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KRONECKER INDEX IN ABSTRACT DYNAMICAL SYSTEMS, III

Jozer NAGY, Praha
(Received April 8, 1965)

In [7] it was shown how the Kronecker index can be defined and used for studying
a number of properties of a local dynamical system in R?. (The results of paper [7]
will be referred to directly; e.g. lemma 2.8 is lemma 2.8 in [7]). It may be expected
that this notion can be used also in the investigation of local dynamical systems
defined on locally Euclidean spaces. In this paper there will be given the definition of
the Kronecker index of a point with respect to a local dynamical system on a compact
p-manifold, and this index will be used to obtain certain characterisation of critical
points of a local dynamical system. (Concerning the definition of a local dynamical
system on a topological space P see definition 2.7 and also [4].) We use the notation
introduced in previous papers [6], [7].

3.1. Let T be a local dynamical system on P and G = P an open set. Define a local
dynamical system T’ on G as follows: if xe G, 0 = 0 (or 0= 0) such that xT0' e G
for each 0 < 0" < 0 (0 < 0" < 0 respectively), then xT'0 = xT6; for all other points
(x,0)e G x R! let xT'0 be undefined. Clearly T’ is a local dynamical system on G.
Its escape time of (or f) is defined as o) = sup {0 :xT6 € G for 0 < 0" < 0}
(B = inf {0 : xT0" € G for 8 < 0" < 0} respectively). The local dynamical system T’
is said to be the relativisation of the local dynamical system T to the set G.

If U is a p-dimensional element, T a local dynamical system on U, f:U =~ RP?,
then T, denotes a local dynamical system on RP? defined by the relation f(xTB) =
= f(x)T,0.

3.2. In this section we define the Kronecker index of a point with respect to a local
dynamical system T on P. The underlying idea is as follows. To each point x € P
there is a neighbourhood G homeomorphic to R?. Let g : G &~ R? and let a local
dynamical system T' be the relativisation of T to G. Then T, is a local dynamical
system on R”. If x € G is a non-critical or an isolated critical point of T, then g(x) is
also a critical or isolated critical point, respectively, of the local dynamical system T,
on R”; hence, the index indy,- g(x) is defined (see definition 2.15). Now it is natural
to define indy x = ind; . g(x). Of course, it will be necessary to show that this
integer does not depend on the choice of G and g.
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Definition 3.1. Let T be a local dynamical system on a p-manifold P, x € P, G its
neighbourhood homeomorphic to R? such that G — {x} contains no critical points of T.
Let the local dynamical system T’ be the relativisation of Tto G, g : G ~ R?, g(x) = 0.
The Kronecker index ind; x of the point x with respect to T is defined as the number
indy . 0.

Let H be another p-dimensional element with the properties of G in the definition,
h:H ~ RP. First suppose G = H and denote f : h | G, f(G) =U = R”. Let T a T"
be the relativisations of T to G and H respectively. Evidently, for every point (x, 6)
€ G x R! such that xT0' e G = H whenever 0 < ' < 0, there holds xT0 = xT'0 =
= xT"0; and for every point (y, ) e U x R'such that yT}0" € U whenever 0 < 6" < 0
there holds

(1) ‘ yT0 = yT0.

Now let Q be a (p — 1)-pseudomanifold in U such that 0 € Int Q. Using the com-
pactness of Q, there exists (see lemma 2.8) a mapping 9 : Q — R' such that the
mappings W,, W, defined by W(x) = xT,9(x) — x, Wy(x) = xT;9(x) — x for xe Q
are small vector fields on Q and that xT;9(x) € U, xT;%(x) € U. Then from (1) there
follows Wy(x) = W,(x) for xe Q, and from definition 2.9 one obtains ind,. Q =
= indy,» Q. Thus (see definition 2.15)

(2 ind;, 0 = indy,. 0.

Using the homeomorphism fg~* : R? ~ U, fg~'(0) = 0, theorem 2.17 (topological
invariance of the index) and (2), one obtains

ind;. 0 = indy, -1 0 = ind, 0 = indy,. O ;

hence there follows the independence of definition 3.1 on the choice of G and R in the
special case G < H. In the general case one can use a third element K = G n H and
apply the proposition just proved to K = G and K = H.

3.3. In the remaining part of this paper P will denote a compact triangulable
p-manifold, I7 its triangulation, C,(IT) the group of k-chains with integral coefficients.
IfI1;,11; are two triangulations of P, then a mapping f : P — P, simplicial with respect
to the triangulations IT; and IT;, will be denoted by f : P, » P,. Next, T will be a local
dynamical system on P with a finite set of critical points x4, x,, ..., x,. We shall

prove that the number Y ind; x; depends only on the topological structure of the
i=1

space P; furthermore, we obtain the relation between this number and Euler characte-

ristic x of P [1, VII, § 11] by proving the following theorem.
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Theorem 3.2. Let P be a compact triangulable p-manifold, T a local dynamical
system on P with a finite set of critical points X, X,, ..., X,. Then there holds

1= (=1 indrx;,
i=1
where y is the Euler characteristic of P.

