Czechoslovak Mathematical Journal

Štefan Schwarz

A new approach to some problems in the theory of non-negative matrices

Czechoslovak Mathematical Journal, Vol. 16 (1966), No. 2, 274-284

Persistent URL: http://dml.cz/dmlcz/100729

Terms of use:

© Institute of Mathematics AS CR, 1966

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A NEW APPROACH TO SOME PROBLEMS IN THE THEORY OF NON-NEGATIVE MATRICES

Štefan Schwarz, Bratislava

(Received May 21, 1965)

In the paper [11] I developed a semigroup treatment of some theorems concerning non-negative matrices. The substance of this method is the following.

Denote $N=\{1,2, \ldots, n\}$ and consider the set of all " $n \times n$ matrix units," i.e. the set of symbols $\left\{e_{i j} \mid i \in N, j \in N\right\}$ together with a zero 0 adjoined. Define in $S=$ $=\{0\} \cup\left\{e_{i j} \mid i \in N, j \in N\right\}$ a multiplication by

$$
e_{i j} e_{m l}=\left\langle\begin{array}{ll}
e_{i l} & \text { for } \quad j=m, \\
0 & \text { for } \quad j \neq m,
\end{array}\right.
$$

the zero element having the usual properties of a multiplicative zero. The set S with this multiplication is a 0 -simple semigroup containing n non-zero idempotents $e_{11}, e_{22}, \ldots, e_{n n}$.

Let $A=\left(a_{i j}\right)$ be a non-negative $n \times n$ matrix. By the support C_{A} of A we shall mean the subset of S containing 0 and all $e_{i j}$ for which $a_{i j}>0$.

For any two non-negative $n \times n$ matrices A, B we have $C_{A B}=C_{A} C_{B}$, where the multiplication of subsets of S has the usual meaning used in the theory of semigroups.

Consider the sequence

$$
A, A^{2}, A^{3}, \ldots
$$

The sequence of the corresponding supports

$$
\begin{equation*}
C_{A}, C_{A}^{2}, C_{A}^{3}, \ldots \tag{1}
\end{equation*}
$$

has clearly only a finite number of different members.
Let $k=k(A)$ be the least positive integer such that $C_{A}^{k}=C_{A}^{l_{1}}$ for some $l_{1}>k$. Let further $l=k+d[d=d(A) \geqq 1]$ be the least positive integer for which $C_{A}^{k}=$ $=C_{A}^{k+d}$ holds. Then the sequence (1) is of the form

$$
C_{A}, C_{A}^{2}, \ldots, C_{A}^{k-1}\left|C_{A}^{k}, \ldots, C_{A}^{k+d-1}\right| C_{A}^{k}, \ldots, C_{A}^{k+d-1} \mid \ldots
$$

The system of sets $\left\{C_{A}, C_{A}^{2}, \ldots, C_{A}^{k+d-1}\right\}$ with respect to the multiplication of subsets of S forms a finite semigroup of order $k+d-1$. It is well known from the elements of the theory of finite semigroups that $\mathfrak{G}_{A}=\left\{C_{A}^{k}, C_{A}^{k+1}, \ldots, C_{A}^{k+d-1}\right\}$ (with respect to the same multiplication) is a cyclic group of order d. We mention by the way (though it will not be used in this paper) that the unit element of the group ${ }^{(6)}{ }_{A}$ is the set C_{A}^{e}, where ϱ is the uniquely defined multiple τd satisfying $k \leqq \tau d=\varrho \leqq k+d-1$.

In this manner we have associated to any non-negative matrix A three positive integers $k=k(A), d=d(A), \varrho=\varrho(A)$.

A non-negative $n \times n$ matrix A is called reducible if N can be decomposed in two non-empty disjoint subsets $N=I \cup J, I \cap J=\Phi$ such that $a_{i j}=0$ for $i \in I$ and $j \in J$. Otherwise it is called irreducible.

In [11] we have shown: For an irreducible matrix A the number $d=d(A)$ is simply the index of imprimitivity of A and we always have $d \leqq n$. [For a characterization of $d(A)$ in the general case see [12].]

A matrix A is irreducible if and only if

$$
C_{A} \cup C_{A}^{2} \cup \ldots \cup C_{A}^{n}=S .
$$

It turns out that this is the case if and only if

$$
\begin{equation*}
C_{A}^{k} \cup C_{A}^{k+1} \cup \ldots \cup C_{A}^{k+d-1}=S . \tag{2}
\end{equation*}
$$

Note also that an irreducible matrix is primitive if and only if $d(A)=1$.
In this paper we shall use a refinement of the argument used in [11] in order to find estimations for the number $k=k(A)$ for any irreducible matrix.

For a primitive matrix it is well known that $k(A) \leqq(n-1)^{2}+1$ and that this result is sharp. (See [1]- [4], [6], [7], [8], [10], [11], [15].)

