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Чехословацкий математический журнал, т. 16 (91) 1966, Прага 

А NEW APPROACH ТО SOME PROBLEMS IN THE THEORY OF 
NON-NEGATIVE MATRICES 

STEFAN SCHWARZ, Bratislava 
(Received May 21, 1965) 

In the paper [11] I developed a semigroup treatment of some theorems concerning 
non-negative matrices. The substance of this method is the follovv îng. 

Denote iV = {1, 2, ..., n} and consider the set of all "w x n matrix units," i.e. the 
set of symbols {е^ \i eN,j eN} together with a zero 0 adjoined. Define in .S = 
= {0} u [eij \i eN, j eN} 3L multiplication by 

e..e , = / ^ ^ ^ ^""^ ^ * ^ ' ^ ' 

the zero element having the usual properties of a multiplicative zero. The set S with 
this multiplication is a 0-simple semigroup containing n non-zero idempotents 

Let Ä = (uij) be a non-negative n x n matrix. By the support C^ of Л we shall 
mean the subset of S containing 0 and all e^ for which â ^ > 0. 

For any two non-negative n x n matrices Ä, В we have C^g = C^^Cß, where the 
multiplication of subsets of S has the usual meaning used in the theory of semigroups. 

Consider the sequence 

The sequence of the corresponding supports 

(1) c^,cici... 

has clearly only a finite number of different members. 

Let к = k(Ä) be the least positive integer such that C\ = C]l for some I^ > k. 
Let further I = к + d\d = d{Ä) ^ 1] be the least positive integer for which C\ = 
= C^^"^ holds. Then the sequence (l) is of the form 

С ^2 Wc — 11^k /^k + d — l I /^k ^k + d~ 1\ 

A^^A^'-'^^A \^A^-">^A \^A^'--^^A 
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The system of sets {C^, C^, ..., c^+^~^} with respect to the multiplication of subsets 
of S forms a finite semigroup of order /c + rf — 1. It is well known from the elements 
of the theory of finite semigroups that ©^ = {Cj^, C^"^\ ..., &/^~^} (with respect to 
the same multipHcation) is a cyclic group of order d. We mention by the way (though 
it will not be used in this paper) that the unit element of the group @д is the set Q^ 
where Q is the uniquely defined multiple xd satisfying k-^Td = Q^k + d — L 

In this manner we have associated to any non-negative matrix Ä three positive 
integers к = k(Ä), d = d{A), g = Q{Ä). 

A non-negative n x n matrix A is called reducible if N can be decomposed in 
two non-empty disjoint subsets N — 1^3,1г\3 = Ф such that â y == 0 for / e i 
and j G J. Otherwise it is called irreducible. 

In [11] we have shown: For an irreducible matrix A the number d = d{A) is 
simply the index of imprimitivity of A and we always have d ^ n. [For a characteriza
tion of d[Ä) in the general case see [12].] 

A matrix A is irreducible if and only if 

С д и С ^ и . . . и С = 5 . 

It turns out that this is the case if and only if 

(2) C'^uC'/'u..,uC'/'-' =S, 

Note also that an irreducible matrix is primitive if and only if d(A) = 1. 
In this paper we shall use a refinement of the argument used in [11] in order to 

find estimations for the number к = k(A) for any irreducible matrix. 
For a primitive matrix it is well known that k{A) ^ (n — 1)^ + 1 and that this 

result is sharp. (See [ l ] - [ 4 ] , [6], [7], [8], [10], [11], [15].) 
An analogous question for irreducible (but not necessarily primitive) matrices has 

been recently treated in [5] and in some special cases in [10]. 
The refinement of our argument consists in the fact that instead of studying the 

global behaviour of the sequence (1) we shall first study the behaviour of a fixed 
"row*" in the sequence (1). 

