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Чехословацкий математический журнал т. 16 (91) 1966, Прага 

NOTES ON MEROMORPHIC DYNAMICAL SYSTEMS II 

OTOMAR HÂJEK, Praha 

(Received January 24, 1964) 

The terminology, notation and many assumed results are those of [5]. In particular, 
the object studied is a 2-dimensional dynamical system (called a meromorphic 
system) 

defined by a function/ meromorphic in an open G с Ŝ  (the 2-sphere). The singular 
points of (1) are the poles and zeros of/. 

A problem was formulated [/.c, problem 2], to obtain reasonably effective suf
ficient conditions for the existence of cycles of (1), containing within their interior 
a prescribed set Z of zeros of/ with 

(2) Y, ^^^z - = ioc, real a ф 0 
zeZ f 

Ç£j ^(2) = 1 was also required there). 
In the present paper, a necessary and sufficient condition is given (lemma 1 and 

theorem 1, respectively). Whether or not it is "reasonably eff'ective" is open to doubt; 
however, it is effective enough to answer problem 1 (/.c. — is every cycle of (1) 
nested about a center?) by an example, iii the negative. As another consequence we 
obtain that the limit set of a noncyclic trajectory of (1), if in a simply connected G, 
reduces to a single singular point. In particular, trajectories cannot spiral toward 
limit sets more compHcated than foci. 

First we shall need slightly more information about the boundary of an annulus of 
cycles than is given in theorems 2 and 3 of [5]. To this end we introduce the following 
definition. 

Definition. Assume given a meromorphic system (l). A set X с G will be called 
an s-curve if there exist a parametrisation of К and a component Q of S^ — К with 
the following properties: 
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(i) X is a parametrised closed elementary curve, 
(ii) К is the complete boundary of Q, 
(iii) ind|^ z Ф 0 implies z e G, 
(iv) К is the union of a finite set of poles of/ and a finite set of complete trajectories 

of (1), all having the same or all the opposite orientation to that of K. 
К will be called an interior s-curve if, in addition, 
(v) no trajectory entering or leaving any point on К intersects ß , and 

(vi) either ind|^ z = 1 for all z e S^ — Q or indfr z — — 1 for all z G S^ — g. 

By possibly changing the orientation of X, we may and occasionally shall assume 
that some fixed alternative occurs in (iv) or (vi). Requirement (i) means, in greater 
detail, that 

(3) К = {р{в) -.auÖ^ß} 

for some real (x < ß and some continuous p : <a, ß} -» К with p(oc) = p(ß) and such 
that the set 

{в : p{e) = p{e^) for some в^ Ф 0} 

is finite. {Cf. [2]; this latter condition impHes that the parametrisation p is locally 
simple.) 

Lemma 1. Let С be a cycle of (1) with int С cz G; let A be the maximal open 
connected neighbourhood of С consisting of complete cycles; let К be that component 
of the boundary of A which lies in int C. Then К is a center or an interior s-curve. 

Proof. Cf. [5], theorems 2 and 3. It remains to prove that К is elementary, 
property (ii) of the definition, and that К is interior. 

By unicity, distinct trajectories do not intersect; thus only the finite set of singular 
points on К are possible self-intersections. Obviously the counter-images (in the 
parametrisation) of the singular points on К form an isolated closed set. 

Let Q be the component of Ŝ  — К containing A; obviously the boundary of Q is K. 
Since every trajectory in Q sufficiently near К is in A, and hence a cycle, it cannot 

enter or exit from any point on K. Finally, for all such cycles Cj one has e.g. (possibly 
after a re-orientation) 

indcj z = 1 for all Cj and z e S^ — Q . 

Since one may take Cj -> К uniformly, there follows ind^^ z = 1 for z e Ŝ  — Q. 
This completes the proof of lemma L 

Lemma 2. Let К be an interior s-curve. Then the parametrisation of the definition 
may be chosen such that 

К = {р{в) :ОйО й 2п\(х\} 
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where real a ф 0 satisfies Yj ^^^z ^\f • ^^àj^ z = IOL and p(0) is any given point on K. 
Furthermore, to each г > 0 there is a ô > 0 such that, for any solution z(.) of (1) 
with |z(0) - p{0)\ < Ö, z(0) e Q, there is 

\z{e) ~ p{e)\ < 8 for OS.OU 2п\ос\ . 