Corollary 3.3. If P is a compact triangulable p-manifold with y =+ 0, then every
local dynamical system on P has at least one critical point (see also [5]).

There is an evident close relation of the assertion of theorem 3.2 with the known
theorem [1, XIV, § 3, theorem 1]: If K is a p-dimensional polyhedron, f: K — K
with only isolated fixed points, then the sum of indices of the fixed points of f is the
Lefschetz number of f, up to a multiple of (—1). In the proof of theorem 3.2 we shall
use some ideas, notions and assertions employed in the proof of the special case of
this theorem in [1]. Several of these notions and assertions will be given in the next
two sections. Moreover, our formulations are sometimes reformulations; in each
such case, however, the equivalence of the assertions is evident. The proof proper of
theorem 3.2 will be given in section 3.6.

3.4. First recall the notion of a fixed simplex [1, XIV, § 1,1], which generalises
the notion of a fixed point of a simplicial mapping.

Let IT, be a triangulation of P, IT, a subdivision of IT,, g : P, - P,. A simplex
tell, is said to be a fixed simplex of the mapping ¢ if © = g(t). In particular, if
IT; = II, then t is a fixed simplex of the mapping g iff T = g(7).

Now let us introduce several objects which will be needed later.

Let T be a local dynamical system as assumed in theorem 3.2 with isolated critical
points X, X5, ..., X,. For i =1,2,...,n let U; = P be a p-dimensional element
containing x; and let U; n U; = @ for i # j. The triangulation IT, of P can be choosed
so that all critical points x; are vertices in IT,, and that for each i there holds s-t()-clw) c
c U, where st(x;) is the open star of the simplex x; in IT;, [3, II, definition 3.6]. Set

L=P— U st(x) Since Lis compact, there exists a number A’ > 0 (see the proof

i=

of lemma 2. 8) such that for every mapping 9, : P — (0, 4’) there holds xT9,(x) + x
for all xe L. Let A” > 0 be such that for every mapping 9, : P — (0, A”) there is
xT9,(x) e U for all xest(x;), i = 1,2,...,n. Take an arbitrary mapping 9 : P —
— (0, min (4’, A”)) and define a mapping F : P — P by the relation F(x) = xT9(x).
Evidently F has no fixed point on Land F(st(x;)) = U, for all i. In [1] chap. XIV,
§ 3.5 there is proved the following lemma.

Lemma 3.4. There exists a triangulation IT, of P, a subdivision II, of IT, and
a simplicial approximation f : P, — P, of the mapping F such that f has no fixed
k-simplex for 0 < k < p.
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From the proof of this lemma in [1] there follows (using our assumptions on I7,,
F and the theorem on existence of barycentric subdivisions with an arbitrarily fine
mesh [ 1, III, § 2, theorem IIa]) the following lemma.

Lemma 3.5. The mappings f, F from lemma 3.4 have these additional properties:

(i) all fixed p-simplices of f are contained in \J st(x;);
i=1

(i) f(st(x;)) € U; fori=1,2,...,n;
(iii) there exists a homotopy h; : f|L ~ F| L such that hy(x) % x for (2, x)eI x L.

The following lemma is proved in [1, XIV, § 3,2].

Lemma 3.6. In every fixed p-simplex of the mapping from lemma 3.4 there exists
precisely one fixed point of f.

3.5. In this section there will be given a relation between the Euler characteristic
of P and the fixed points of f from lemma 3.6. The notions and notation from 2.1
will be used throughout.

Let 74, 75, ..., 7, be all the p-simplices of the complex IT,; hence they form a base
in C,(I1,). Denote by f. the homomorphism C,(II,) - C,(IT,) induced by f, and h
the homomorphism C,(IT,) — C,(I1,) induced by the subdivision of ITy; then f, =
= hf. is an endomorphism of the group C,(IT,). Thus for every p-simplex 7, €/,
there holds

(3) fo(fk) =l:ilaszz >

with ay, integers, and for the Euler characteristic y of P there holds (see [1], chap.
X1V, § 3 (4) and § 1 (2), (7))

(4) X = (_ l)pkglakk .

In the preceding section there is assigned to each critical point x; (i = 1,2, ..., n)
of T a neighbourhood heomeomorphic to R?. Let ¢, : U; ~ RP. For any fixed k,
1 £k <n denote x =x, U=U, ¢ = ¢, Let 04,0,,...,0, be all the fixed
p-simplices of f contained in st(—x), V1> V25 - -+ Va fixed points of f contained in the
fixed p-simplices o4, 05, ..., 0,. For j =1,2,..., o, let s; be an arbitrary (p —1)-
sphere with center in y; and contained in the interior of ¢;, E; the open solid p-sphere
with boundary s;, and S the boundary of st(x). The sets S, sy, 55, ..., 5, are (p — 1)-
pseudomanifolds [2, I, § 4,3], and obviously

s;nS=0=s;ns; for j*i, ji=12...,0.
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—_— %k
Denote Q = st(x) — UE;, iy :S = Q,i;:S; = Q and define mappings Fy, f; : Q -
j=1
— U thus: Fy(x) = F(x), fi(x) = f(x) for xe Q.
In [1] chap. XIV, § 2,5 there is proved the following lemma.