To this end we introduce the following notations: We denote {e^, е^2, ••., ^ш} ̂  
u {0} = Si, so that S^ u 5*2 u ... u S„ = S.lf Ais a. given n x n matrix, we further 
denote F^ =Fi{A) — Si n C^. Hence Fi = Fi{A) is the "support of the i-th row^ 
of У4". For further purposes note that Fi = вцС^,, 

For brevity we shall occasionally say that Fi is "the /-throw of C^" by considering 
hereby in a natural manner the set C^ (subset of S) written in the form of a square 
block with the non-zero entries eij on appropriate places. For instance for the matrix 
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we shall write C^ = {0, e^ , е^з, ^22, ^зь 3̂2̂  ^зз} i" the form 

С л = 0, в22,0 u { 0 } / ) 
V3b^32. ^33/ 

Here 
Fl = {0, вц , е^з} , F2 - {О, ^22} , î 3 = (О, вз^, е^2, ^зз} • 

Consider now the sequence 

(3) F, F,с ^, F fil,... 

and define F,C^ = F,-. The members of this sequence are clearly the supports of the 
i-th rows in the sequence (1). 

Again (3) contains only a finite numbers of different sets. Denote by ki = ki[A) 
the least integer such that FiC^J'^ occurs in (3) more then once. Let further J,- = 
= dlA) be the least integer ^ 1 such that Ffi^J'^ = FiC^J~^^^\ Then the sequence 
(3) is of the form 

F, Ffi^, ..., FfiT' \ FfiT^, ••; FfiT'^'-^FfiT', •-
Clearly ki ^ k, di ^ d (for i = 1,2, ..., n) so that, in particular, max/c,- g к. 

Conversely, if /<* = max /Cj, then the term FjC^"^ (for any /) occurs in the sequence 

(3) more then once, hence Ffi^^"^ = F;C^^~^^'^' (for any i). This implies that for 
any integer Я̂  ^ 1 we have Ffi'"^*"^ = Ffi^^'^^^'"^'- Let J* be the least common 
multiple of the numbers d^, c/2, ..., d^ and put Я,; = (i*/Jj. We then have Ffi'^"^ = 

= F,C';-''^'* and ( Ù F,) &;-' = ( Ù i"i) C';-'^'\ i.e. C'; = С'Г'\ This shows 

that C^2 occurs in (1) more then once, so that к ^ /c*. Hence к = k^ = max /ĉ . 

Remark 1. By the way: C *̂ = Ĉ *"̂ "̂ * immediately implies that d ^ d"" and d | of*. 
Since it is easy to see that di | d, we also have cP | d, so that (i = (i*. We shall not 
need this fact in the present paper. 

Remark 2. If A is irreducible, then (2) implies that 

F , . c r ^ и f.CÎ,' U .. . U FfiT'''' = Si 

for i = 1, 2, ..., П. In particular, if Л is primitive, then Ffi^J"^ = S^. 

Remark 3. It is easy to introduce in the sequence (3) a multiplication О so that(3) 
becomes a cyclic semigroup. To this end it is sufficient to define F;C"^^ О F^C^^'--= 

^) The set {O} can be omitted if A contains a zero entry. 
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FiC'^^^'^\ Then the set {FiC^J~\ ..., F,C^^+^^"^} (with the same multiplication) is 
a cychc group of order di. 

1. THE GENERAL CASE 

The goal of this section is to prove some theorems, which hold for any non-negative 

irreducible matrix. Some of the lemmas are of independent interest. 

All matrices considered below are n x n matrices, n > 1. 

We begin with the decisive 

Lemma 1. Suppose that A is irreducible and M any proper subset of Si contain
ing 0 and at least one non-zero element. Then MCj^ contains at least one non-zero 
element e S,-, which is not contained in M. 

Proof. Let M = {0, e^^, e^ß, ..., ^ ,J , {a, ß, ..., v} ^ N. Suppose for an indirect 
proof that for all elements e^^ e C^ we have 

{eia. e^ß, ..., e^,] e^^ с [e-^, e^ß, ..., e^,} u {0} . 

If ^ e {a, ß, ..., v}, we necessarily have a e {a, ß, ..., v}. In other words: If Q G 
G (a, ß, ..., v} and a E N — {a, ß, ..., v}, we have a^^ = 0. This says that A is reducible, 
contrary to the assumption. 

