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ISOLABLE AND WEAKLY ISOLABLE SETS

Jozer GRUSKA, Bratislava

(Received January 26, 1965)

1. INTRODUCTION AND SUMMARY

The undecidability of the ambiguity problem for Chomsky’s context-free grammars
“is well known [1, 3]. Of course this does not mean that it is impossible to devise
methods which may be useful to decide, at least for some languages, whether or not
they are structurally ambiguous (s.a.). Some methods of this kind have been recently
investigated by Fabian [2], for slightly more general languages.

In paper [2] it has been proved that if a set o/ of non-terminal symbols is isolable
( as to the definition of a language, structural unambiguity, isolable set and so on,
see paper [2]), in a language %, then % is structurally unambiguous (s.u.) if and only
if so is &, where the language %, is constructed from % as follows: in the meta-
texts of & (i.e. in such texts by which non-terminal symbols may be replaced) the
symbols from & are replaced by new terminal symbols in such a way that different
symbols from 7 are replaced by different terminal symbols.

A concept of weakly isolable set is introduced in Section 5. If a set & is weakly
isolable in the language %, then & is s.u. if and only if so is the language %, which
is constructed similarly as the language %, but with the difference that two symbols
Ay, A, from o are replaced by the same terminal symbol if and only if there is a text
derivable from both 4; and A4,.

If a set &7 is isolable (weakly isolable), then in order to investigate the structural
unambiguity of %, it is sufficient to investigate the structural unambiguity of the
language £, (£), which is simpler than Z.

In this paper some sufficient conditions for a set </ to be isolable or weakly isolable,
respectively, are given.

As to sufficient conditions for the existence of isolable set they are similar to
those given in paper [2] but a little different approach makes it possible to obtain
simpler and more useful conditions.

The results obtained in this paper have proved to be very useful in the investigation
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of structural unambiguity of a language (see paper [5]), which is a slight modifica-
tion of ALGOL 60.

The present paper uses notations and definitions of [2]. The reader should be
familiar with sections 1 to 9.

2. PRELIMINARIES

In this paper we shall consider only non-cyclic languages % (i.e. languages in
which ¢t — ¢ for no text t), such that d% and {o; Aed¥, 0 e £A — ¢, %} are finite
sets. Denote €, the class of such languages.

2.1. Notations. In this paper we shall use the symbol £ only for denoting a lan-
guage from %,. If g € g%, then by S¢g (Sg) we shall denote the set of all structures
[, 7] (such that « + [g1]")) of g in £. Moreover, by Qg we shall denote the set
{9; [0 ©] € Sy, i € da, [ai] - 7i, g, = [oi, ti]}. The set of all s.u. (s.a.) grammatical
elements of a language % will be denoted by g,.% (g,%).

Directly from Definition 9-7, [2] it follows:

2.2. Theorem. 4 non-empty subset o < d.& is isolable if and only if a reducing
transformation @ exists such that g,1¢ & if og = g and g, € Qg.
In the next section we shall use the following lemmas and theorems, the proof of
which is given in paper [4]. )
2.3. Lemma. If g € 8%, then
pg = max {Ac; g is a [g1]-derivation of g2}
is a finite number.

24.Lemma. Let Acd®, [A] > t; > t,, © be a ty-decomposition of t,, i€ dt;,
[t1i] = 7i. Then p[tyi, ti] < p[A4,1,] .

2.5. Theorem. (Structural induction). Let M < g%, let

1) geM if Qgc M.
Then M = g2.

2.6. Theorem. Let M = g% and f,, f1, v be transformations defined on N o M
Let fog €dg2, fig €dg2, fog < f19 for every g e M and let one of the following
conditions be satisfied for every [a, ] € Sg, x = «t, xi < fog < x{i + 1):

(1 fog =xi, fig=x(i+1)—1, [ai] 2 [vg] =i,
(2 [91] o, [ai.ti]leM, vg = v[ai, i], fog = ffoi, ti] + xi =1, s =0, L.
1y Note that g is a sequence, Ag = 2 and therefore if g = [4, ¢] then gl = 4 and g2 = ¢.
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Further let
(3) vg =gl if [gl]=92, geM.

Let us define the transformations V, R and ¢ as follows: if ge g% — M, then
Vg =92, Rg = 8,92, 09 = g; if g = [A, t] € M, then we put og = [A4, Vg] where

(4) Vg = (1F09=1  [yg] x (F19+ 140
(5) Rg = 8,(117087 1 x [(Fo0S10)] ¢ § ({Ss9+1,0)

Then ¢ is a (5)-reducing transformation.

3. RECOGNIZABLE SETS.

This section contains definitions and lemmas needed in Section 4 and Section 5
Definition 3.1 and 3.2 is a modification of Definition 10.3, [2] and 10-5, [2], respect-
ively. (In our definitions the set ff contains always at most one element.) This modi-

fication has proved to be very useful. Lemma 3.5 is a generalization of Lemma
107, [2].