Proof. In the parametrisation given in the definition, take consecutive arcs of 
trajectories; on each choose a point Zj (1 ^ j ^ n, n ^ 1). Let Zj[.) be the solution 
of (1) with Zj{0) = Zj. If there are no singular points on K, then X is a cycle, z^(.) 
is periodic and its period satisfies the condition to be proved [5, lemma 4]. If there 
exist singular points on K, then there exist finite Oj > 0 > Ö* such that both 

lim Zj{9), lim ZjiO) are singular points. Then set р{в) = Zj{e + Oj — 6'^ ~ 

" É (X - Ot)) for X (Ok - Ot)uO uY i^k - Oty Obviously this parametrises K, 
k<j k<j k^j 

0 SO й YWk ~ Ö*)- From [5, theorem 4] it follows that YJli^k - Ö*) = 27i\oc\ 
where a is as described in the formulation. By shifting the interval (and periodic 
continuation of p), any point on К may be made to coincide with p(0). 

Finally, consider the stability property. It suffices to show that if z„(. ) are solutions 
of (1) with z„(0) -^ p{0), z„(0) G ß , then 

(4) z„(e) -> p{e) uniformly 

for 0 ^ 0 g 27c|a|. Obviously (4) for 0 ^ 0 ^ ö i - 0^ (using the previous вр Ö*). 
Then z„(öi — Ö*) converges to р(в1 — 0*) and lies in Q; we may then conclude, 
similarly, that (4) for 0^- QX^O й{0^- 0Î) + (02 - Of), etc. (At each step, 
the point is that every point of К is a boundary point of ß.) Thus we may continue 
(4) over the whole interval 2п\а\. 

Lemma 3. Let U be an open neighbourhood of a closed connected set F; let f be 
meromorphic in U with all poles in F and with 

Eres , /=1 . 

Then in и — F there exists a (multivalued) primitive function g to f such that 
exp g is holomorphic. 

Pro of. If P c: F is the set of all poles of/, then every point of (7 — P is the center 
of an element of a primitive function to / , arbitrarily prolongable in U ~ P. 
A fortiori, there is an analytic function g on U — F, arbitrarily prolongable in 
и — F, and such that gQ = / for every element gQ of g. 

Now consider two elements gi, g2 of g, with the same center ZQ. Then there is 
a closed parametric curve С inU — F such that g 2 is a prolongation of g^ along С 
We may assume С is simple; otherwise one would have a finite sequence gi = 
= dt^dt^dt^ "-^dt = 92 of elements with center ZQ and such that consecutive 
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elements are indeed prolongations along simple closed curves, and then one could 
treat each pair in turn. 

P is in a unique component of S^ — С (since P cz F connected, С c: Ŝ  — JF); 
thus all points of P have the same index with respect to C; denote it by k. In the course 
of prolongation along C, the element ^ ̂  is increased by 

^ r e s^ / . 2nik = Inik . 

Hence exp д^ш unchanged, i.e. exp g is single-valued. Obviously exp g has no poles 
inU — F and thus it is holomorphic. 

Lemma 3 concludes the preliminaries necessary for the first main result. 

Theorem 1. Let there be given a meromorphic system (1). Then every interior 
s-curve К is a component of the boundary of an annulus of cycles of (1). (^Further
more, this annulus is in the component Qfrom the definition.) 

Proof. From [5, theorem 4] again, there is a real a Ф 0 with 

^ res^ - . ind|^ z = ia. 

Now recall that ind^^ z = 1 for all z G Ŝ  — Q, and apply lemma 3. As the function-
take l/(ia/). For the set F one may take Ŝ  — Q, or any connected closed subset 
containing all zeros o f / i n Ŝ  — Q. For the set U take an arbitrary open neighbour
hood of Ŝ  — Q which again contains only those zeros of / which are in Ŝ  -- g 
(recall there are only poles and no zeros on K). There results a holomorphic function 
h = exp g on U — F=UnQ with h' = hjiiaf). 

Take any ZQEU n Q, and consider the solution z(.) of (l) with z(0) = ZQ. From 
lemma 2 it follows that if ZQ is taken sufficiently near K, then z(0) e t/ n g for 
0 SO S 2n\a\. Then 

A h{z{e)) = h\z{e)) zxe) = кт)—^. m = кт)~ 
de i(xf[z{e)) Ш 

so that 

ш 
h{z{ö)) = /i(z(0)) exp -

ia 
and 

(5) h{z(2n\oc\)) = h{zo) . 

