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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

ON SEMIGROUPS WHICH ARE UNIONS OF COMPLETELY 
0-SIMPLE SUBSEMIGROUPS 

OTTO STEINFELD, Budapest 
(Received December 12, 1964) 

1. 

The Wedderburn-Artin and the Noether Structure Theorems give satisfactory 
characterizations of semisimple associative rings. In the paper KERTESZ-STEINFELD 
[4] there are given some other characterizations of these rings. Rees' well known 
Theorem for completely 0-simple semigroups plays the same rôle as the second 
Wedderburn-Artin Theorem does for simple rings. In his paper [5] SCHV/ARZ 

studied among others the semigroups without proper radical which are unions of 
their 0-minimal left ideals. The purpose of this paper is to give some equivalent 
conditions for semigroups with zero which are analogous to the first Wedderburn-
Artin Theorem, Noether Theorem and other characterizations of semisimple rings. 
We shall prove that for a semigroup S with zero the following conditions are equi­
valent: 

iS is a 0-direct union of two-sided ideals which are completely 0-simple subsemi-
groups of S; 

S is regular and the union of its 0-minimal left ideals; 
S is regular and the union of its 0-minimal quasi-ideals. (See Theorem 15.) 
This characterization is in a close connection with Chapter 6 of CLIFFORD-PRESTON'S 

book [3]. The basic ideas for this Chapter are to be found in Schwarz's paper [5] and 
a great deal of it is devoted to theorems of this type. 

In section 2 we mention Lemmas and Theorems needed in the proof of Theorem 15 
and Corollary 16. 

2. 

We use the terminology of Clifford-Preston's book [2] and we cite some results 
from it without proof. 

Theorem 1. ([2], Theorem 2.48.) Let S be a Osimple semigroup. Then S is com­
pletely Osimple if and only if it contains at least one O-minimal left ideal and at 
least one O-minimal right ideal. 
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Corollary 2. ([2], Corollary 2.49.) A completely 0-simple semigroup is the union 
of its 0-minimal left {right) ideals. 

Theorem 3. {[2], Theorem 2.51.) A completely 0-simple semigroup is regular. 

Theorem 4. ([2], Theorem 1.17.) The following two conditions on a semigroup S 
are equivalent: 

(i) S is regular, and any two idempotents of S commute with each other; 
(ii) S is an inverse semigroup {i.e. every element of S has a unique inverse in S). 

Theorem 5. ([2], Theorem 3.9.) The following conditions on a semigroup S 
with 0 are equivalent: 

(a) S is a completely 0-simple inverse semigroup; 
(ß) S is a Brandt semigroup. 

A subset Ï Ф П of a semigroup S is called a quasi-ideal of S iffS n St ^ f. 
We have 

Lemma 6. (Cf. [8], Lemma 2.) Let e be an idempotent element, I a left ideal, 
X a right ideal of a semigroup S with 0. Then r n I, ^I and xe are quasi-ideals of S. 

Theorem 7. ([8], Satz 6.) Let I be a 0-minimal left ideal, x a 0-minimal right 
ideal of a semigroup S with 0. / / (еФО) is an idempotent element of I (or r), then 
el (or xe) is a 0-minimal quasi-ideal of S. 

Theorem 8. ([8], Satz 1.) Let x be a 0-minimal right ideal and I a 0-minimal left 
ideal of a semigroup S with 0. Then the meet x n I is either zero or a 0-minimal 
quasi-ideal of S. 

It is easy to prove the following assertion. 

Lemma 9. Every left (right) ideal ФО of a regular semigroup S with 0 contains 
at least one idempotent element ФО. 

Proof. Let I be a left ideal o{ S; a el, a Ф 0. By regularity there is an л; e S such 
that a =axa. Clearly xa Ф 0 is an idempotent and xa e Sa "^ S\ ^ I. 

Analogously for the right ideals of S. 
Let A be any subset of the semigroup S with zero. We shall say that A is nilpotent 

if for some integer к ^ \ the relation A^ = 0 holds. The union of all nilpotent left 
ideals of S is called the radical of S. (Cf. [5], Definition 3.2.). 