3.1. Definition. A subset o/ = d. is said to be recognizable (f-recognizable) if

a function f exists such that df = g%, 1 < f[4, t] < At for each [4, ] e df and the
following conditions are satisfied:

(1) if Ae o, [A] - ¢, then [A4, t] edf; if [A] =1, [4, {] e df then A e o.
(2) It

(2a) [4, 1] edf, [a, 7] € 8[4, 1], x = 11, xj < f[4, 1] < x(j + 1),

then .

(2b) [oj] = 7j implies: f[A4, o] = j and [ojq, 1jo] € df for no j, € da,

(2¢) [&j] — tj implies f[oj, tj] = f[A4,1] — xj + 1.

(3) If g e g% and Qg A df = A, then g e df.

3.2. Definition. Let <7 be an f-recognizable subset of d.¥. We shall say that the
functions f, and f, indicate the beginning and the end for f if df, = df = df;,

1 = fog < fg =< f19 < Ag2 for each g e df and the following conditions are satis-
fied:

(1) if tA] = t, then fo[4, {] = 1, fi[4, 1] = At.
(2) 1

(2a) [A] = 1, [o, t] € S[A4, 1], x = 11, xj < f[A, 1] <x(j + 1)
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then
(2b) [oj] = vj implies £ [4, 1] < 1, A, 1] = A
(2¢) [o] - 7j implies fil4, t] = fl%, 1] + xj — 1 for s = 0, 1.

3.3. Definition. A subset o < d.o s said to be strongly recognizable (or (fo, f, f1)-

recog.nizable) if fun'cti(?ns fo, f and f1 exist such that o is f-recognizable and the
functions f, and f; indicate the beginning and the end for f.

34. Lemm.a. Let *’j be an (f,, 1, fi)-recognizable subset of dZ. If g = [A, t] €
€82, fg =i,fg = isfors =0, 1, then an A € A exists such that

(1) [A] 2 fhiom1) o [Ao] x i+l _
and

(2) [Ao] - 1.

Proof. Denote M the set of all grammatical elements for which Lemma holds.
Let g = [4, t] and Qg = M. Obviously g € M if g ¢ df. Now suppose that g € df.
If Qg = 4, then [A] = ¢ and, by (3.1.1) and (3.2.1), [4, t] € M. Let Qg # A. Then
an [o, 7] € Sgg exists. Put x = 17 and let j be such that xj < i < x(j + 1). If [oj] =
= 1j, then, by (3.1.2b) and (3.2.2b), conditions (1) and (2) hold with 4, = 4, iy = 1,

iy = At and hence [4, t] e M. If [oj] - tj, then [oj, 7j] € M and from (3.1.2¢) and
(3.2.2¢) it follows g € M again. Application of Theorem 2.5 yields that M = g%

3.5. Lemma. Let o/ be an f-recognizable subset of d¥. Put # = {ai; i = f[A4, ],
[A]l=a}, £, = Lyo_y and, for each qe R, B, = {u; [A] =0, i = f[4,0a],
wi =q}, A, ={A; [A] >0eB}, B,={u; Ae L, [A] =« f[4, 0] =j, 4 = q,
Ly a2 u E = {u; Ae o, [A] = o, f[A, o] =], oj = q, Lq: oV 2 ul.
Let Z < a, % and let the following conditions be satisfied for every q € #:

(1) ifuj,u, € E;and uy = uy x t,t % A, then t1 ¢ rdel o/,;
(2) if uj, u,e B and u, =t X uy, t + A, then tit ¢ Idel o7,
Then o is strongly recognizable.

Proof. Let us state two assumptions:
(3a) g = [4,t]edf, fg =i, g =ti;

(3b) condition (3a) holds, [« 7] e Sq[4,1], X=1, xj<i< x(j + 1),
p=xj—1. :

First we shall prove the assertion:

(4) if (3a) holds, then g € &.
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If Qg = A, then (4) follows from (3.1.1). Now suppose that Qg # A and that (4)
holds for all g, € Qg. Then (3b) holds with suitably chosen x, j, p. If [oj] = 1j
(&: [oj] - 1j), then from (3.1.2b) ((3.1.2¢)) it follows that (4) holds for our g, too.
According to Theorem 2.5 the assertion (4) is proved for all g e g&.

Further let g = [4, {] edf and fg = i. Define fog (f19) as the largest (smallest)
integer for which fog < i (fig = i) and either fog = 1 (f;9 = At) or there is satis-
fied condition (5), ((6)), where

(5) tYo*P e B, t(fog — 1) € Idel oA,
(6) 11D e E, f(f1g + 1) € rdel o,
As the next step we shall prove:
(7) if £:[A] = t, g = [4, {] ¢df, then Z,: [A] > 1.