Lemma 2. Suppose that A is irreducible. 

a) If Fl contains g ^ 1 non-zero elements G SI, we have 

b) In particular we always have 

F,^F,C^u...^F,CY' =S,. 

c) / / / Ф j we always have 

eijEFiuFiC^u...KjFiC'y\ 

Proof, a) By Lemma 1 FiuFfi^ contains at least g Л- I non-zero elements. 
Again by Lemma 1 

{Fl u FiC^) u {Fl u FiC^) C^ = FiU Ffi^ u F fi 

contains at least g -\- 2 non-zero elements. Repeating this argument we find that 
Fi u F,Cx u ... u FiCY^ contains at least n non-zero elements G SI, i.e. the whole 
set Si. 
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b) Follows from the fact that an irreducible matrix has in each row at least one 
element different from zero. 

c) Since вцС^ contains at least one non-zero element фвц, the set e^ u виС^^ con
tains at least two non-zero elements eS^. Analogously (ец u е^С^) u (ец u вцС^С^^ = 
= ец u ецС^ u ецС^ contains at least 3 non-zero elements, and so on. We finally 

have 
e.i u e^fi^ u eaCl u ... ^,,СГ ' = S^. 

Since вцС^ = Fi, the last equality can be written in the form 

e , , u F , u F , C ^ u . . . u F , C r ' = Si, 

from which our assertion immediately follows. 

Lemma 3. If Ä is irreducible, then there is an integer h = h(i) such that 1 ^ h ^ 
^ n and Fi cz FiC\. Here: 

a) / / ец e Fi, we may choose h = 1. 
b) If Fi contains g non-zero elements eSi, we may choose h ^ n — g + 1. 

Proof, a) IfCii ^ ^b then F^ = СцС^^ с FiC^^, and our statement is true with h = 1. 

b) By Lemma 2b there is an integer u, 1 ^ и ^ n — g such that Сц G FiC"^, 
Multiplying by Q we get F^ = е^С^ a F^Q"^\ Since u + l ^ n — g + 1, our 
statement holds. 

Remark. The example of the irreducible permutation matrix 

/0 1 0 ... 0 
/o 0 1 ... 01 

Ä = \': 

lo 0 0 ... 1 
4 0 0 ... 0̂  

shows that F^ с FiC% but F^ ф Fid^ for h = 1,2, .,., n - 1. Hence the estimation 
h ^ nin Lemma 3 is — in general — the best possible. 

Theorem 1. If Ä is irreducible, Fi contains g non-zero elements and Fi cz FiC'^, 
h ^ 1, then ki ^ {n ~ g) h + 1. 

Proof. The supposition implies 

(4) F , c: FiC\ c: F iCl' ^...cz FiC^2~'^' ^ F,Ci"-^^^>^ c= .. . 

Since Fi contains g non-zero elements GSJ, the set FiC\ is either equal to F^ or contains 
at least ^ + 1 non-zero elements GS^. Further FiC^ is again either equal to FiC\ or 
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contains at least g + 2 non-zero elements eS^: and so on. The chain (4) cannot have 
more than n — g + i different members. There exists therefore a t , О ^ т ^ п — ̂ , 
such that FfCj = Ffi^2'^^^\ Hence k^ - 1 S ^h й {n ~ g) h. This proves our 
Theorem. 

Theorem 2. / / A is irreducible and Fi contains g non-zero elements eSi, we have 
kiu{n - gf + {n - g) + 1. 

Proof. By Lemma 3b we have h -й n — g + 1, hence 

ki й {n - g){n - g + 1) + 1 = {n - gf + {n - g) + 1 , 

Remark. The results of Theorem 1 and Theorem 2 cannot be — in general — 
sharpened. To show this consider the matrix A with 

(0, e,2, 0 

and the third row F^ = {0, e^i, ^32}. Here n = 3, g = 2. We have F^C^ = 
= {0, ^32, взз}, F^C^ = {0, ^31, ^32, взз} so that /C3 = 3. On the other hand 
(n - gf + {n - g) + l = 3. 

With respect to the relation k{A) = max /ĉ  we immediately get: 
i 

Corollary 1. For any irreducible non-negative n x n matrix A we always have 
k{Ä) ^ n^ - n + 1. 