Lemma 10. / / S is a semigroup with radical 0 then 0 is the unique nilpotent right 
ideal of S. 

Proof. If r Ф 0 were a nilpotent right ideal of 5̂  then (the two-sided ideal) t u Sr Ф 
Ф 0 would be a nilpotent ideal of S. 

Lemma 9 implies the following two corollaries. 
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Corollary 11. A regular semigroup S with 0 has zero radical. 

Corollary 12. Every 0-minimal left (right) ideal l{x) of a regular semigroup S 
with 0 is of the form I = Se{x = fS) with e^ = e (/^ = / ) . 

We shall prove two results which are analogous to two known theorems in ring 
theory. 

Theorem 13. (Cf. ARTIN-NESBITT-THRALL [1], Corollary 5.4.B.) Let S be a semi­
group with radical 0. Then Se {e^ = e) is a ^-minimal left ideal if and only if eS 
is a 0-minimal right ideal of S. 

Proof. Let Se {e^ = e) be a 0-minimal left ideal of S; then, in view of Theorem 7, 
eSe is a 0-minimal quasi-ideal of S. Let r denote a right ideal of S with 0 c: r g eS. 
Hence ex = r. Lemma 10 implies that ex , ex = x^ Ф 0 and thus exe ф 0. By Lemma 6, 
exe ( g eSe) is a quasi-ideal of S and so exe = eSe holds. Hence ее exe ^ ex = x 
which implies eS g r. Therefore r = eS\ q.e.d. 

Theorem 14. (Cf. [7], Satz 7.) Let S be a semigroup with radical 0. Then we can 
write every ^-minimal quasi-ideal lof S in the form I = I n r, where I is a (^-minimal 
left ideal and x is a 0-minimal right ideal of S. 

Proof. The 0-minimality of the quasi-ideal ï and Lemma 6 imply St nïS = 0 
or Ï. 

Let the first case be assumed. If St ^ 0, then ï is a left ideal of S with ï^ = 0, which 
is impossible. If St Ф 0, then since tSt g SI n IS = 0, 

S I . SÏ = 0 (SI Ф 0) 

holds, which contradicts the assumption concerning the radical. 
Thus SI n IS = I must hold. It is sufficient to prove that SI is a 0-minimal left 

ideal of S. Let I be a left ideal of S satisfying 

(1) 0 с I g S I . 

The relation SI n IS ç SI n IS g I, the 0-minimality of I and Lemma 6 imply 
that either 

(2) SI n IS = 0 

or 

(3) SI n IS = I 

holds. From (2) we obtain II g SI n IS = 0, i.e., II = 0. Hence SI . I = 0, whence, 
in view of (1), 

Î  ^ 0 

follows. This is a contradiction to our hypothesis. From (3) we get I g SI g I. Hence 
SI g SI g I. This and (1) imply I = SI and SI is a 0-minimal left ideal of S, q.e.d. 
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We shall say that the semigroup S with 0 is the 0-direct union of its ideals a^ (a e A) 
if /S = u a^ and й^п{ u a )̂ = 0 hold. 

aeA a Ф ßeA 

The quasi-ideals î^i' (Я, Я' G Л) of a semigroup S with 0 are said to form a complete 
system, if the following three conditions hold: 

1) 1яя' = 0 or ï;̂ ;̂ , is a 0-minimal quasi-ideal of 5, 
2) if ï;̂ ;̂ , Ф 0, then it is of the form e^Sc;^^ for some idempotents e ,̂ e ,̂ (Я, A' e Л), 
3) I,,, Ф 0 implies !д, Ая' + О (A, Я' e Л). 

This notion is analogous to the notion of the complete system of quasi-ideals 
introduced by KERTESZ-STEINFELD [4] for associative rings. 

3. 