We emphasise that (5) holds for any ZQ G и ГЛ Q sufficiently near К. 
Next, take any z^eK, not a pole of/. Obviously h may be prolonged over a neigh

bourhood of Zi, and then at z^, h' = h\{i4f) Ф 0. Thus in some neighbourhood 
of Zi, the function /i is 1 — 1. This with (5) proves that if ZQ is taken in C/ n g 
sufficiently near K, then the solution z(.) through ZQ has z(27i|a|) = z(0) = ZQ, i.e. 
has period 2я|а|. 
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Thus there are cycles of (1) arbitrarily (uniformly) near Kin Q; this and theorem 1 
of [5] conclude the proof of the theorem. 

Remarks. 1 .If К contains at least one pole, then X is a component of the boundary 
of a maximal open connected annulus of cycles of (1). 

2. Theorem 1 was stated to be a solution of problem 2; however condition (2) 
does not appear explicitly in the formulation (but also see [5], theorem 4). 

3. It may be noticed that the proof of theorem 1 is a distant development of 
Gregor's proof [3] of a theorem stating that a simple zero ZQ of/ with pure imaginary 
/ ' ( Z Q ) (or, what comes to the same thing, with pure imaginary res^^ 1//) is a center. 
Individual steps of this latter proof are parallelled by lemmas 2 and 3. 

As in [5], let m[z) denote the signed multiplicity function. Then we have the 
following 

CoroUary. If К is an interior s-cirve of(l) and Q a component ofS^ — К as in the 
definition, then 

Y m(z) = 1 . 

(Proof.) Again, we may assume со E Q. Then the singular points not in Q are precisely 
the singular points in the interior of any cycle С of the annulus which К bounds 
(theorem 1). Using [5, theorem 1], 

For the special case that X is a simple closed curve this reduces to [5], theorem 5 
{\kj\ = àj = 1). 

The limit set (or co-limit set) of a trajectory of (1) through a non-singular point ZQ 
is defined thus [e.g. [1], ch. XVI, § 1): Let z(.) be the solution of (1) with z(0) = ZQ 
and with a maximal open domain of definition (a, ß) (possibly a = — oo ov ß = 
= + сю); then w is in the limit set iff w = lim z{e^ for some ö„ / ß. 

Since Ŝ  is compact, each limit set is always non-empty connected compact; 
if w e G is in a limit set, then the complete trajectory though w is in the И mit set 
[/.с, theorem 1.1 and 1.2]. 

Theorem 2. Given, a meromorphic dynamical system (1) in an open set G with 
S^ — G connected. If the limit set of a non-cyclic trajectory is in G, then it reduces 
to a single singular point. 

Proof. Let T be a trajectory of (1), coTits limit set, o)T с G, and assume that T 
is not a cycle and œT is not a singular point; to obtain a contradiction we shall first 
show that then шГ is an s-curve. 

If coT contains no singular points, it is a cycle [/.c, theorem 2.1]; but frona [5, 
theorem 2] it follows that a cycle of (1) is the limit set of no trajectory except itself. 
If CO Г contains a zero ZQ of / , then from [5, lemma 2] there follows COi — Z Q , 
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contradiction. Since со Г is a compact subset of G, the set of poles o f / on со Tis 
finite. Only a finite set of trajectories enters or exits from a pole of/, according to 
[3, th. 4]. Thus coT is the union of a finite set of trajectories and poles of/, with at 
least one pole on coT. 

As in the proof of lemma 2 it can be shown that соT is a closed parametric curve. 
As in the proof of lemma 1, this parametrisation is elementary. 

That z e G whenever ind^^y z Ф 0 is a consequence of the assumption that Ŝ  — G 
is connected, if (after inversion, if necessary), oo e Ŝ  — G. 

It remains to prove property (ii) of the definition. We shall show that that com
ponent Q of Ŝ  — coT which contains the trajectory T has coT as its boundary (by 
a classical theorem, Tintersects coTiff Tis a cycle; e.g. [1], ch. XVI, lemma 2.3). This 
is a general property of plane dynamical systems: [6, section 4]. Since coT is compact 
and Q a component of Ŝ  ~ coT, the boundary of Q lies within coT. Secondly, T cz Q 
implies 

coT c= T cz g ; 

from these two inclusions we conclude that the boundary of Q is соT — Q, which 
is COT since Q does not intersect coT. 

Now, finally, from theorem 1 we have that there exist cycles in Q arbitrarily 
uniformly near coT; each of these then separates T from its limit set coT, a contradic
tion. This proves theorem 2. 