By (3.1.1), the assertion (7) is satisfied if Qg = A. Now suppose that Qg + A and
that (7) holds for all g, € Qg. Then an [«, 7] € g exists. If i € dx and £: [ai] — i,
then (3.1.3) implies [ai, 7i] ¢ df and hence, by inductive assumption, £, : [«i] - ti.
Moreover, according to (3.1.1) we have [4, «]e€g%#; and hence [4,]eg¥,;.
Application of Theorem 2.5 yields that (7) holds for all g € g#. Now we shall prove
the following four properties:

(8a) if (3a) holds and fog = 1 then there is a § such that
L:[A]2Bp2t, Plesd,, t"PeB,;
(8b) if (3a) holds and f1g = At then there is a 8 such that
2 [A12p21, prpesd,, (“WeE;
(9) if (3b) holds and [j] = 7j, then fog = 1, f1g = At;
(10) if (3b) holds and [o/] = tj, then xj < fog < f19 < x(j + 1).

In proving (8a) to (10) we shall use structural induction. If Qg = A then (9) and (10)
are satisfied trivially and, by (3.1.1) and (3.2.1), (8a) and (8b) hold with g = [4].
Further suppose that Qg #+ A and that (8a) to (10) hold for all g, € Qg. If (3a) holds
then there exists an [o, 7] € S,g and (3b) holds with suitably chosen x, j, p. Hence
in proving (8a) and (8b) we may assume that not only (3a) but also (3b) holds.

First let [oj] # j. (9) holds trivially and (3.1.2c) implies f[oj, tj] = i — p. If
foloj, ©j] > 1 then directly from the definition of f, we conclude fog > xj and hence
(8a) and the first inequality in (10) hold. Let fo[ayj, 7j] = 1. Since [aj, 7j] € Qg, there
exists by inductive assumption, a B, such that &: [aj] 2 o = 1j, Bole o,
7P e B If xj = 1 then (8a) is satisfied with f = B, x [[¢“*"* and the first
inequality in (10) holds. Let xj > 1. Since o1 € #,, we have #(xj — 1) e Idel o7,
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and t*"” e B,. From this and from the definition of f, it follows that the first
inequality in (10) holds, too. (8a) is satisfied trivially. (8b) and the second inequality
in (10) can be proved similarly.

Secondly, let [«j] = j. If jo + j, then (3.1.2b) implies [y, 7jo] ¢ df and hence,
by (7), £ :[0jo] 2 tjo. Thus, i*) e B, and t*/: #%¢ E,. By thisand by (1), (2), (5)
and (6) we get that (8a) to (10) hold.

Now we see that all the conditions of Definition 3.2 are satisfied: (3.2.1) follows
from the definition of f, and f;. (3.2.2b) follows from (9) and (3.2.2¢) from (10).

4. ISOLABLE SETS

In this section we shall prove two sufficient conditions for a strongly recognizable
set to be isolable.

At first we shall prove two lemmas which will be used in further part of this section
and in Section 5.

4.1. Lemma. Let o/ be an (f,, f, f1)-recognizable subset of d%. If ge g%, Qg A
A df + A, then g edf and either gl ¢ o/ or fog £ 1 or f1g £ 2g2 or A, A, e A
exist such that [4,] - [A4,].

Proof. Let g = [4, t] g% and Qg A df + A. According to (3.1.3) this implies
g € df. Now suppose that A€ ., fog = 1, fig = At. Since Qg + A, an [«, 1] € Sg
exists such that [ai, 7i] € Qg for some ieda. Put x = 1t and let j be such that
xj £ fg < x(j + 1). By (3.1.2b) we have [oj] + 7j and, moreover, (3.1.2c) and
(3.2.2¢) imply: [oj, tj] e df, foloj, ©i] = 1, filo), ©] = Atj = At, 1j =, i = j. By
Lemma 3.4 a B e of exists such that [«i] 2 [B] - 7j and hence [A] = o 2 [«i] 2
2 [B] - ti = t. Thus, [4] — [B] and Lemma is proved.

4.2. Lemma. Let <7 be an (fo,f,fl)-recognizable subset of d#. Let V, R and ¢
be transformations defined on g% in the following way: If

(1) g = [A, t] € df and there exists just one vg € o such that
[A] - (07990 x [yg] x V195030 = ¢ 5t [vg] - (Sonsi0),
then

(13) Vg = ty, Rg = 5pt(1,foy—1-) % [t(fuy,fw)] X §Pt(f;y+1,lt);

(2) If (1) does not hold, then

(22) Vg =t, Rg = 8,t.