An analogous question for irreducible (but not necessarily primitive) matrices has, been recently treated in [5] and in some special cases in [10].

The refinement of our argument consists in the fact that instead of studying the global behaviour of the sequence (1) we shall first study the behaviour of a fixed "row" in the sequence (1).

To this end we introduce the following notations: We denote $\left\{e_{i 1}, e_{i 2}, \ldots, e_{i n}\right\} \cup$ $\cup\{0\}=S_{i}$, so that $S_{1} \cup S_{2} \cup \ldots \cup S_{n}=S$. If A is a given $n \times n$ matrix, we further denote $F_{i}=F_{i}(A)=S_{i} \cap C_{A}$. Hence $F_{i}=F_{i}(A)$ is the "support of the i-th row of $A^{\prime \prime}$. For further purposes note that $F_{i}=e_{i i} C_{A}$.

For brevity we shall occasionally say that F_{i} is "the i-th row of C_{A} " by considering hereby in a natural manner the set C_{A} (subset of S) written in the form of a square block with the non-zero entries $e_{i j}$ on appropriate places. For instance for the matrix

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 2 & 0 \\
1 & 4 & 3
\end{array}\right)
$$

we shall write $C_{A}=\left\{0, e_{11}, e_{13}, e_{22}, e_{31}, e_{32}, e_{33}\right\}$ in the form

$$
\left.C_{A}=\left(\begin{array}{ll}
e_{11}, & 0, \\
0, & e_{13} \\
0, & e_{22}, \\
e_{31}, & e_{32},
\end{array}\right) \cup\{0\} . e_{33}\right)
$$

Here

$$
F_{1}=\left\{0, e_{11}, e_{13}\right\}, \quad F_{2}=\left\{0, e_{22}\right\}, \quad F_{3}=\left\{0, e_{31}, e_{32}, e_{33}\right\} .
$$

Consider now the sequence

$$
\begin{equation*}
F_{i}, F_{i} C_{A}, F_{i} C_{A}^{2}, \ldots \tag{3}
\end{equation*}
$$

and define $F_{i} C_{A}^{0}=F_{i}$. The members of this sequence are clearly the supports of the i-th rows in the sequence (1).

Again (3) contains only a finite numbers of different sets. Denote by $k_{i}=k_{i}(A)$ the least integer such that $F_{i} C_{A}^{k_{i}-1}$ occurs in (3) more then once. Let further $d_{i}=$ $=d_{i}(A)$ be the least integer $\geqq 1$ such that $F_{i} C_{A}^{k_{i}-1}=F_{i} C_{A}^{k_{i}-1+d_{i}}$. Then the sequence (3) is of the form

$$
F_{i}, F_{i} C_{A}, \ldots, F_{i} C_{A}^{k_{i}-2}\left|F_{i} C_{A}^{k_{i}-1}, \ldots, F_{i} C_{A}^{k_{i}-1+d_{i}-1}\right| F_{i} C_{A}^{k_{i}-1}, \ldots
$$

Clearly $k_{i} \leqq k, d_{i} \leqq d$ (for $i=1,2, \ldots, n$) so that, in particular, $\max _{i} k_{i} \leqq k$. Conversely, if $k^{*}=\max _{i} k_{i}$, then the term $F_{i} C_{A}^{k^{*-1}}$ (for any i) occurs in the sequence (3) more then once, hence $F_{i} C_{A}^{k^{*-1}}=F_{i} C_{A}^{k^{*-1+d_{i}}}$ (for any i). This implies that for any integer $\lambda_{i} \geqq 1$ we have $F_{i} C_{A}^{k^{*-1}}=F_{i} C_{A}^{k^{*}-1+\lambda_{i} d_{i}}$. Let d^{*} be the least common multiple of the numbers $d_{1}, d_{2}, \ldots, d_{n}$ and put $\lambda_{i}=d^{*} / d_{i}$. We then have $F_{i} C_{A}^{k^{*}-1}=$ $=F_{i} C_{A}^{k^{*}-1+d^{*}}$ and $\left(\bigcup_{i=1}^{n} F_{i}\right) C_{A}^{k^{*}-1}=\left(\bigcup_{i=1}^{n} F_{i}\right) C_{A}^{k^{*}-1+d^{*}}$, i.e. $C_{A}^{k^{*}}=C_{A}^{k^{*}+d^{*}}$. This shows that $C_{A}^{k^{*}}$ occurs in (1) more then once, so that $k \leqq k^{*}$. Hence $k=k^{*}=\max _{i} k_{i}$.

Remark 1. By the way: $C_{A}^{k^{*}}=C_{A}^{k^{*}+d^{*}}$ immediately implies that $d \leqq d^{*}$ and $d \mid d^{*}$. Since it is easy to see that $d_{i} \mid d$, we also have $d^{*} \mid d$, so that $d=d^{*}$. We shall not need this fact in the present paper.