Example. Consider the meromorphic system z' = / (z ) with 

z — 1 

This has the special property that / is even, and also "formally pure imaginary" in 
the sense tha t / (z ) = —f{z). Thus, if z(ö) is a solution, then so are — z( —ö), z( —ö), 
— z(ö); therefore the configuration of trajectories is symmetrical about both the real 
and imaginary axes. The singular points z, their signed multiplicities m{z), residues 
of 1// and the corresponding entrant and exitant exceptional directions w ,̂ w^ are 
collected in the following table 

- 2 
- 1 

1 
2 

(oo is a nonsingular point). 
From the column of residues and [5, theorem 1] we conclude that any cycle — if 

such exists — must contain in its interior precisely one of the zeros 2 , - 2 ; neither of 
these is a center. 

Now assume there is a trajectory T with limit points 1, —1, the poles of/. By 
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m[zj 
2 

- 1 
- 1 

2 

res^ 1// 

32 ^ 
0 
0 

Ö4 * 

Wf 

i 
j^^ini^ 

+ ^-/^/4 

i 

Wo 

— z 
+ ^-^я/4 
+ ĝ W4 
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symmetry, there is a simple closed separatrix S passing through both poles but 
neither zero. From [5, theorem 4], int S contains a zero of/: contradiction. Since the 
imaginary axis is an axis of symmetry, no trajectory with a pole of/ as hmit point 
can intersect the imaginary axis. 

Fig. 1. 

Next, consider a pole {^e.g. 1) and the two trajectories T ,̂ T2 exiting from it. By 
theorem 2, they tend either to 1 or to 2. In the former case we have a simple closed 
separatrix without zeros, which must then contain 2 in its interior. 

If both Tj tend to 1, then the so obtained elementary closed curve К may be oriented 
in such a manner that ind̂ ^ 2 = 0, in contradiction with [5, theorem 4]. 

It is not possible for both Tj to tend to the zero 2, since by symmetry (to the real 
axis) the trajectory exiting from 1 with direction ŵ  = —e'"'^'^ cannot enter 2 with 
the prescribed direction ŵ  = i. 

We conclude that both the pole-zero pairs generate configurations similar to those 
of [5], example 1 and fig. 1. From theorem 2 it then follows that every trajectory in 
the remaining part of the plane is a cycle. (This also follows from theorems 3 and 4 
of [5], since the imaginary axis is a cycle, in S .̂) In particular, there exist meromorphic 
systems with cycles not nested about a center. 

It may be in place here to Hst some open questions which might prove interesting. 
1. Given a meromorphic system (1) in G, and an open invariant set Я с G (a set Я 

is invariant if T cz Я whenever T is a trajectory incident with Я). Prove that 

(C/. theorems 1 and 4 of [5].) 

Y Re res^ -
2фН f 

0. 
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2. Given a finite sequence of non-zero integers {mj}ï, describe the qualitative 
theory of all non-homeomorphic dynamical systems (l) where G = S , / is rational, 
and the singular points have multipHcities {m^}. (For n ^ 2 it suffices to consider 
the canonic systems z ~ az^ of [5].) 

3. Treat the perturbation theory of meromorphic systems, with (i) fixed singular 
points, (ii) variable singular points, including the bifurcation of singular points. 

4. Describe the boundary behaviour of meromorphic systems, with special reference 
to essential singularities and critical points of/. (For algebraic critical points, cf. [4] Л 

5. Obtain "reasonable" a priori bounds for regions of attraction of singular points 
(i.e. conformai maps of neighbourhoods of 0 in the canonic systems). 
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Р е з ю м е 

О МЕРОМОРФНЫХ ДИНАМИЧЕСКР1Х СИСТЕМАХ, II 

ОТОМАР ГАЕК (Otomar Hâjek), Прага 

Для мероморфных динамических систем (см. [5]) доказаны следующие 
результаты: 

1. Необходимое (лемма 1) и достаточное (теорема 1) условие для того чтобы 
замкнутая кривая была частью границы полосы циклов данной системы. Одним 
следствием является отрицательное решение гипотезы [5, проблема 1], что 
всякий цикл мероморфной системы окружает сингулярную точку типа центра. 

2. Всякое непустое множество нециклической траектории, целиком содержа
щееся в односвязной области определения мероморфной системы, является 
единственной точкой (теорема 2). 
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