Lemma 3.7. Let t4, 15, ..., 7, be all the p-simplices of IT,; choose j, 1 £j < r.
If t;€ 0, (i.e. if t; is a fixed simplex of f contained in si(x)), then for the coefficients
a;; in (3) there holds

aj; = 8(p(sz) . w(q)(yl): (Pf1i1) .

If 7; is not a fixed simplex of f, then a;; = 0.

For I=1,2,..,0, k=1,2,...,n let o} be the fixed p-simplices in st(x,), and
similarly for y}, s}, if. From lemma 3.7 and (4) one obtains the following assertion.

Lemma 3.8.
xX= (_ 1)pk21 lzlsll’k(slk) : w((pk(y ’l‘)’ onf1 l,l‘) .

The assertion of this lemma is the required relation between the characteristic y
and the indices of fixed points of the mapping f. Now let us try to find a similar
relation between the index of a critical point x of T and the fixed points of f contained
in st(x). We use the notions and notation introduced at the beginning of this section.

Define mappings W: Q — R?, V': S — R? by the relations

W) = 0fi(2) — o). V(D) = oFuiofz) — 0io(2).-
Clearly W(z) # 0 for z € Q. Let us prove the following lemma.
Lemma 3.9.
indy x =j§£¢(s;) - o((y,), efii)).
Before presenting the proof of this lemma, we shall prove two propositions.

Proposition 1.
indy X = g, . 0(0, Wiy).

Proof of proposition 1: Using lemma 3.5 (iii) it is easily shown that there exists
a homotopy g, : Wi, =~ Vin R? — {0}. Let a local dynamical system T’ be the relativi-
sation of T to U, T, the local dynamical system on R? induced by the system T’ and
the homeomorphism ¢. Then

Ep(s) - @0, Wig) = &, . (0, V) = indy, ¢(s) = ind7, 0 = indy x,

proving proposition 1.
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Proposition 2. For j = 1,2, ..., o, there hold
(0, W) = o(e(y,). ¢f1i;) -
The proof is similar to that of (9) in [7].

Proof of lemma 3.9. Let the orienting generators of the groups H,_ ((S), H,_(s;).
H,_(sy), ..., H,_(s,) be the positive orienting generators Z, Zy, Zs, ..., Z,, of
these groups (see section 2.3); thus e, = £,y = ... = Ep(sy,)" Using propositions

1 and 2 it suffices to prove the relation w(0, Wiy) = Y (0, Wi)).

ji=1
However, this relation has been proved, under the same assumptions, in the proof
of theorem 2.16. This completes the proof of lemma 3.9.

It is now obvious that the proof of theorem 3.2 is contained in the preceding
lemmas; and it suffices to summarise the results just obtained.

3.6. For k =1,2,..., n denote by oy, 05, ..., g, the fixed p-simplices of f con-
tained in the neighbourhood U, of the critical point x, of the local dynamical system T.
Then from lemmas 3.8 and 3.9 there follows

n n o ok
kzlindT Xk ZkZI lz,l%k(s,k) . w((pk(y’,‘), Pf1 ”1‘) = (" 1)p X

ie.
1= (=1 Y indy x, .
k=1
This concludes the proof of theorem 3.2.

Note. Theorem 3.2 and corollary 3.3 also hold for T a local semi-dynamical system
(see section 2.7).
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Pe3ome

NMHIEKC KPOHEKKEPA B ABCTPAKTHBIX JUHAMUWNYECKUX
CUCTEMAX, III

VIOCE® HAJIb, (Jozef Nagy), Ilpara

B pabote onpenensercs undexc Kponexxepa ind; x TOUYKH p-MEPHOTO KOMIAKTHOTO
MHOT000pa3¥st OTHOCUTENIBHO JIOKAIbHOM JHHAMUYECKON CHCTEMBI T, ONpeAeIeHHOM
Ha 3TOM MHooOpa3uu. [ToToM oKa3bIBaeTCs CIEAYIOIAsi TeOpeMa.

Teopema 3.2. ITycmv P — xomnaxmmuoe mpuanzy.iupyemoe p-mepHoe MHO2000pa-
3ue, T — JA0KAAbHAA OuHamuyeckas cucmema Ha P, umeowas moavko koHeuHoe
YUCAO KPUMUYECKUX MOYEK Xy, X5, ..., X,. T020d umeem mecmo coomuouteHue

x = (=1 Yindr x,,
i=1

20e y — 3iiaeposa xapakmepucmuka mHoobpasua P.
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