Remark 2. If A is irreducible, then (2) implies that

$$
F_{i} C_{A}^{k_{i}-1} \cup F_{i} C_{A}^{k_{i}} \cup \ldots \cup F_{i} C_{A}^{k_{i}+d_{i}-2}=S_{i}
$$

for $i=1,2, \ldots, n$. In particular, if A is primitive, then $F_{i} C_{A}^{k_{i}-1}=S_{i}$.
Remark 3. It is easy to introduce in the sequence (3) a multiplication \odot so that (3) becomes a cyclic semigroup. To this end it is sufficient to define $F_{i} C_{A}^{\alpha} \bigcirc F_{i} C_{A}^{\beta}=$
${ }^{1}$) The set $\{0\}$ can be omitted if A contains a zero entry.
$F_{i} C_{A}^{\alpha+\beta+1}$. Then the set $\left\{F_{i} C_{A}^{k_{i}-1}, \ldots, F_{i} C_{A}^{k_{i}+d_{i}-2}\right\}$ (with the same multiplication) is a cyclic group of order d_{i}.

1. THE GENERAL CASE

The goal of this section is to prove some theorems, which hold for any non-negative irreducible matrix. Some of the lemmas are of independent interest.

All matrices considered below are $n \times n$ matrices, $n>1$.
We begin with the decisive
Lemma 1. Suppose that A is irreducible and M any proper subset of S_{i} containing 0 and at least one non-zero element. Then $M C_{A}$ contains at least one non-zero element $\in S_{i}$, which is not contained in M.
Proof. Let $M=\left\{0, e_{i \alpha}, e_{i \beta}, \ldots, e_{i v}\right\},\{\alpha, \beta, \ldots, \nu\} \varsubsetneqq N$. Suppose for an indirect proof that for all elements $e_{\varrho \sigma} \in C_{A}$ we have

$$
\left\{e_{i \alpha}, e_{i \beta}, \ldots, e_{i v}\right\} e_{e \sigma} \subset\left\{e_{i \alpha}, e_{i \beta}, \ldots, e_{i v}\right\} \cup\{0\}
$$

If $\varrho \in\{\alpha, \beta, \ldots, \nu\}$, we necessarily have $\sigma \in\{\alpha, \beta, \ldots, \nu\}$. In other words: If $\varrho \in$ $\in\{\alpha, \beta, \ldots, \nu\}$ and $\sigma \in N-\{\alpha, \beta, \ldots, v\}$, we have $a_{\varrho \sigma}=0$. This says that A is reducible, contrary to the assumption.

Lemma 2. Suppose that A is irreducible.
a) If F_{i} contains $g \geqq 1$ non-zero elements $\in S_{i}$, we have

$$
F_{i} \cup F_{i} C_{A} \cup \ldots F_{i} C_{A}^{n-g}=S_{i} .
$$

b) In particular we always have

$$
F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{n-1}=S_{i} .
$$

c) If $i \neq j$ we always have

$$
e_{i j} \in F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{n-2} .
$$

Proof. a) By Lemma $1 F_{i} \cup F_{i} C_{A}$ contains at least $g+1$ non-zero elements. Again by Lemma 1

$$
\left(F_{i} \cup F_{i} C_{A}\right) \cup\left(F_{i} \cup F_{i} C_{A}\right) C_{A}=F_{i} \cup F_{i} C_{A} \cup F_{i} C_{A}^{2}
$$

contains at least $g+2$ non-zero elements. Repeating this argument we find that $F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{n-g}$ contains at least n non-zero elements $\in S_{i}$, i.e. the whole set S_{i}.
b) Follows from the fact that an irreducible matrix has in each row at least one element different from zero.
c) Since $e_{i i} C_{A}$ contains at least one non-zero element $\neq e_{i i}$, the set $e_{i i} \cup e_{i i} C_{A}$ contains at least two non-zero elements $\in S_{i}$. Analogously $\left(e_{i i} \cup e_{i i} C_{A}\right) \cup\left(e_{i i} \cup e_{i i} C_{A}\right) C_{A}=$ $=e_{i i} \cup e_{i i} C_{A} \cup e_{i i} C_{A}^{2}$ contains at least 3 non-zero elements, and so on. We finally have

$$
e_{i i} \cup e_{i i} C_{A} \cup e_{i i} C_{A}^{2} \cup \ldots e_{i i} C_{A}^{n-1}=S_{i}
$$

Since $e_{i i} C_{A}=F_{i}$, the last equality can be written in the form

$$
e_{i i} \cup F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{n-2}=S_{i}
$$

from which our assertion immediately follows.
Lemma 3. If A is irreducible, then there is an integer $h=h(i)$ such that $1 \leqq h \leqq$ $\leqq n$ and $F_{i} \subset F_{i} C_{A}^{h}$. Here:
a) If $e_{i i} \in F_{i}$, we may choose $h=1$.
b) If F_{i} contains g non-zero elements $\in S_{i}$, we may choose $h \leqq n-g+1$.