Theorem 15. The following conditions on a semigroups S with 0 and with more 
than one element are equivalent: 

(A) S is regular and the union of its 0-minimal left ideals; 
(B) S is a union of 0-minimal left^) ideals of the form Se^ {e\ — e^\ ke Л); 
(C) S is a 0-direct union of two-sided ideals^] which are completely 0-simple 

subsemigroups of S; 
( D ) S is a union of quasi-ideals which form a complete system; 
(E) S is regular and the union of its 0-minimal quasi-ideals. 

Proof. (A) implies (В). In view of Corollary 12 every 0-minimal left ideal Î  of S 
is of the form l^ = Se^, where e^ is an idempotent e \^, 

(B) implies (C)^). First, we show that the radical of S is 0. Let se^ ( ФО) {^^x ^ ^^x) 
be an arbitrary element of the ideal m (ФО) of S. This implies m n Se^ Ф 0. With 
respect to the O-minimality of the left ideal Se^^ it must hold e^ e Se^ E ^- Thus m 
cannot be nilpotent and the radical of S is indeed 0. 

As the left ideals Se^ {X e Л) are 0-minimal 

(4) either Se^^ Se^. = 0 or Se^Se^, = Se^ 

holds. It is easy to see that the relations = defined by 

(5) Se^ = Se^. о Se^Se^ = Sc;,, 

^) If in conditions (A), (B) "0-minimal left ideals" is replaced by "0-minimal right ideals", 
one obtains conditions equivalent to the original (A)~(E). 

'̂ ) In Section 3 of his paper [6] Schwarz proves some similar decomposition theorems for .dual 
semigroups with radical 0. 

^) One can prove this part with the help of the theorems in Section 9 of Schwarz [5]. 
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is an equivalence relation in the set of the 0-minimal left ideals Se^i^ e Ä). Let a« 
denote the union of all the left ideals belonging to the equivalence class K^. 

Thus 

(6) S = u a, 
aeA 

where A denotes the index set of the different classes. 

First, we show that a^ = KJ Se^^ is a 0-simple two-sided ideal of S. (4) and (5) imply 

[0 if a Ф ^ . 

Hence in view of (6) it follows 

(8) Sa, = aß = û. 

Let Ь be an ideal of a,. With respect to (6) and (7) b is an ideal of S and therefore 
b^ Ф 0 holds. Hence 

(9) 0 Ф b^ g ba^ = u bSe^ . 

This implies hSe^ ф 0 for some Se^, e K,, whence bSe^ = Se^ g b follows. In view 
of (5) we obtain 

b 3 ba^ ^ Se^a^ = u Se^e^ = \j Se,, = a« 
Sef^eKoc Sef^eK« 

establishing the 0-simplicity of a,. 
As a^ is a 0-simple ideal of S, 

a,n( и aß) = О or a« 
осФреА 

holds. The second case implies â  g u a^. By multiplication by a, we obtain in 
oc^ßeA 

view of (7) 

al g aX u a^) = u a^a^ = 0 , 
a^ßeA a^ßeA 

which is a contradiction. Thus for every a, (осе A) 

â  n ( u a^) = 0 
a^ßeA 

must hold and therefore (6) is a 0-direct union. 

If Se^ is a 0-minimal left ideal contained in a,, then e^S is a 0-minimal right ideal 
in a^. By Theorem 1 â^ is a completely 0-simple subsemigroup of S. 
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(с) implies (D). Let S be the 0-direct union of its ideal a^ (a G A), where a^ are 
completely 0-simple subsemigroups of S, In view of Theorem 3 a^(oce A) are regular 
semigroups, therefore S is itself regular. Corollary 2 implies that every a^ (a G A ) 
is the union of its 0-minimal left ideals and the union of its 0-minimal right ideals. 
Since S is the 0-direct union of the 0-simple ideals a^ (a G A), all the left (right) ideals 
of a^ (a G A) are left (right) ideals of S. Thus S is the union of its 0-minimal left ideals 
and the union of its 0-minimal right ideals. 

