according as int S is or not within the sector with 
convex angle at vertex (within (—тс, тс)), locally at Zj. 

Proof. Please refer to Hopfs proof [U chap. XVI, th. 4,3] of the "cycle index 
is 1" theorem. 

Given a simple closed positively oriented parametric curve С = {Z((T) : 0 ^ (T ^ 1}; 
omit the hypothesis that С have a smoothly varying tangent, and assume only that 
z'(0) Ф 0 exists. Then the proof yields, at least, that the variation of argument of the 
vector u((7, T) = Z(T) — z(a) is In along any simple curve Q in the a — x plane 
leading from (0, 0) to (1, 1), and except for these end-points, entirely within the 
triangle 0 < cr < т < 1. However, if a continuous z'(a) exists for a^ ^ a ^ (J2 
(some 0 ^ ö"! < 0-2 ^ 1), then we may also admit simple curves Q which touch the 
diagonal a = т along cr^ ^ cr S (^i- (The original proof in [1] consists in taking 
for б the whole diagonal 0 ^ а = т ^ 1.) 
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Returning to our case, we have that the variation along Q is In ind S (since S may 
well be negatively oriented). Also, a continuous z'((j) exists except at a finite set 
of a/s with z((Tj) = Zj, the singular points on S. Thus, for sufficiently small positive 

In ind S = ^{Var arg Z'{G) : Oj_i + aj_i ^ Ö" ^ cr̂  — ĵ ^} + 
J 

+ X{Var arg (Z(T) - z{a)) : Cj - ßj й (г й (TJ + ccj, {а, т) 6 ß} 
J 

(with obvious changes in the first and last summands near a = 0 or a = 1.) The first 
sum then constitutes a curvihnear integral over a finite set-join S' of disjoint subarcs 
of S missing the singular Zji thus 

(7) 271 ind S = Im I ^-dz + ^ ^^r,-
JS' f J 

where Var^ has the obvious meaning. 

Next, describe a circle Kj around each Zj with radius sufficiently small to have Kj 
intersect S at exactly two points (cf. assertion 2 in lemma 6); these then separate Kj 
into two arcs, of which precisely one, say Aj, has Aj a int S. Obviously iS — U int Kj 
is a curve S' of the type described above, and S" = S' и \JAj is a piecewise smooth 
closed curve; if the radii of Kj are taken sufficiently small, int S'' contains all the 
singular points in int S and none other. Thus by the residue theorem, 

— dz = 2ni^ m(z)ind^ z = Ini^j ^(^) ind^ z 
J s" f 

and therefore 

(8) 2n Y H^) inds z = Im - dz + J] Im - dz . 
^Ф^ Js'f jAjf 

From (7) and (8) (on multiplying by l/27i ind S), 

(9) Y Ф) h^s z| = 1 + ind S X f— Im f -^ dz - ~ Var 
^Ф^ j \2п J^.f In 

Here the left side is independent of choice of the a ,̂ ßj. Ay, and a j - th summand on 
the right depends only on a ,̂ ßp Aj. In particular, we may take â  -> 0, ßj -> 0, 
radius A J -^ 0 for each j separately. 

Now consider any j ; for simpHcity assume Zj = 0, and set m(zj) = m. Then, 
near Zj = 0, 

ffl = ̂ ( l + o(|z|)), 
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so that, as radius A -^ 0, 
f 

here obviously 

dz -> Im {cp^ - cp) ; 
A J 

Фо - cpi = Arg Inô sgn Arg ~ 

where w ,̂ w^ are the exceptional directions under which S enters (exits from) 0, and 
^ = 0 or 1 according as int S is or not within the convex sector (with apex angle within 
( — 71,7Г>). Thus, for each j , 

1 Ç f 
(10) — Im — dz -^ ^X^j "" ^j sgî  ^j) llmf t 

where m ,̂ v ,̂ <5y are as in the statement of the lemma. 
Finally we are to consider Var^. Quite obviously, as â  -> 0, ßj -^ 0 with radius 

w 
Var,. ^ Arg -^ , 

where w„, ŵ  have the previous meaning, so that (since ŵ  Ф w )̂ 

Varj -> 27iVj -- 71 sgn Vj. 

This and (10) in (9) yield (6), which was to be proved. 
Formula (6) may be simplified further. By definition of exceptional directions, we 

have, at the singular point Zy, wj""* = — (a/|a|), w^"'" = aj\a\ where a = l im/(z) . 
. (z — 2j)~'" and m = nij = ^{zj). Then ^~'̂ ''' 

1 Wo 1 kj - - — A r g — = ^-— 
2n Wi 2 \mj — 1| 

with к J an odd integer, —\mj— l | < kj S \^j — l|- It is easily seen that \kj\ is the 
smaller number of sectors (bounded by consecutive exceptional directions at Zj), 
counted from the subarc of S entering Zj to that exiting from z/, and kj > 0 iff this 
order is in the positive direction. Obviously sgn Vj = sgn kj. Since 0 Ф m^ Ф 1 
(lemma 7), sgn nij = sgn (m^ — 1). 

Furthermore, there is a connection between ôj and sgn Vy. It is easily seen that if 
ind S = 1, then 

Vj < 0 if öj = 0 , V,. > 0 if ^ , = 1 , 

i.e. 2ôj - 1 = sgn Vj. If ind S = — 1, then the v '̂s change sign, and ô/s remain 
unchanged; thus in every case, 

2ôj - 1 = sgn Vj ind S . 

