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YexocjioBankuii MaTeMaTHYecKkHii xypuai, T. 16 (91) 1966, Ilpara

ON SEMIGROUPS WHICH ARE UNIONS OF COMPLETELY
0-SIMPLE SUBSEMIGROUPS

OTTO STEINFELD, Budapest

(Reczived December 12, 1964)

1.

The Wedderburn-Artin and the Noether Structure Theorems give satisfactory
characterizations of semisimple associative rings. In the paper KERTESZ-STEINFELD
[4] there are given some other characterizations of these rings. Rees’ well known
Theorem for completely O-simple semigroups plays the same rdle as the second
Wedderburn-Artin Theorem does for simple rings. In his paper [5] ScHwARZ
studied among others the semigroups without proper radical which are unions of
their O-minimal left ideals. The purpose of this paper is to give some equivalent
conditions for semigroups with zero which are analogous to the first Wedderburn-
Artin Theorem, Noether Theorem and other characterizations of semisimple rings.
We shall prove that for a semigroup S with zero the following conditions are equi-
valent:

S is a O-direct union of two-sided ideals which are completely 0-simple subsemi-
groups of S;

S is regular and the union of its 0-minimal left ideals;

S is regular and the union of its 0-minimal quasi-ideals. (See Theorem 15.)

This characterization is in a close connection with Chapter 6 of CLIFFORD-PRESTON’S
book [3]. The basic ideas for this Chapter are to be found in Schwarz’s paper [5] and
a great deal of it is devoted to theorems of this type.

In section 2 we mention Lemmas and Theorems needed in the proof of Theorem 15
and Corollary 16.

2.

We use the terminolog'y of Clifford-Preston’s book [2] and we cite some results
from it without proof. :

Theorem 1. ([2], Theorem 2.48.) Let S be a 0-simple semigroup. Then S is com-
pletely O-simple if and only if it contains at least one O-minimal left ideal and at
least one 0-minimal right ideal.
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Corollary 2. ([2], Corollary 2.49.) A completely O-simple semigroup is the union
of its O-minimal left (right) ideals.

Theorem 3. ([2], Theorem 2.51.) A completely O-simple semigroup is regular.

Theorem 4. ([2], Theorem 1.17.) The following two conditions on a semigroup S
are equivalent:

(i) S is regular, and any two idempotents of S commute with each other;
(ii) S is an inverse semigroup (i.e. every element of S has a unique inverse in S).

Theorem 5. ([2], Theorem 3.9.) The following conditions on a semigroup S
with O are equivalent:

(oc) S is a completely 0-simple inverse semigroup;

(B) S is a Brandt semigroup.

A subset £ + [] of a semigroup S is called a quasi-ideal of Sif S n St = .
We have

Lemma 6. (Cf. [8], Lemma 2.) Let e be an idempotent element, | a left ideal,
t a right ideal of a semigroup S with 0. Then t N 1, el and re are quasi-ideals of S.

Theorem 7. ([8], Satz 6.) Let I be a 0-minimal left ideal, ¥ a O-minimal right
ideal of a semigroup S with 0. If (e=0) is an idempotent element of 1(or t), then
el (or re) is a 0-minimal quasi-ideal of S.

Theorem 8. ([8], Satz 1.) Let t be a 0-minimal right ideal and 1 a O-minimal left
ideal of a semigroup S with 0. Then the meet t N | is either zero or a O-minimal
quasi-ideal of S.

It is easy to prove the following assertion.

Lemma 9. Every left (right) ideal 0 of a regular semigroup S with O contains
at least one idempotent element =0.

Proof. Let I be a left ideal of S; a €1, a + 0. By regularity there is an x € S such
that a =axa. Clearly xa % Ois an idemp'otent and xae Sa = Sl < L.

Analogously for the right ideals of S.

Let A be any subset of the semigroup S with zero. We shall say that A is nilpotent
if for some integer k = 1 the relation A* = 0 holds. The union of all nilpotent left
ideals of S is called the radical of S. (Cf. [5], Definition 3.2.).

Lemma 10. If S is a semigroup with radical O then 0 is the unique nilpotent right
ideal of S.

Proof. If r # 0 were a nilpotent right ideal of S then (the two-sided 1deal) TV Sr +
=+ 0 would be a nilpotent ideal of S.
Lemma 9 implies the following two corollaries.
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Corollary 11. 4 regular semigroup S with 0 has zero radical.

Corollary 12. Every O-minimal left (right) ideal 1x) of a regular semigroup S
with 0 is of the form | = Se(x = fS) with &® = e (f? = f).

We shall prove two results which are analogous to two known theorems in ring
theory.

Theorem 13. (Cf. ARTIN-NEsBITT-THRALL [1], Corollary 5.4.B.) Let S be a semi-
group with radical 0. Then Se (e* = e) is a 0-minimal left ideal if and only if eS
is a 0-minimal right ideal of S.