Let og = [A, Vyg] for all g e g%. Then g is a (5)-reducing transformation.
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Proof. Denote M the set of all grammatical elements g for which (1) holds. It is
easy to see that

B) [A4.f]¢Mif g =[A t]edf, Ae A, fog = 1, f1g = At

Indeed, if [A4,f]e M and g = [4, | edf, Ae o, fog = 1, fig = 1, then, by (1),
[4] - [A4] which contradicts the assumption % € %,. Now for the proof of Lemma
we shall use Theorem 2.6. Let g = [4, t] egZ. If [A] =1t and [A, {] ¢ df, then
obviously [4, t] ¢ M. If [4, t] edf, then, by (3.1.1) and (3.2.1), Ae o, fog = 1,
f19 = At and hence, by (3), again [A4, {] ¢ M. Thus condition (2.6.3) holds. Now
suppose that [4,t]e M, [a,1]eS,[A, 1], x =11, xi <fg < x(i + 1). Then
[, ©] € So[4, t] and [«i] # <i. Indeed, if [«, ©] = [[A4]. [f]], ([« t] € S[4, 7] and
[@i] = <i), then from (3.1.1) and (3.2.1) (from (3.1.2b) and (3.2.2b)) it follows 4 € <7,
folA, ] = 1, f1[A, f] = At which contradicts (3). According to (3.2.2c) this implies
xi < fo[A,t] < fi[A4, ] < x(i + 1) — 1. Let us consider two cases:

Case L fo[4, ] = xi and f;[4, {] = x(i + 1) — 1. In this case (3.2.2c) implies
folai, ©i] = 1, fy[ai, ti] = Ati. According to Lemma 3.4 a ff € o/ exists such that
[ai] 2 [B] — ti. By this and by unambiguity of vg we have f = vg and (2.6.1)
holds.

Case IL. Either xi < fo[A4,t] or fi[A, 1] < x(i + 1) — 1. In this case (3.2.2c)
implies [oj, ti] e M and f,g = f[«i, ti] + xi — 1 for s = 0, 1. Moreover, vg =
= v[ai, 7i] according to (1) and Lemma 3.4 and hence (2.6.2) holds. The transform-
ation g is defined similarly as in Theorem 2.6 and therefore ¢ is a (5)-reducing trans-
formation.

The following two theorems give sufficient conditions for a strongly recognizable
set to be isolable.

4.3. Theorem. Let o/ be an (fo, f, f1)-recognizable subset of d%. Let

(1) for each g edf, g = [A, t], a unique vg € o/ exist such that
[A] 2 {(Lfog=1) o [vg] x (et Lan [vg] - {Uoa.S19)

Then o is an isolable set.

Proof. If ¥, R and g are transformations defined as in the preceding lemma, then ¢
is a (5)-reducing transformation and, according to (1), (3.2.1) and (3.2.3),

(2) 09 + g if and only if ge N = {g; g edf and either gl ¢ o/ or fog + 1 or

f1g + 2g2}.

Now let geg?, g, € Qg and gg, + g,. Then g, edf and hence Qg A df *+ A.
According to Lemma 3.1 this implies that either g € N or [4,] — [4,] for some
Ay, A, € . In the former case ¢g + g according to (2) and the second case is

impossible according to (1) Hence (9.1.6), [2] holds and g is a reducing transforma-
tion.
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Moreover, if g € 8%, g1 € g, 911 € of then Qg A df + A and similarly as above
we conclude that ¢g + ¢. By Theorem 2.2, o is a g-isolable set. This completes the
proof.

4.4. Theorem. Let 7 be a strongly recognizable subset of dZ. Let, for every
Ay, Aryeof, Ay + A, imply t(Z, A)) A t(Z, A,) = A. Then o is an isolable set.
Proof. By Lemma 3.4 and Theorem 4.3.

5. WEAKLY ISOLABLE SETS

In this section relations are studied between structural unambiguity of a given
language & and structural unambiguity of a language £, which is constructed from
£ in such a way that in metatexts of % all symbols from a set &/ = d.% are replaced
by new terminal symbols. Especially, the case is investigated that in the construction
of &,, two symbols 4,, A, from & are replaced by the same terminal symbol if
and only if t(Z, 4,) A t(Z, 4,) & {A}. If, in this last case & is s.u. if and only if
so is %, then we shall say that < is a weakly isolable set. We shall prove some suf-
ficient conditions for a set &7 to be weakly isolable.

5.1. Definition. Let % be a language, 4 + o/ — d.% and ¢ be a transformation
defined on a. in the following manner:

(1) pa =aifa¢ o/ and pa¢aZ ifaec .
Denote #¢, and %, the languages defined as follows:

d¥% =dy, %%A = {pa;aec XA}, dP% =dP U {p4; Ac o}

where

>

t

ot = oti forany tec¥
i=1

and
PoYA =LA Aed? — o; P94 = {[pA]} if Ae,

P?%A = U{¥B; 9B = A} if Ac{pB;Bc}.