Proof. a) If $e_{i i} \in F_{i}$, then $F_{i}=e_{i i} C_{A} \subset F_{i} C_{A}$, and our statement is true with $h=1$.
b) By Lemma 2 b there is an integer $u, 1 \leqq u \leqq n-g$ such that $e_{i i} \in F_{i} C_{A}^{u}$. Multiplying by C_{A} we get $F_{i}=e_{i i} C_{A} \subset F_{i} C_{A}^{u+1}$. Since $u+1 \leqq n-g+1$, our statement holds.

Remark. The example of the irreducible permutation matrix

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & & \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

shows that $F_{i} \subset F_{i} C_{A}^{n}$, but $F_{i} \nsubseteq F_{i} C_{A}^{h}$ for $\dot{h}=1,2, \ldots, n-1$. Hence the estimation $h \leqq n$ in Lemma 3 is - in general - the best possible.

Theorem 1. If A is irreducible, F_{i} contains g non-zero elements and $F_{i} \subset F_{i} C_{A}^{h}$, $h \geqq 1$, then $k_{i} \leqq(n-g) h+1$.

Proof. The supposition implies

$$
\begin{equation*}
F_{i} \subset F_{i} C_{A}^{h} \subset F_{i} C_{A}^{2 h} \subset \ldots \subset F_{i} C_{A}^{(n-g) h} \subset F_{i} C_{A}^{(n-g+1) h} \subset \ldots \tag{4}
\end{equation*}
$$

Since F_{i} contains g non-zero elements $\in S_{i}$, the set $F_{i} C_{A}^{h}$ is either equal to F_{i} or contains at least $g+1$ non-zero elements $\in S_{i}$. Further $F_{i} C_{A}^{2 h}$ is again either equal to $F_{i} C_{A}^{h}$ or
contains at least $g+2$ non-zero elements $\in S_{i}$; and so on. The chain (4) cannot have more than $n-g+1$ different members. There exists therefore a $\tau, 0 \leqq \tau \leqq n-g$, such that $F_{i} C_{A}^{c h}=F_{i} C_{A}^{(\tau+1) h}$. Hence $k_{i}-1 \leqq \tau h \leqq(n-g) h$. This proves our Theorem.

Theorem 2. If A is irreducible and F_{i} contains g non-zero elements $\in S_{i}$, we have $k_{i} \leqq(n-g)^{2}+(n-g)+1$.

Proof. By Lemma 3b we have $h \leqq n-g+1$, hence

$$
k_{i} \leqq(n-g)(n-g+1)+1=(n-g)^{2}+(n-g)+1
$$

Remark. The results of Theorem 1 and Theorem 2 cannot be - in general sharpened. To show this consider the matrix A with

$$
C_{A}=\left\{\begin{array}{lll}
0, & e_{12}, & 0 \\
0, & 0, & e_{23} \\
e_{31}, & e_{32}, & 0
\end{array}\right\}
$$

and the third row $F_{3}=\left\{0, e_{31}, e_{32}\right\}$. Here $n=3, g=2$. We have $F_{3} C_{A}=$ $=\left\{0, e_{32}, e_{33}\right\}, F_{3} C_{A}^{2}=\left\{0, e_{31}, e_{32}, e_{33}\right\}$ so that $k_{3}=3$. On the other hand $(n-g)^{2}+(n-g)+1=3$.

With respect to the relation $k(A)=\max _{i} k_{i}$ we immediately get:
Corollary 1. For any irreducible non-negative $n \times n$ matrix A we always have $k(A) \leqq n^{2}-n+1$.

Proof. Since $g \geqq 1$, we have $k(A) \leqq(n-1)^{2}+(n-1)+1=n^{2}-n+1$.
Corollary 2. If A is irreducible and each row contains at least two non-zero elements, we have $k(A) \leqq n^{2}-3 n+3$.

Proof. Follows from $k(A)=\max _{i} k_{i} \leqq(n-2)^{2}+(n-2)+1=n^{2}-3 n+3$.
The result of Corollary 1 is not the best possible. It is intuitively clear that a possible sharpening of this estimation depends on the possibility to sharpen Theorem 1 for the rows containing a unique non-zero element.

Note first: If A is irreducible and F_{i} contains a unique non-zero element $\in S_{i}$ there cannot hold $F_{i}=\left\{0, e_{i i}\right\}$ since such a matrix is reducible. Therefore in the following Theorem 3 we may suppose $F_{i}=\left\{0, e_{i j}\right\}$ with $i \neq j$.