Proof. Let Se (¢ = e) be a 0-minimal left ideal of S; then, in view of Theorem 7,
eSe is a 0-minimal quasi-ideal of S. Let ¥ denote a right ideal of S with 0 = ¢ < eS.
Hence er = r. Lemma 10 implies that ex . er = t* = 0 and thus ere # 0. By Lemma 6,
ere (< eSe) is a quasi-ideal of S and so ere = eSe holds. Hence ecete S er = ¢
which implies eS < r. Therefore r = eS; q.e.d.

Theorem 14. (Cf. [7], Satz 7.) Let S be a semigroup with radical 0. Then we can
write every 0-minimal quasi-ideal ¥ of S in the form¥ = 1 n ¢, where lis a 0-minimal
left ideal and v is a O-minimal right ideal of S.

Proof. The O-minimality of the quasi-ideal f and Lemma 6 imply St IS =0
or f.

Let the first case be assumed. If ST < 0, then f is a left ideal of S with £2 = 0, which
is impossible. If St # 0, then since ISt = ST S = 0,

SE.St=0 (St+0) "

holds, which contradicts the assumption concerning the radical.
Thus St N S = f must hold. It is sufficient to prove that St is a 0-minimal left
ideal of S. Let I be a left ideal of S satisfying

(1) 0clg St

The relation SIN IS = SEN S < §, the 0-minimality of f and Lemma 6 imply
that either

) SInIS =0
or
3) SINES =t

holds. From (2) we obtaip I SINnES =0, ie., fl = 0. Hence St. [ = 0, whence,
in view of (1), '
<0

follows. This is a contradiction to our hypothesis. From (3) we get T = SI < 1. Hence
St < SI < 1. This and (1) imply I = Sf and ST is a O-minimal left ideal of S, q.e.d.
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We shall say that the semigroup S with 0 is the O-direct union of its ideals a, (¢ € 4)

if S =uUaq,and a,n( U az) = 0 hold.
acd a¥ ped

The quasi-ideals ¥;;. (4, 4’ € A) of a semigroup S with 0 are said to form a complete
system, if the following three conditions hold:

1) f;;, = 0 or I, is a O-minimal quasi-ideal of S,

2) if £, =% 0, then it is of the form e,Se,. for some idempotents e,, e,. (4, ' € A),

3) £, + 0 implies f,.,f,,, + 0 (4, A € A). ‘

This notion is analogous to the notion of the complete system of quasi-ideals
introduced by KERTESZ-STEINFELD [4] for associative rings.

3.

Theorem 15. The following conditions on a semigroups S with 0 and with more
than one element are equivalent:

(A) S is regular and the union of its 0-minimal left ideals;

(B) S is a union of O-minimal left) ideals of the form Se; (€5 = e;; A€ A);

(C) S is a O-direct union of two-sided ideals*) which are completely 0-simple
subsemigroups of S;

(D) S is a union of quasi-ideals which form a complete system;

(E) S is regular and the union of its O-minimal quasi-ideals.

Proof. (A) implies (B). In view of Corollary 12 every O-minimal left ideal I, of S
is of the form I; = Se;, where e, is an idempotent € [,.

(B) implies (C)?). First, we show that the radical of S is 0. Let se; (#0) (se; € Se;)
be an arbitrary element of the ideal m (#0) of S. This implies m N Se, # 0. With
respect to the O-minimality of the left ideal Se, it must hold e, € Se;, £ m. Thus m
cannot be nilpotent and the radical of S is indeed 0.

As the left ideals Se; (4 € A) are 0-minimal
(4) either Se, Se,, = ‘0 or Se,Se,. = Se;,
holds. It is easy to see that the relations = defined by
(5) Se, = Se;. < Se,Se;. = Se,,

1y If in conditions (A), (B) “0-minimal left ideals” is replaced by “O-minimal right ideals”,
one obtains conditions equivalent to the original (A)— (E).

2) In Section 3 of his paper [6] Schwarz proves some similar decomposition theorems for dual
semigroups with radical 0.

3) One can prove this part with the help of the theorems in Section 9 of Schwarz [5].

66



is an equivalence relation in the set of the 0-minimal left ideals Se,(4 € 4). Let a,
denote the union of all the left ideals belonging to the equivalence class K,,.

Thus
(6) S=uva,

acA

where A denotes the index set of the different classes.
First, weshow that a, = U Se, is a 0-simple two-sided ideal of S. (4) and (5) imply

Seu Ko

(e, if a=p
) a“a‘*—{o if o+ p.

Hence in view of (6) it follows
®) Sa, = a,S = a,

Let b be an ideal of a,. With respect to (6) and (7) b is an ideal of S and therefore
b? =+ 0 holds. Hence

9) 0+ b> S ba, = U DSe,.

SeyeKq

This implies bSe, + 0 for some Se, € K,, whence bSe, = Se, = b follows. In view
of (5) we obtain

b 2 ba, 2 Se,a, = U Se,Se, = U Se, = q,
SeueKo SeueKq
establishing the 0-simplicity of a,.
As a, is a 0-simple ideal of S,

a,n( U a)=0o0ra,
a¥ peAd

holds. The second case implies a, & U a; By multiplication by a, we obtain in
a¥ ped
view of (7) :

a?caf U q)=Uay=0,

a¥ fed a¥ fed

which is a contradiction. Thus for every a, (« € A)

’ a,n(V a)=0
a¥ feAd

must hold and therefore (6) is a O-direct union.