A set o is said to be @-reducible if either both languages £ and £ are s.u. or
both are not s.u. If a set of is ¢-reducible for some ¢ satisfying

(2) Ay, Ay e o, A, = @A, ifand only if {Z, A)) A t{(Z, 4,) & {4}
then we say that .« is weakly isolable.

5.2. Remark. If a set o is isolable then it is @-reducible for any one-to-one trans-
formation ¢ such that (5.1.1) holds. (According to Def. 9.7, [2] and Theorem 9.11,

[2])-
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5.3. Theorem. If
(1) (2, A)) A 82, 4,) = {A} for no Ay, A,esl such that @A, = @A,
and the language & is s.u. then so is LY.
Proof. Put £, = £%. First we shall prove the following assertion:
(2) If g = [A, t] 8%y, [o t] € Sg,9, then there exist B, & and u such that ¢ =
=du, t = @& ?), [4,u] eg¥, [B. &] € S¢[A4, u] and either & = [A] = B or
[A] £ 0= @B, fe ZLA.

If [[A], []] € Sg,[ A, t]. then a u € LA exists such that ¢ = pu and [2] holds with
B = [A], & = [u]. Thus, the assertion (2) holds if Qg = A. Now let g be such that
(2) holds for all g, € Qg. By the above it is sufficient to suppose Qg =+ A and [a, 7] €
€8g¢,9. If i eda and Z: [ai] — 7i, then by inductive assumption a ¢; exists such that
&L [ai] > t;, t; = ti. For these i we have i ¢ {pA; A€ o/} and hence choosing
B e ZLAinsucha way that §f = « we have Z: [Bi] — t,. Putting &i = ¢, if [ai] = ti;
&i = ifor all other i € do and u = [[& weget pu = 1, o& = tand [B,&] € Sy[4, u].
Application of Theorem 2.5 yields that (2) holds for all g e g.%.

Now suppose that there is an [4, t] € g%, with two different structures [«;, ;] in
Z,. By (2) there are B, &; and u; such that t = pu,, 7; = ¢&;, [P &] € So[4, u]
and either a; = [4] = B; or [A] + a; = @B;, f;€ LA. Obviously f; = [A] is not
true for both i. Since [ay, 7,] # [a,, 7,], We conclude from (2) that cither f; + S,
or iy # 1&,. Thus, [4, u;] € g, & if u; = u,. Now suppose that u; # u,. For each j
such that u;j % u,j we have u,j e o, pu,j = @u,jand we may choose a non-empty
text ¢; such that #: u;j — t;. Put {j = t;for such j and {j = [u;j] otherwise; u = []¢.
Clearly ¢; ® { is an f-decomposition of u in & and [4, u] egZL. If B, + [A], then
[Bi & ® (] € Sy[A, u]; otherwise [u;, {] € Sy[A, u]. If B; % [A] for both i = 1,2,
then [B1, & @ (] #+ [B,. & @ (] If By, = [A4], B, * [A] and [4,u] € g, &, then
[ug, (] = [Ba, &, ® {]. This implies t = gu; = pp, = o,, and since B, * [4],
ZLo: [A] = a, » t = a,. But this is impossible as %, is an non-cyclic language.
(The last assertion is a consequence of the fact that #,:[B] — te6.% implies &: [ B]—
— t.) Similarly, the case By + [A4], B, = [A4] is impossible. Hence [4, u] € g, and
Theorem is proved.

5.4. Theorem. If the set {@A; A € o} is isolable in Z%, and
(1) Py + Gay if AedL, oy, 0, € LA, oy * 0y,
then & is s.u. if s6 is £%,.

2) If 7 is a decomposition then @t is defined as follows: dgr = dz, (97) i = gti for each
iedgr.
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Proof. Put &, = ?ﬁ,, Py = L%, N={pd; AeA}. Let ¢ be the reducing
transformation for #; which guarantees the isolability of N, i.e., by Theorem 2.2,
0g g if gegZ,, g, €Qg, g,1 € N. Note that L:t;, - t, implies L :t; - ¢,
and &: [A] = o implies &,: [A] = aif A¢ o; if Ae oL, then L: [A] = o implies
Ly [pA] = o

Let g € g% have two different structures [a,, 7,] and [a,, 7,] in Z. Put

_/g:[A,t] if A¢ oA
TN oA, 1] if Aest

Qi

and
_ <[¢A] if o;=[A], Aeo
% = \a, otherwise.

Then [&; 7;] are two different structures of g in #,. They are diffferent because
evidently &, = &, only if a; = o,.

Now suppose that g is g-invariant. By Theorem 4.3, [4] (or Lemmas 9.9 and 9.10,
[2]), we get, for every i, that either & = [@A] or &£, [«;j] 2 ;j for each j € do; and
Ly =2, P The language %, is thus defined on d.#; the only text derivable
in &, froman A € & is [ pA]. Hence and by definition of %, we get

(2) Z,:[A] - t, implies ZL,: [pA] 2 1. 7)
Thus, if &; + [@A], then
(3) Zo: [@u;j] 2 @r;j for all j e da;.