The regularity of S implies that the 0-minimal left ideals of S are of the form Se^ 
with idempotent elements в;̂  Ф 0 (Я G A). From Corollary 11 and Theorem 13 we get 
that e^^S {X e A) are the 0-minimal right ideals of S. So we can write S = KJ Se^, — 

XeA 
= u eß. Hence since S^" = S, 

ЛеЛ 

(10) s = S^ = ( u e,S) i и Se,,) = u e,Se,.. 
ХеЛ Л'еЛ • Л,Л'еЛ 

In view of Lemma 6 e^Se^^ (Я, Я' G Ä) are quasi-ideals of S satisfying 0 я e^Se^, e 
g eß n Se^,. This and Theorem 8 imply that eße^ (Я, X' G Л ) are either О or 0-mini­
mal quasi-ideals of S, 

We have to verify only condition 3). Let e^e^, ф 0. The product Seße^ is a left 
ideal Ф 0 contained in the 0-minimal left ideal 5^я" Hence Seße^. = Se^,, whence 
e^.Se^ . e^ex' = ej,,Se^. Ф 0. 

( D ) implies (E). We have only to show the regularity of S. By supposition S = 
= ^ ÏAA' = ^ Â'S'̂ A" Let a = ^Я-̂ ^А' ( + 0 ) be an arbitrary element of S, 

By 3) the hypothesis e^Se^, ф 0 implies e^Se^ Ф 0. In view of Lemma 6 the product 
e^se^>. e^^Sej^ is a quasi-ideal of S. The 0-minimality of the quasi-ideal e^ße^ implies 
that either e^se^ . ^A"^^A = 0 or ej^se^'. ^A"^^A = ^x^^x holds. 

The first possibility implies exSe^se^' • e^Se^, = 0. Since the quasi-ideal e^Se^se^^ 
(ФО) is contained in the 0-minimal quasi-ideal e^Se^', we get e^Se^se^' = eße^" 
Thus e^Se^'. ^A"^^A = ^ holds, in contradiction to condition 3). 

Thus we necessarily have e^se^' • ^л'>^^х = ^A-̂ ^A- This implies the existence of an 
element ^Я'̂ ^А ^ ^x'^^x with ^ЯА^Я' . e^'te^ = e^. Hence e^se^^ . e^^te^ . e^se^' = e^se^', 
or otherwise a(ex4ex) a = a, which says that a is a regular element of S. This proves 
our assertion. 

( E ) implies (A). Corollary 11 and Theorem 14 imply that we can write every 0-mini­
mal quasi-ideal ï̂  (a G A ) of S in the form î^ = l^n x^, where Î  = Se^ {el = e^ 
is a 0-minimal left ideal and r̂  = fß {fl = f^ is a 0-minimal right ideal of S. Thus 
S = u Î  = u [I^ n r j g u Î  g S. Hence S = и l^ = и Se^, q.e.d. 

аеЛ аеЛ аеЛ аеЛ аеЛ 

Theorems 4, 5 and 15 imply: 
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Corollary 16. The following four conditions on a semigroup S with 0 and with 
more than one element are equivalent: 

(a) S is an inverse semigroup and the union of its 0-minimal left ideals; 

(b) S is a 0-direct union of ideals which are Brandt subsemigroups of S; 

(c) S is a 0-direct union of ideals which are completely 0-simple inverse subsemi­
groups of S; 

(d) S is an inverse semigroup and the union of its 0-minimal quasi-ideals. 
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Резюме 

ПОЛУГРУППЫ КОТОРЫЕ являются ОБЪЕДИНЕНИЕМ 
ВПОЛНЕ ПРОСТЫХ ПОЛУГРУПП с НУЛЕМ 

ОТО ШТЕЙНФЕЛД (Oto Steinfeld), Будапешт 

Целью статьи является изучение условий при которых полугрзшпа с нулем 
имеет следующее свойство: Она является объединением вполне простых полу­
групп, причём пересечение всяких двух отличных компонент — нуль полугруппы. 
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