Theorem 3. Suppose that A is irreducible and F_{i} contains exactly one non-zero element $\in S_{i}$. Let h_{i} be the least integer $\geqq 1$ such that $F_{i} \subset F_{i} C_{A}^{h_{i}}$.
A) If $h_{i} \leqq n-1$, we have $k_{i} \leqq(n-1) h_{i}+1 \leqq(n-1)^{2}+1$.
B) If $h_{i}=n$, we have $k_{i} \leqq n^{2}-3 n+4$.

Proof. A) This follows from Theorem 1 by putting $g=1$ and $h=n-1$.
B) We first show that in this case $e_{i i} \in F_{i} C_{A}^{n-1}$ and $e_{i i} \notin F_{i} C_{A}^{h}$ with $h \leqq n-2$.

By Lemma 2 b we have $e_{i i} \in F_{i} C_{A}^{h}$ with $1 \leqq h \leqq n-1$. If there were $h \leqq n-2$, we would have $e_{i i} C_{A} \subset F_{i} C_{A}^{h+1}$, i.e. $F_{i} \subset F_{i} C_{A}^{h+1}$ with $h+1 \leqq n-1$, contrary to the assumption.

Next we show that for $t=1,2, \ldots, n$ the set $F_{i} C_{A}^{t}$ contains exactly one element $\in S_{i}$ which is not contained in the union $F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{t-1}$. (Hereby $F_{i} C_{A}^{0}=F_{i}$.)

By the same argument as in the proof of Lemma 2 a it follows that $F_{i} \cup \ldots \cup F_{i} C_{A}^{t-1}$ contains at least t different non-zero elements $\in S_{i}$. Suppose for an indirect proof that $F_{i} C_{A}^{t}$ has at least two non-zero elements not contained in $F_{i} \cup \ldots \cup F_{i} C_{A}^{t-1}$. Then $F_{i} \cup \ldots \cup F_{i} C_{A}^{t}$ contains at least $t+2$ non-zero elements $\in S_{i}$. By Lemma 1 $\left(F_{i} \cup \ldots \cup F_{i} C_{A}^{t}\right) \cup\left(F_{i} \cup \ldots \cup F_{i} C_{A}^{t}\right) C_{A}=F_{i} \cup \ldots \cup F_{i} C_{A}^{t+1}$ contains at least $t+3$ non-zero elements, and repeating this process we obtain that $F_{i} \cup \ldots \cup F_{i} C_{A}^{n-2}=S_{i}$. Hence $e_{i i} \in F_{i} C_{A}^{h}$ with $h \leqq n-2$, which has been shown impossible.

In particular: $F_{i} C_{A}$ contains exactly one element not contained in F_{i}. But since $F_{i} \notin F_{i} C_{A}$, we conclude that $F_{i} C_{A}$ contains exactly one non-zero element $\in S_{i}$.

Consider now the finite sequence $F_{i}, F_{i} C_{A}, \ldots, F_{i} C_{A}^{n-1}, F_{i} C_{A}^{n}$, and let l_{0} be the least integer such that $F_{i} C_{A}^{l_{0}}$ contains more than one non-zero element $\in S_{i}$. We have just seen that $l_{0}>1$.
$\alpha)$ If $l_{0}=n$, then each of the sets $F_{i}, \ldots, F_{i} C_{A}^{n-1}$, contains a unique element and since $e_{i i} \in F_{i} C_{A}^{n-1}$, we have $\left\{0, e_{i i}\right\}=F_{i} C_{A}^{n-1}$. Therefore $e_{i i} C_{A}=F_{i} C_{A}^{n}$, i.e. $F_{i}=$ $=F_{i} C_{A}^{n}$, so that $k_{i}=1$.
$\beta)$ Suppose next $l_{0} \leqq n-1$ and let $F_{i}=\left\{0, e_{i \alpha}\right\}, F_{i} C_{A}=\left\{0, e_{i \beta}\right\}, \ldots, F C_{A}^{l_{0}-1}=$ $=\left\{0, e_{i \lambda}\right\}$. Since $F_{i} C_{A}^{l_{0}}$ contains at least two non-zero elements $\in S_{i}$ and only one not contained in $\left\{e_{i \alpha}, e_{i \beta}, \ldots, e_{i \lambda}\right\}$, there is necessarily an index $\xi \in\{\alpha, \beta, \ldots, \lambda\}$ such that $e_{i \xi} \in F_{i} C_{A}^{l_{0}}$. Consequently: There is an integer $\tau, 1 \leqq \tau \leqq l_{0}^{\prime}$, such that

$$
\begin{equation*}
\left\{0, e_{i \xi}\right\}=F_{i} C_{A}^{l_{0}-\tau} \subset F_{i} C_{A}^{l_{0}} . \tag{5}
\end{equation*}
$$