Put go = [4, ¢]. Fix an i. If &, = [A], then o; = [A4], te LA, §te £,A and g,
has in Z, the structure [[A], [@t]]. If & = [A], then & = a;€ L4 and, by (3),
[P, @7:] € Sy,90 and Ga; + [A]. Of course we have not & = [4] for both i and
either g, € g8,%, or oy, a, € LA, Got; = Py, pT, = @T,. If T, #+ 7,, then 1, *+ @1,
and g, €8,%,. If 1, = 1,, then o; * a, and hence, by (1), §o; *+ @o,. Thus g, €
€g,%, in all cases.

However it remains the case in which g is not g-invariant. Since g € g, ,, we have,
by (9.1.3), [2] and by Lemma 9.3, [2], t ¢ &£, 4 and therefore £;: [4] = &; = a.
Let k be the smallest integer such that ¢*g is a g-invariant grammatical element.
Such k exists by (9.1.5), [2] and by Lemma 9.3, [2]. Similarly as in the proof of
Lemma 9-3, [2] we can deduce, for i = 1,2, ..., k —'1, that ¢'g has, in &L, two
different structures

(4) [or, &1T [220 &2]
3) We put g4 = A if A€ N.
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and the grammatical element ¢*g has two different structures either with form (4)
or one of the following forms:

(5) [[41. [(¢*9) 211, [ety, &7, 22 = (0"7) 2.
(6) [[4]. [("9) 211, [, &1, 21 = (2'7) 2.

Moreover (¢*g) 1 = A. Similarly as in the case that § is g-invariant we conclude
that [4, @(¢*7) 2] € ,%,. This completes the proof of the Theorem .

5.5. Corollary. If the set {pA; Ae s/} is isolable in %%, and conditions (5.3‘1)
and (5.4.1) are satisfied, then o is a @-reducible set.

5.6. Theorem. Let o/ be an (f,, f, f1)-recognizable subset of d%. Let ¢ be a trans-
formation satisfying (5.1.1). Let (5.4.1) and the following three conditions hold:

(1) [A(] — [A4,] for no Ay, A, e . ‘
(2) Ifg, = [A, tl]a g, = [A» tz]’ g, €df, (ﬁt].. = (t,, then fg, = fg, and fg, =
= f,g, for s = 0,1.
(3) If Ay, Ay € o, then @A, = @A, if and only if t(L, A)) A t(L, 4,) ¢ {A}.
Then of is a weakly isolable set.

Proof. Put £, = %%, For g = [A, t] e df denote vg the set {g,; there exists
a B e o/ such that

[A] — [911] : ((1.fog—1) o [B] x (gt Lan g2 > t, [B] —s {(fog.119) .

By Lemma 3.4 we have vg # 4 if g € df. Moreover it is obvious that vg = g% if
g edf and either A ¢ o7 or fog £ 1 or f1g + At.

Let us state two assumptions:

(4) g =[4,t] egZ and ecither g ¢df or: Ae o, fog = 1, f1g = it.

(5) g1 = [A, tl], g = [A, tz], g1 F 92, @ty = @ts.

Now we shall prove the following assertion:

(6) If (4) holds, then § = [4, §t] € §Z,; moreover, if [, 7] € Sgg, then [a, 7] =
= [[A], []] implies [[A4], [ot]] € S¢,g and [«, 7] € Syg implies [ox, pt] e
€Sg¢.9-

Proof of the assertion (6). Let (4) hold and let g be such that (6) holds for all g, e Qg.
Directly from the definition of %, it follows that (6) holds if [«, 7] = [[4], []]. Now
let [0, ©] € Sgg. If £: [ai] — ti and i € do, then, by (1) and Lemma 4.1, we have
[«i, ©i] ¢ df. Hence and by inductive assumption [ai, pti] € 8%, Since ai ¢ o,
we have @ui = ai and hence [ i, gti] € g%, too. Moreover [A4, pa] € 8%, and

hence [4, pt] €8%,, [, (}r] € Sg,[4, pt]. According to Theorem 2.5 this com-
pletes the proof of (6).
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As the next step we shall prove the assertion:

(7) If (5) holds, if g, € df and either A ¢ o or fog; + 1 or fig; * Ay, then there
exist g3 = [B, 1;] and g, = [B, t,] such that g3, g4 € 8%, g3 * ga, @t =
= @ty, ug3 < pg, and pg, < pg,.