Proof. Since of à 1, we have k{A) ^ {n - ly + {n - i) + 1 = n^- - n + 1, 

Corollary 2. / / A is irreducible and each row contains at least two non-zero 
elements, we have /с(Л) ^ n^ — 3n + 3. 

Proof. Follows from k{A) = max ki S {n - 2y + {n - 2) + 1 = n^ - 3n + 3. 
i 

The result of Corollary 1 is not the best possible. It is intuitively clear that a possible 
îîharpening of this estimation depends on the possibility to sharpen Theorem 1 for 
the rows containing a unique non-zero element. 

Note first: If A is irreducible and F^ contains a unique non-zero element eSi there 
cannot hold F^ =•- {0, e^} since such a matrix is reducible. Therefore in the following 
Theorem 3 we may suppose F^ = {0, ê j} with i ф j . 

Theorem 3. Suppose that A is irreducible and F^ contains exactly one non-zero 
element GS^. Let hi be the least integer ^ 1 swc/i that Fi a Ffi^l. 

A)lfhiun- 1, we have k^ ^ (n - 1) /ẑ  + 1 ^ (n - 1)^ + 1. 
B) / / hi = П, we have k̂  ^ n^ — 3n + 4. 
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Proof. A) This follows from Theorem 1 by putting g = 1 and h = n — 1. 

B) We first show that in this case e^ e F^CY^ and e^-, ф F fi\ with h ^ n ~ 2. 

By Lemma 2b we have e^ e FiC^^ with 1 ^ h ^ n — 1. If there were h ^ n ~ 2, 
we would have ецС^ с Р^С^/\ i.e. F^ с Ffi^/^ with h + 1 S n - 1, contrary to 
the assumption. 

Next we show that for ^ = 1, 2, ..., n the set F^C^ contains exactly one element eS^ 
which is not contained in the union F^ u Ffi^^ u ... u Ffi^^^. (Hereby Ffi^j^ — F^.) 

By the same argument as in the proof of Lemma 2 a it follows that F,- u ... u F fi^^ ^ 
contains at least t different non-zero elements eSi. Suppose for an indirect proof that 
FiC\ has at least two non-zero elements not contained in F^ и ... и F^Cl^^. Then 
Fl и ...и FiCli^ contains at least t + 2 non-zero elements G5J. By Lemma 1 
(Fi u ... u F^C'^) u (F; u ... u FiC'^) C^ = Fi^j ...u Ffi'/^ contains at least t + 3 
non-zero elements, and repeating this process we obtain that F,- u ... u FfiY^^ = ^i. 
Hence вц e FiC\ with /z ^ n — 2, which has been shown impossible. 

In particular: Ffij^ contains exactly one element not contained in F^. But since 
Fi Ф Ffij^, we conclude that F fi^ contains exactly one non-zero element eSi. 

Consider now the finite sequence F^, Ffij^, ..., FiC^^, Ffi^, and let IQ be the 
least integer such that F fi^^ contains more than one non-zero element eS^. We have 
just seen that IQ > 1. 

a) If /o = n, then each of the sets F,-, ..., FiC"^~^, contains a unique element and 
since eiieFiC"^~\ we have {0, e,-,} = F^C^K Therefore e^C^ --= Ffi\, i.e. F^ = 
- Ffi\, so that к I = 1. 

ß) Suppose next /o ^ n - 1 and let F^ = {0, e^J, F^C^ = (0, e,-^}, ..., FC^^"^ -
= (0, ei;]. Since FjC]^ contains at least two non-zero elements eSi and only one not 
contained in {̂ ĵ , ê ,̂, ..., e,^}, there is necessarily an index ^ e [a, ß, ..., X] such 
that ei^ e Ffi^X- Consequently: There is an integer т, 1 ^ т ^ IQ, such that 

(5) {0, e,,} = FfiT' <= FiC. lo 

Now T cannot be IQ since F,- c: Ffi]^ with IQ ^ n — 1 contradicts our assumption. 
Therefore we have 1 ^ т ^ /o — 1. The relation (5) implies 

F^C^^-' с Ffi^^ с Ffi'^-"' Œ ... Œ FiC'^"-^''-'^' . 