These results are formulated below. 
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Theorem 5. Let S be a simple closed curve, consisting of a finite set of complete 
trajectories and singular points zy, assume int S cz G. Then 

(11) Y Ф) Hs z| = 1 + X i ( l + l^il sgn m, - ISjmj) {2ôj - 1) , 
z^S j 

where kj is an odd integer, —\mj — l | < kj ^ \mj — l|, and m^ Sj are as described 
in lemma 8. Furthermore, lôj — 1 = sgn kj ind S. 

Some rough estimates may be obtained from (U). For convenience, setiV^ = ^ 1, 
mj>0 

the number of zeros on S; and Mz = 5] ^j^ ^P = Y, i ^ j | ' ^^^ sums of (positive) 
m j > 0 mj<0 

multiplicities of zeros and poles, respectively, of / on S. For poles one has mj < 0 
and 1 ^ |/Cj| ^ |т^- — l | = |m^| + 1; the corresponding terms in (11) are 

i: = i E ( N - i ) + i I ( i - N + 2K-l); 
m j < 0 ^ = 0 ( 5 = 1 

and one obtains the following estimates 

5 = 1 inj<0 Ô = 0 Ô=1 

Similarly, for zeros one has m J > Oandl ^ \kj\ ^ I'^j — l | = ^j ~ 1 (in particular, 
2 ^ m J, c/. lemma 7); then from 

I = - i I ( N + i) + i2:(i + N - 2 H ) 
m j > 0 5 = 0 0=1 

there follow the estimates 

0 = 0 0=1 nij>0 0 = 0 0=1 

Using these, one obtains the following corollaries (the assumptions of theorem 5 and 
the preceding notation are preserved). 

Corollary l.l^MzuY H^) h^s z| g 1 + Mp - ^N^. 

Corollary 2. / / there are no zeros on S, then int S contains at least one zero. If, 
furthermore, there are no poles in int S, then the sum M of multiplicities of zeros 
in int S satisfies 1 ^ M ^ 1 + Mp. 

Corollary 3. / / there are no poles and at least three zeros on S, then int S contains 
at least one pole. 

Sharper results may be obtained on restricting the séparatrices S by requiring 
all ôj to be equal. 
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Example 1 (contd.). Now we may complete our examination of the case / (z ) = 
= iz^/(z — 1), G = S .̂ The existence of a closed separatrix S a E^ with le S фО 
has already been established. From the corollary to theorem 4, each component of 
E^ ~ iS must contain a zero off; thus there is a unique component and hence Sis 
simple closed, and 0 is the unique singular point in int S. In particular, we may apply 
theorem 5; here mi = — 1, so that —2 < /ĉ  ^ 2, i,e. \k^\ = 1; and thus from (11) 

2 = 1 + K l - 1 + 2^i) (2^1 - 1) ' ^1 = 1 . 

From symmetry, if z(9) is a solution of (1), then z{~9) is also a solution, so that S 
must be symmetric about the x~axis. Thus the exceptional directions of S at 1 are 
either e^'''^'^ or —e^'''^^. If it were the latter, then necessarily ^^ = 0 (cf. the definition 
of Sj in lemma 8), a contradiction. This estabUshes how S is situated. 

All trajectories in int S tend towards and from 0, with the exception of the two 
trajectories which have exceptional directions e'^^"^ and —e'^"^^"^ at 1. Thus, finally, 
we have fig. 1. 

Given a rational function / , we may define the type of the dynamical system (1) 
associated with / as the system of integers {mf{z)}^ with z varying over all the 
singular points of (1). 
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Thus the canonic systems z' = az^ (m integer, a Ф 0) have type (m, 2 — m) for 
0 Ф m Ф 2, type (2) for m = 2, and empty type for m = 0. The system of example 1 
has type (2 , -1 , 1). (Obviously the sum of multiplicities is 2 except for empty type.) 

Example 2. Any rational system (1) of type (2, — 1, 1) is of the form 

(12) z' = a (« Ф 0) , 
z — 1 

up to a homographie mapping taking the singular points to 0, 1, oo respectively. 
Obviously the trajectories of (12) are isogonals to those of example 1; the angle 

betv^een the trajectories is Arg —ia. 
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Резюме 

О МЕРОМОРФНЫХ ДИНАМИЧЕСКИХ СИСТЕМАХ, I 

ОТОМАР ГАЕК (Otomar Hâjek), Прага 

Изучается поведение в целом траекторий динамической системы dzjde = f{z) 
тде функция / мероморфная в заданной области комплексной сферы, и Q ве
щественная переменная. (В [2] предложена локальная теория этих систем.) 

Доказано, что у мероморфных систем не существуют изолированные циклы: 
всякий цикл погружен в полосу циклов того хе периода (теоремы 2 и З). Резуль
таты о кратностях и резидуумах сингулярных точек во внутренной области ци
кла (теорема 1; первый из них, по существу, классический) переносятся на более 
общий случай замкнутой сепаратрицы: теоремы 4 и 5. Отдельные результаты 
иллюстрированы на качественном анализе одного примера мероморфной 
системы (фиг. 1). 
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