Now τ cannot be l_{0} since $F_{i} \subset F_{i} C_{A}^{l_{0}}$ with $l_{0} \leqq n-1$ contradicts our assumption. Therefore we have $1 \leqq \tau \leqq l_{0}-1$. The relation (5) implies

$$
F_{i} C_{A}^{l_{0}-\tau} \subset F_{i} C_{A}^{l_{0}} \subset F_{i} C_{A}^{l_{0}+\tau} \subset \ldots \subset F_{i} C_{A}^{l_{0}+(n-1) \tau}
$$

This chain of $n+1$ sets cannot have all members different one from the other. There is therefore an integer $u,-1 \leqq u \leqq n-2$, such that

$$
F_{i} C_{A}^{l_{0}+u \tau}=F_{i} C_{A}^{l_{0}+(u+1) \tau} .
$$

Hence

$$
k_{i}-1 \leqq l_{0}+u \tau \leqq l_{0}+u\left(l_{0}-1\right) \leqq n-1+(n-2)(n-2)=n^{2}-3 n+3 .
$$

This proves Theorem 3.

Remark. The result $k_{i} \leqq n^{2}-3 n+4$ cannot be - in general - sharpened. To show this consider the matrix A with

$$
C_{\boldsymbol{A}}=\left\{\begin{array}{lll}
0, & e_{12}, & 0 \\
0, & 0, & e_{23} \\
e_{31}, & 0, & e_{32}
\end{array}\right\} .
$$

We have

$$
C_{A}^{2}=\left\{\begin{array}{ll}
0, & 0, \\
e_{21}, & e_{13} \\
e_{31}, & e_{32},
\end{array}, e_{33}\right\}, \quad C_{A}^{3}=\left\{\begin{array}{ll}
e_{11}, 0, & e_{13} \\
e_{21}, & e_{22}, e_{23} \\
e_{31}, e_{32}, e_{33}
\end{array}\right\}, \quad C_{A}^{4}=\left\{\begin{array}{l}
e_{11}, e_{12}, e_{13} \\
e_{21}, e_{22}, e_{23} \\
e_{31}, e_{32}, e_{33}
\end{array}\right\} \cup\{0\},
$$

so that A is primitive (hence irreducible). Now

$$
F_{1}=\left\{0, e_{12}\right\}, \quad F_{1} C_{A}=\left\{0, e_{13}\right\}, \quad F_{1} C_{A}^{2}=\left\{0, e_{11}, e_{13}\right\}, \quad F_{1} C_{A}^{3}=\left\{0, e_{11}, e_{12}, e_{13}\right\}
$$

so that indeed $F_{1} \subset F_{1} C_{A}^{3}$ and $k_{1}=4$. On the other hand $n^{2}-3 n+4$ for $n=3$ is equal to 4 .

Theorems 2 and 3 allow the following conclusions. If $n \geqq 2$, we have for the rows with at least two non-zero elements

$$
k_{i} \leqq(n-g)^{2}+(n-g)+1 \leqq(n-2)^{2}+(n-2)+1=n^{2}-3 n+3
$$

For the rows with a unique non-zero element we have (with h_{i} defined above)

$$
\begin{array}{lll}
\text { either } & k_{i} \leqq n^{2}-3 n+4 & \text { if } \\
h_{i}=n \\
\text { or } & k_{i} \leqq(n-1) h_{i}+1 \leqq(n-1)^{2}+1 & \text { if } \\
h_{i} \leqq n-1 .
\end{array}
$$

Since (for $n \geqq 2$) we have

$$
\begin{aligned}
(n-1)(n-2)+1=(n-2)^{2} & +(n-2)+1=n^{2}-3 n+3<n^{2}-3 n+4 \leqq \\
& \leqq(n-1)^{2}+1,
\end{aligned}
$$

we get with respect to $k(A)=\max _{i} k_{i}$:
Theorem 4. For any non-negative irreducible matrix A we always have $k(A) \leqq$ $\leqq(n-1)^{2}+1$.

Theorem 5. Let A be irreducible. Denote h_{i} the least positive integer for which $F_{i} \subset F_{i} C_{A}^{h i}$. If for every row F_{i} containing a unique non-zero element we have $h_{i} \neq n-1$ (i.e. either $h_{i}=n$ or $h_{i} \leqq n-2$), then $k(A) \leqq n^{2}-3 n+4$.

Remark 1. The result of Theorem 4 is the best possible for it is known that to every $n \geqq 2$ there is a primitive matrix A with $k(A)=(n-1)^{2}+1$. This property has the "Wielandt matrix", which is a matrix with $C_{A}=\left\{0, e_{12}, e_{23}, e_{34}, \ldots\right.$, $\left.\ldots, e_{n-1, n}, e_{n 1}, e_{n 2}\right\}$.