This chain of n + 1 sets cannot have all members different one from the other. There 
is therefore an integer w, — l ^ w ^ n — 2, such that 

17 /^fo + Mt __ p ^^lo + (u+ i)x 

Hence 

ki - 1 S k + их S h + "(^0 - \)йп - i Л- {n ~2){n ~ 2) = n^ - 3w + 3 . 

This proves Theorem 3. 
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Remark. The result ki ^ n^ — 3n + 4 cannot be — in general — sharpened.. 
To show this consider the matrix A with 

fO, e,2.0 

We have 

10, 0, e,,] 

so that A is primitive (hence irreducible). Now 

^1 = {0. ^12}. FICA = {0, ^13}, PiCl = {0, ^11, ^13}, F^Cl = {0, вц, ei2, б'̂ з] 

so that indeed F^ с F^C^ and k^ = 4. On the other hand n^ — 3n + 4 for /7 = 3 
is equal to 4. 

Theorems 2 and 3 allow the following conclusions. If л ^ 2, we have for the rows 
with at least two non-zero elements 

kiu{n - gf + [n - g) + 1 й{п -If Л- {n -2) + 1 =^ n^ - Ъп + Ъ . 

For the rows with a unique non-zero element we have (with hi defined above) 

either ki ^ n^ — Ъп + A iï h^ = n , 

or ki S{n ~ \) hi + 1 ^ (^ - 1)^ + 1 if hiS n - 1 . 

Since (for n ^ 2) we have 

{n - 1) (n - 2) + 1 = (n - 2y + (n - 2) + 1 = n^ - 3n + 3 < n^ - 3n + 4 S 

^(n-iy + U 

we get with respect to k(A) == max ki'. 
г 

Theorem 4. For any non-negative irreducible matrix A we always have k(A) ^ 
й{п- ly + 1. 

Theorem 5. Let A be irreducible. Denote hi the least positive integer for which 
Fl cz FiC\\ If for every row F,- containing a unique non-zero element we have 
h. Ф n — 1 (i.e. either hi = n or hi ^ n — 2), then k{A) '^ n^" — 3n •+• 4. 

Remark 1. The result of Theorem 4 is the best possible for it is known that to 
every n ^ 2 there is a primitive matrix A with А:(Л) = (^n — 1)^ + 1. This property 
has the "Wielandt matrix", which is a matrix with C^ = {0, €^2, 2̂3? 3̂4? •.., 
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Remark 2. Also the result of Theorem 5 cannot be — in general — sharpened. This 
shows the example in the Remark after Theorem 3. Here F^ = {0, 6^2} ^^^ hi = 3, 
F2 = {0, ^23} äiid /i2 = 1 so that the suppositions of Theorem 5 are satisfied. On the 
other hand k{A) = 4 = n^ - 3n + 4. 

2. THE CASE OF A PRIMITIVE MATRIX 

We shall now apply our results to the case of a primitive matrix. For a primitive 
matrix A the set FiC\~^ is the whole set Sj. 

Theorem 6. / / A is primitive, then k{Ä) S n — 1 + min /с,-. 
i 

Proof. Let ei^ be any element GS^. Take7 ф i and write e^^ = eijej^. By Lemma 2 
^eij G FiCl^, where t = t(^i,j) satisfies 0 ^ t ^ n — 2. By definition of the number kj 
we have (for any a) ej^ e Sj = FjC^~^. Hence 

S, = (0, e,i, e,2, ..., e,,} cz Ffi\FjCT' ^ Ffi'/'^. 