Proof of the assertion (7) If the assumptions of this assertion are satisfied, then,
by (2) g, €df and either A ¢ o or fog, + 1 or f1g, =+ At,. Thus vg, and vg, are
non-empty subsets of g% and therefore g, and g, exist such that g, € vg,, g, € vg,
and
g, = [A, tl(l.foyl—l) x [Cl] % t(1f191+1,/1t1)]’ G, = [A, t(zl Jog2—1) o [Cz] % t(2f1y1+1,ltz)]’
where C,, C, e, [C;] — u; = V91199 Obviously gu; = Guy. If uyj + uyj
for some j € duy, then u;j € o, u,j = @u,j. According to (3), a #; exists such that
A *1i;and &Z: [u,-j] — 7;. Let us define the decomposition ¢ as follows: &j = i; if
uyj F uyj; & = [u,-j] otherwise. Put u = IT¢. Obviously #:u; 2 u and we have
¢C, = ¢C, according to (3). Hence the assertion (7) is satisfied with g; = g, and
gds =92 if g1 ¥ g, and with g5 = [Cy,u,] and g, = [Cy, u,] if g, = g,. This
completes the proof of (7).

Now we shall prove that g,%# =+ A implies g,%, * A. Suppose that g,% =+ A.
Then the smallest integer n exists such that one of the following conditions holds:

(8) There exists a g = [A, t] € g, such that pug < n.
(9) There exist g4, g, € g such that (5) holds and max {ug,, ug,} = n.

First suppose that (8) holds. Then (4) holds, too. Indeed, suppose that (4) does not
hold. Then A # vg < g% and the set vg contains either exactly one element, for
example g, or at least two elements, for example g, and g,. In the first case ug; < pug
and, moreover, by Lemma 4.2 and Theorem 9.3, [2], g, € g, which contradicts the
choice of n. In the second case max {ug,, pg,} < n, g, and g, satisfy condition (5)
and we have again a contradiction with the choice of n. Hence (4) holds and we have
g.%, * A according to (6) and (5.4.1).

Secondly suppose that (9) holds. Since n is the smallest integer such that (9) holds,
we get, by (7), that either g, ¢ df or A€ o, fog1 = 1, f19; = At;. In the former case
g» ¢ df and in the latter one A € o, fog, = 1, f19, = At,. If we denote § = [ 4, @1, ],
then (6) implies § € g§%,. Now we shall prove that g € g,%,. According to (5.4.1)
we have that either £: [A] # 1, or Z: [A] # t,. Ifeither £: [4] = t; and Z: [4]+
+ tyor £:[A] # t, and L: [A] = t1,, then § € g,%, according to (6). Now suppose
that [a,, 7;] € Syg, and [¢2, T,] € Sgg,. Then [Goy, pt,] € Sgogo and [pus, @1,] €
€ S4,9, according to (6). If either o; = a, or 17y =+ 17, then [puy, ¢t,] * [z, ¢7,]
according to (5.4.1) and we have g, € g,%,. If «; = @, and 11, = 17,, then an iz €
edo, exists such that t,ip % T,ig, @T;ip = @T,io. According to (1) we have
L:[aqig] = tyipand L: [aio] — T,ip. Obviously max {u[ayiq, t1io], u[ozie, T2i0 ]} <
< n which contradicts the choice of n, Thus, the case a; = a5, t1; = 17, is impossible.
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This finishes the proof of the assertion: §,.% + A implies g,%, # A. From Theorem
5.3 we conclude that g,%, =+ A implies g,.% + A. This completes the proof of the
Theorem. '

The following Lemma, very often used in the paper [5], gives sufficient conditions
for a set & to be strongly recognizable (weakly isolable) in such a case that, roughly
speaking, the beginnings of all texts from t(%, 4), A € o are characterized by special
terminal symbols.

5.7. Lemma. Let A + o =« d ¥, A¢ LA for Ac A, Q = {al,0e A, Ae A} <
ca. Let

(1) Aed?, [A] =, ai = ge Q implies Ae o, i = 1.
For each qe Q let B, = {o; [A] = «, al =q}, o, = {4;[A] >0 B}, & =
=Lar-o-

If for each q € Q there holds at least one of the conditions:
(2) symb {u**™ Y @ :0 2 u,0e B,} A symb, {u; Liia 2 u,ae B} = A,
(3) symb {u®*; L a2 u,0e B,} A rdel o, = A

then </ is a strongly recognizable set.

If for each q € Q either conditions (2), (4) and (6) or conditions (3), (5) and (6)
hold, where

(4) symb, {u; ;02 u,0eB,} < a¥;

(5) if Ay, Aresdt, t((ZL, A)) A (L, A;) + A, A; erdel o, then
Ay ¢ symb (u®™; # 0 2 u, e B},

(6) if BedZ, ay,a, € ZB, oy * oy, Aty = Aa, then an ieda, exists such that
ayi + ayi and either {oi, a1} & o or t(L, ai) A (L, a,i) = A,

then o/ is a weakly isolable set.
Proof. Let f be the function defined as follows:
(7) df = {[4, t];iedt, tie Q}, f[4, t] = max {i, tie Q}.