Remark 2. Also the result of Theorem 5 cannot be - in general - sharpened. This shows the example in the Remark after Theorem 3. Here $F_{1}=\left\{0, e_{12}\right\}$ and $h_{1}=3$, $F_{2}=\left\{0, e_{23}\right\}$ and $h_{2}=1$ so that the suppositions of Theorem 5 are satisfied. On the other hand $k(A)=4=n^{2}-3 n+4$.

2. THE CASE OF A PRIMITIVE MATRIX

We shall now apply our results to the case of a primitive matrix. For a primitive matrix A the set $F_{i} C_{A}^{k-1}$ is the whole set S_{i}.

Theorem 6. If A is primitive, then $k(A) \leqq n-1+\min _{i} k_{i}$.
Proof. Let $e_{i \alpha}$ be any element $\in S_{i}$. Take $j \neq i$ and write $e_{i \alpha}=e_{i j} e_{j \alpha}$. By Lemma 2 ${ }^{.} e_{i j} \in F_{i} C_{A}^{t}$, where $t=t(i, j)$ satisfies $0 \leqq t \leqq n-2$. By definition of the number k_{j} we have (for any α) $e_{j \alpha} \in S_{j}=F_{j} C_{A}^{k_{j}-1}$. Hence

$$
S_{i}=\left\{0, e_{i 1}, e_{i 2}, \ldots, e_{i n}\right\} \subset F_{i} C_{A}^{t} F_{j} C_{A}^{k_{j}-1} \subset F_{i} C_{A}^{t+k_{j}}
$$

Therefore $k_{i}-1 \leqq t+k_{j}$, i.e. $k_{i} \leqq t+1+k_{j}$. (This is, of course, trivially true also for $i=j$.) Since j is arbitrary, we have $k_{i} \leqq(n-2)+1+\min k_{j}=n-1+$ $+\min _{j} k_{j}$. Taking account of $k(A)=\max _{i} k_{i}$, we finally get $k(A) \leqq n-1+\min _{j} k_{j}$.

By the way we have also proved ${ }^{2}$):
Theorem 7. For any primitive $n \times n$ matrix A we always have

$$
\max _{i} k_{i}-\min _{i} k_{i} \leqq n-1 .
$$

Remark. The result of Theorem 6 is sharp in the following sense. In any primitive matrix there is at least one row, say j-th row, containing at least $g=2$ non-zero elements. By Theorem $2 k_{j} \leqq n^{2}-3 n+3$. Hence by Theorem $6 k(A) \leqq(n-1)+$ $+\left(n^{2}-3 n+3\right)=n^{2}-2 n+2$ and the "Wielandt matrix" attains this upper bound.

Also simple examples show that the result of Theorem 7 is the best possible.
The following result described in Theorem 8 is known. (See [1], [4], [11].)
Lemma 4. If A is irreducible and $e_{j j} \in F_{j}$, then $k_{j} \leqq n-1$.
Remark. It is well known that in this case irreducibility implies primitivity.

[^0]Proof. By supposition $e_{j j} \in F_{j}$, hence $F_{j}=e_{j j} C_{A} \subset F_{j} C_{A}$. This implies $F_{j} \subset$ $\subset F_{j} C_{A} \subset F_{j} C_{A}^{2} \subset \ldots \subset F_{j} C_{A}^{n-2}$. By Lemma 2c we have for $j \neq \alpha$

$$
e_{j \alpha} \in F_{j} \cup F_{j} C_{A} \cup \ldots \cup F_{j} C_{A}^{n-2}=F_{j} C_{A}^{n-2}, \quad \text { i.e. } \quad S_{j}=F_{j} C_{A}^{n-2} .
$$

Hence there is a $\tau, 0 \leqq \tau \leqq n-2$, such that $F_{j} C_{A}^{\tau}=F_{j} C_{A}^{\tau+1}$. Therefore $k_{j}-1 \leqq \tau$, i.e. $k_{j} \leqq \tau+1 \leqq(n-2)+1=n-1$.

Remark. The result of Lemma 4 is sharp, since e.g. $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right)$ is primitive and direct computation shows that $k_{2}=k_{3}=2(=n-1)$.

Under the suppositions of Lemma 4 we have $\min k_{i} \leqq n-1$. This combined with Theorem 6 gives the following

Corollary. If A is irreducible and contains a non-zero element in the main diagonal, then $k(A) \leqq 2 n-2$.
In the proof of the next Theorem 8 we shall again use the inequality $k_{i} \leqq t(i, j)+$ $+1+k_{j}$ (proved in the proof of Theorem 6).

Theorem 8. If A is primitive and contains $r \geqq 1$ non-zero elements in the main diagonal, we have $k(A) \leqq 2 n-r-1$.