Therefore ki — 1 ^ t + kp i.e. /ĉ  ^ ? + 1 + kj. (This is, of course, trivially true 
also for I = j . ) Since j is arbitrary, we have /ĉ  ^ (w — 2) + 1 + min kj = n — \ + 

J 
+ min kj. Taking account of k{A) = max ki, we finally get k[A) ^ n — 1 + min kj. 

j i j 

By the way we have also proved^): 

Theorem 7. For any primitive n x n matrix A we always have 

max ki — min k^ ^ n — I . 
i i 

Remark. The result of Theorem 6 is sharp in the following sense. In any primitive 
matrix there is at least one row, say j'-th row, containing at least g = 2 non-zero 
elements. By Theorem 2 kj ^ ŵ  — 3n + 3. Hence by Theorem 6 k{Ä) ^ (n — 1) + 
+ (n^ — 3n -{- 3) = n^ — 2n + 2 and the "Wielandt matrix" attains this upper 
bound. 

Also simple examples show that the result of Theorem 7 is the best possible. 
The following result described in Theorem 8 is known. (See [1], [4], [11].) 

Lemma 4. If A is irreducible and ejj G Fp then kj ^ n — 1. 

Remark. It is well known that in this case irreducibility implies primitivity. 

) (Added in proofs, May 1966.) In a forthcomming paper ([16]) we shall show that Theorem 7 
holds for any non-negative irreducible matrix Ä and we use it to obtain estimates for k{Ä) in the 
case of imprimitive matrices. 
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с: 

Proof. By supposition ejjeFj, hence Fj = ejjC^ с FJCA- This implies F 
FjC^ cz FjCl c: ... с FjC"j~^. By Lemma 2c we have for ; Ф a 

e,, G F , u FJCA U . . . U F , C r ' = FjCY' , i.e. S, == FjC m-2 
A 

Hence there is a т, 0 ^ т ^ n - 2, such that F^C^ - FjCj'K Therefore kj - 1 g т, 
i.e. Jĉ - S T + 1 ^ {n - 2) + 1 = n - 1. 

/ 0 0 1 \ 
Remark. The result of Lemma 4 is sharp, since e.g. Л = 1 1 0 is primitive and 

\ 0 1 l / 
direct computation shows that k2 = k^ = 2( = n — 1). 

Under the suppositions of Lemma 4 we have min ki S n — 1. This combined with 
Theorem 6 gives the following ' 

Corollary. / / Ä is irreducible and contains a non-zero element in the main 
diagonal, then k[Ä) ^ In — 2. 

In the proof of the next Theorem 8 we shall again use the inequality ki ^ t(i, j) + 
+ 1 + kj (proved in the proof of Theorem 6). 

Theorem 8. / / Ä is primitive and contains r ^ 1 non-zero elements in the main 
diagonal, we have k{A) ^ 2n ~ r ~ 1. 

Proof. Suppose that {cj^j^, ej^j^, ..., Cj^j^} с C^. Then kj^ ^ n — 1, ..., kj^ ^ 
Sn - 1. 

If r = n, then k[Ä) = max kj ^ n — \, and our statement holds,. 
j 

Suppose r < n and choose an index i ф {jiJz^ • • •? Jr}- Since 

n — r—l e,, u e.fi^ u . . . u е,,СУ' = e,, u F, u Ffi^ u ... u Ffi[ 

contains at least n — г + 1 non-zero elements eSi and {e^j^, e^^, ..., e^^ contains 
exactly r elements, these sets intersect and there is a7, sayji, such that Cij^ e Ffi^^ with 
€ ^ t{i,j^ ^ n - r - 1. Now ki й t(j^Ji) + 1 + ^ji implies k^ ^ (n - r - 1) + 
Ч- 1 + (n — 1) = 2n — г — 1. Hence k{Ä) = max ki S 2n — r — 1, q.e.d. 
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Резюме 

НОВЫЙ ]У[ЕТОД РЕШЕНИЯ НЕКОТОРЫХ ВОПРОСОВ 
ТЕОРИИ НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ 

ШТЕФАН ШВАРЦ (Stefan Schwarz), Братислава 

Пусть А — квадратная неотрицательная матрица. Распределение нулевых 
и ненулевых элементов в последовательности А, А^, А^, ..., начиная с некоторой 
степени к{А)у периодически повторяется. Цель статьи — получить оценки для 
числа к(А) в случае неразложимых матриц. При этом используется новый метод, 
являющийся уточнением метода, использованного автором в работе [И]. 

284 


		webmaster@dml.cz
	2020-07-02T20:21:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