We shall show that . is f-recognizable. (3.1.1) follows from (1). Now suppose that
(3.1.2a) holds. If [aj] = 1j, then (1) implies j = 1 = f[4, «] and (3.1.2b) holds.
If [aj] # 7j, then (3.1.2¢) follows directly from the definition of f. If g, € Qg, g € &
and g, € df, then an i € dt exists such that ti € Q; therefore g € df and (3.1.3) holds,
too. Thus, < is an f-recognizable set. In order to prove that 7 is a strongly recogniz-
able set we shall use Lemma 3.5. (3.5.2) holds trivially as B, = {[q]} for each g € Q
Now suppose that there are g, u; u, and ¢ such that . )

(8) up,uy € E, uy =uy x t, t + A, tl erdel A,
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Then u,(Au,) € symb, {u; £y: @ 2 u, a € B} and u, (Au; + 1) e rdel o/, But this
is not possible since u,(Au;) ¢ symb.{u; £ : o 2 u, a e B} if (2) holds for our g
and u,(du, + 1) ¢ rdel o, if (3) holds. Thus, (3.5.1) is satisfied and, by Lemma 3.5,
o/ is an (f,, f, f1)-recognizable set if the functions f, and f, are defined in such a way
as in the proof of Lemma 3.5, i.e., by (3.5.5) and (3.5.6), f, = fand

(9) f19 = min {i, i = fg and either i = Ag2 or (g92)iesymb, {u; £ :a _ u,
ae B}

if (2) holds for (g2) fg and
(10) f19 = min {i; i = fg and either i = Ag2 or (92) (i + 1) e rdel =7,}
if (3) holds for (g2) fg.

In proving the second assertion of Lemma we shall use Theorem 5.6. By the pre-
ceding it is obvious that & is an (fo, f, fl) -recognizable subset of d.% where the
functions f,, f and f; are defined as in the proof of first assertion of Lemma. Let ¢
be any transformation satisfying (5.1.1) and (5.1.2). Then (5.4.1) follows from (6).
Since al €a, % for each A€ o, o€ LA we have [A,]+ [A4,] if 4,, A, € o and
(5.6.1) holds. (5.6.3) follows from the choice of ¢. Now we shall prove that the
condition (5.6.2) is also satisfied. Let g, = [4, t;], g, = [4, t,], §t; = @t,. From
the definition of f it is easy to see that fg; = fg, if g, € df. Since f, = f we have also
fod1 = fog,. If for q = (g942) fg, conditions (2) and (4) [(3) and (5)] hold, then
f191 = f19, according to (9) ((10)). This completes the proof of the second assertion
of lemma.

Similarly we can prove the lemma which gives sufficient conditions for a set ./
to be strongly recognizable (weakly isolable) in such a case that the ends of all texts
from t(#, A), A € o are characterized by special terminal symbols.

6. PARANTHESIZED SETS

6.1 Definition. A set &/ < d.% is said to be paranthesized if there are two sets R
and L< a,% such that 4 ed?, [A] = o, aie L(e R) if and only if Ae s, i =1

(= Aw).

6.2 Theorem. Let o/ be a paranthesized subset of A and let condition (5.7.6)
be satisfied. Then of is weakly isolable.

Proof. It is easy to see that conditions (5.7.1), (5.7.2) and (5.7.4) are satisfied for
each qe Q = R.
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Pe3rome
MN30JIMPYEMBIE 1 CJIIABO U30JUPYEMBIE MHOXECTBA

MOCE® I'PYCKA, (Jozef Gruska), Bpatucnasa

B pabote n3yuarorcs popmanbHBIE A3BIKA, onpeL[efTeHHHe B pabore [2] B. ®abuana,
KOTOpBIE SIBIAIOTCS 00006meHneM XOMCKOro IpaMMaTUK THla 2. BEIBOAHTCS psin
JOCTATOYHBIX YCIOBHI TSI TOTO 4TOOBI MAHHBIA SI3bIK &£ OBUI CTPYKTYPHO OIHO-
3HAYCH TOTJA U TOJIbKO TOTZA €CJIM CTPYKTYPHO OJIHO3HAYEH IPYroi s3bIK £, KO-
TOPBIif MOJIy4aeTcs u3 £ TaKuM 00pa3oM, 4TO BO BCEX METATEKCTax si3blka & (B TeX
TEKCTaX, KOTOPBIMH MOXHO HEMOCPEICTBEHHO 3aMEHHUTh HETEPMHHAJBHBI CHMBOJTL)
BCE CHMBOJTBI M3 HEKOTOPOTO MHOXECTBA &/ HETEPMHUHAIBHBIX CHMBOJIOB 3aMEHSIFOTCS
HOBBIMH T€PMHHAJLHBIMHA CHMBOJIAMH.
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