If Se, is a 0-minimal left ideal contained in a,, then ¢,S is a O-minimal right ideal
in a,. By Theorem 1 a, is a completely 0-simple subsemigroup of S.
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(C) implies (D). Let S be the 0-direct union of its ideal a, (« € 4), where a, are
completely 0-simple subsemigroups of S. In view of Theorem 3 a, (« € A) are regular
semigroups, therefore S is itself regular. Corollary 2 implies that every a, (¢ € A)
is the union of its 0-minimal left ideals and the union of its 0-minimal right ideals.
Since S is the 0-direct union of the 0-simple ideals a, (o € A), all the left (right) ideals
of a, (o € A) are left (right) ideals of S. Thus S is the union of its 0-minimal left ideals
and the union of its 0-minimal right ideals.

The regularity of S implies that the 0-minimal left ideals of S are of the form Se,
with idempotent elements e, # 0 (4 € 4). From Corollary 11 and Theorem 13 we get
that e,S (4 e A) are the 0-minimal right ideals of S. So we can write S = U Se,; =

led
= U ¢,S. Hence since S? = S,
Aed
(10) S=S8*=(ueS)(uSe)= U eSe,..
Aed A'ed . A,A’ed

In view of Lemma 6 e;Se;,. (4, 1’ € A) are quasi-ideals of S satisfying 0 < e,Se;. <
< e,S N Se,.. This and Theorem 8 imply that e;Se; (4, A’ € A) are either 0 or 0-mini-
mal quasi-ideals of S.

We have to verify only condition 3). Let e,Se;. = 0. The product Se;,Se;. is a left
ideal # 0 contained in the 0-minimal left ideal Se;.. Hence Se,Se,, = Se;., whence
e,;.Se,;.e,Se;, = e;.Se;. + 0.

(D) implies (E). We have only to show the regularity of S. By supposition S =

= U ;. = U e¢;Se,. Let a = e;se;. (+0) be an arbitrary element of S.
L,aed 4,44

By 3) the hypothesis e;Se;. + 0implies e;.Se, =+ 0. In view of Lemma 6 the product
e,se;. . e;.Se; is a quasi-ideal of S. The 0-minimality of the quasi-ideal e;Se, implies
that either e;se;..e;.Se; = 0 or e;se;. . e;.Se;, = e,Se, holds.

The first possibility implies e,Se;se;. . e;.Se;, = 0. Since the quasi-ideal ¢,Se;se;.
(#0) is contained in the O-minimal quasi-ideal e;Se,., we gt e,Se;se;. = e,Se,..
Thus e;Se;. . e;.Se;, = 0 holds, in contradiction to condition 3).

Thus we necessarily have e;se;. . ¢,.Se;, = ¢,Se,. This implies the existence of an
element e,.te, € e;.Se, withe,se,.. e, te, = e,. Hence e;se;. . e, .te, . e;se,, = e;se,,
or otherwise a(e,.te;) a = a, which says that a is a regular element of S. This proves
our assertion.

(E) implies (A). Corollary 11 and Theorem 14 imply that we can write every 0-mini-
mal quasi-ideal f, (xe 4) of S in the form f, = [, N t,, where I, = Se, (¢ = ¢,)
is a 0-minimal left ideal and 1, = f,S (f? = f,) is a O-minimal right ideal of S. Thus
S=ul,=u[l,nt]cul, &8 Hence S =ul, = U Se, qed.

aed aed acd aed aed

Theorems 4, 5 and 15 imply:
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Corollary 16. The following four conditions on a semigroup S with 0 and with
more than one element are equivalent:

(a) S is an inverse semigroup and the union of its O-minimal left ideals;

(b) S is a 0-direct union of ideals which are Brandt subsemigroups of S;

(c) S isa O-direct union of ideals which are completely O-simple inverse subsemi-
groups of S;

(d) S is an inverse semigroup and the union of its O-minimal quasi-ideals.
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Pesrome

NOJIVI'PVIIIIBI KOTOPHIE ABJIAIOTCA OBPBEIVMHEHMWEM
BITIOJIHE MPOCTBIX ITOJIVIPYIIII C HYJIEM

OTO IITEMH®EJI] (Oto Steinfeld), Bynanewr

HCJIBIO CTaTbU SABJISIETCA HU3YUYCHHE ycnomﬁ ITpU KOTOPBIX IIOJyrpynna C HYJICM
HUMEET CIICOAYIOLLIECEC cBoifctBo: OHa sIBIsIETCS O6LCI(HH€HHCM BIIOJIHE ITPOCTHBIX NOJY-
Tpymi, HpI/I‘IéM NIEPECCYCHUE BCAKUX ABYX OTJIMYHBIX KOMIIOHEHT — HYJIb ITOJIYTPYNITBL.

«
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