Proof. Suppose that $\left\{e_{j_{1} j_{1}}, e_{j_{2} j_{2}}, \ldots, e_{j_{r_{j}}}\right\} \subset C_{A}$. Then $k_{j_{1}} \leqq n-1, \ldots, k_{j_{r}} \leqq$ $\leqq n-1$.
If $r=n$, then $k(A)=\max _{j} k_{j} \leqq n-1$, and our statement holds,.
Suppose $r<n$ and choose an index $i \notin\left\{j_{1}, j_{2}, \ldots, j_{r}\right\}$. Since

$$
e_{i i} \cup e_{i i} C_{A} \cup \ldots \cup e_{i i} C_{A}^{n-r}=e_{i i} \cup F_{i} \cup F_{i} C_{A} \cup \ldots \cup F_{i} C_{A}^{n-r-1}
$$

contains at least $n-r+1$ non-zero elements $\in S_{i}$ and $\left\{e_{i j_{1}}, e_{i j_{2}}, \ldots, e_{i j_{r}}\right\}$ contains exactly r elements, these sets intersect and there is a j, say j_{1}, such that $e_{i j_{1}} \in F_{i} C_{A}^{t}$ with $0 \leqq t\left(i, j_{1}\right) \leqq n-r-1$. Now $k_{i} \leqq t\left(i, j_{1}\right)+1+k_{j_{1}}$ implies $k_{i} \leqq(n-r-1)+$ $+1+(n-1)=2 n-r-1$. Hence $k(A)=\max k_{i} \leqq 2 n-r-1$, q.e.d.

References

[1] A. L. Dulmage and N. S. Mendelsohn: The exponent of a primitive matrix. Canadian Math. Bulletin 5 (1962), 241-244.
[2] A. L. Dulmage and N. S. Mendelsohn: Gaps in the exponent set of primitive matrices. Illinois J. of Math. 8 (1964), 642-656.
[3] B. R. Heap and M. S. Lynn: The index of primitivity of a non-negative matrix. Numerische Mathematik 6 (1964), 120-141.
[4] J. C. Holladay and R. S. Varga: On powers of non-negative matrices. Proc. Amer. Math. Soc. 9 (1958), 631-634.
[5] Ю. И. Любич: Оценка для оптимальной детерминизации недетерминованных автономных автоматов. Сиб. мат. ж. 5 (1964), 337-355.
[6] J. Mařik-V. Pták: Norms, spectra and combinatorial properties of matrices. Czechoslovak Math. J. 10 (85) (1960), 181-196.
[7] R. Perkins: A theorem on regular matrices. Pacific J. of Math. II (1961), 1529-1533.
[8] V. Pták: On a combinatorial theorem and its application to non-negative matrices. Czechoslovak Math. J. 8 (83) (1958), 487-495.
[9] V. Pták-J. Sedláček: On the index of imprimitivity of non-negative matrices. Czechoslovak Math. J. 8 (83) (1958), 496-501.
[10] N. Pullman: On the number of positive entries in the powers of a non-negative matrix. Canadian Math. Bulletin 7 (1964), 525-537.
[11] Š. Schwarz: A semigroup treatment of some theorems on non-negative matrices. Czechoslovak Math. J. 15 (90) (1965), 212-229.
[12] Š. Schwarz: On powers of non-negative matrices. Mat.-fyz. časopis Slov. Akad. vied 15 (1965), 215-228.
[13] III. ШІвари: Заметка к теории неотрицательных матриц. Сиб. мат. ж. 6 (1965), 207-211
[14] R. S. Varga: Matrix iterative analysis. New Jersey, Prentice-Hall, 1962.
[15] H. Wielandt: Unzerlegbare nicht negative Matrizen. Math. Z. 52 (1950), 642-648.
[16] Š. Schwarz: Some estimates in the theory of non-negative matrices. (To appear in Czechoslovak Math. J.)

Author’s address: Bratislava, Gottwaldovo nám. 2, ČSSR (Slovenská vysoká škola technická).

Резюме

НОВЫЙ МЕТОД РЕШЕНИЯ НЕКОТОРЫХ ВОПРОСОВ ТЕОРИИ НЕОТРИЦАТЕЛЬНЫХ МАТРИЦ

ШТЕФАН ШВАРЦ (Štefan Schwarz), Братислава

Пусть A - квадратная неотрицательная матрица. Распределение нулевых и ненулевых элементов в последовательности A, A^{2}, A^{3}, \ldots, начиная с некоторой степени $k(A)$, периодически повторяется̣. Цель статьи - получить оценки для числа $k(A)$ в случае неразложимых матриц. При этом используется новый метод, являющийся уточнением метода, использованного автором в работе [11].

[^0]: ${ }^{2}$) (Added in proofs, May 1966.) In a forthcomming paper ([16]) we shall show that Theorem 7 holds for any non-negative irreducible matrix A and we use it to obtain estimates for $k(A)$ in the case of imprimitive matrices.

