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Czechoslovak Mathematical Journal, 17 (92) 1967, Praha 

DIFFERENTIAL EQUATIONS OF STOCHASTIC PROCESSES 
WHICH HAVE DERIVATIVE IN QUADRATIC MEAN 

KAREL KOSTAL, Praha 

(Received October 29, 1965) 

INTRODUCTION AND NOTATION 

It is usually assumed in physics that the changes of state of physical systems proceed 
at a finite velocity and hence that the functions describing the state of the system have 
finite derivative with respect to time. This is true particularly about the motion of 
material particles whose velocity and acceleration as well are always finite; therefore, 
the particle position vector has always finite first and second derivative with respect 
to time. If physical processes of a causal character are involved, such as the motion 
of material points in classical mechanics, the state of the system is described by ordinary 
functions the derivatives of which are defined in a usual manner. On the other hand 
random processes are described by random functions; accordingly if we wish to 
examine, in the study of random physical processes, the changes of state in arbitrarily 
short time intervals, we must require that the appropriate random functions should 
have a derivative, too. As it is well known the derivative of a random function can be 
defined with the aid of some criterion of convergence of random variables. As there 
exist several such criteria, the question arises which one is acceptable for the physical 
random processes. It is frequently assumed in physics that the function describing the 
state of a system has finite derivative with respect to time in each realization of the 
process (e.g. a material particle has a finite velocity in any motion). This is the reason 
why we can, when defining the derivative of a random function describing a physical 
process, use any of the standard criteria of convergence. So far as the physical 
aspects are concerned, the clearest mode of convergence is that of convergence almost 
surely. But from the theoretical point of view, the most convenient is the convergence 
in quadratic mean; this is why we use it, and that exclusively, in this paper. 

The assumption that the random functions dealt within this paper have derivative 
in quadratic mean of the first or possibly higher orders is of cardinal significance 
when evolving the differential equations in the discussion that follows.The remaining 
assumptions to be stated in the context are the usual assumptions customarUy used in 
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physics on the continuity or existence of continuous derivatives of the respective 
functions. The equations which we shall derive could evidently be arrived at also 
through the use of another criterion of the existence of the derivative of random 
functions, were we to supplement suitably other assumptions. This problem will not, 
however, be dealt with in this paper. The connections between different modes of 
convergence of random variables are discussed in detail in e.g. [2]. 

To complete our exposition, let us mention the fact that random functions non-
differentiable with respect to time, e.g. functions with independent increments, are 
frequently used in the examination of some physical processes, such as the Brownian 
motion. Such stochastic models, even though very convenient in that they facilitate the 
mathematical analysis, are always but an approximation of a real physical process, 
as they can be justified physically only if the changes of the state of a physical system 
are examined on a sufficiently coarse time scale, i.e. in time intervals far longer than 
a very short but finite interval. For shorter time intervals they cannot be considered 
even approximately valid [11]. Should we consider such a stochastic model of e.g. 
the Brownian motion valid also for the changes of position or velocity of a particle 
in arbitrarily short time intervals, we would have to admit that the velocity or accelera
tion of the particle can assume infinitely large values [8]. 

This paper is in continuance of papers [3], [7] and [10] by DEDEBANT, MOYAL and 
WEHRLE, which for the first time deal with the differential equations of stochastic 
processes which have first and second derivative in quadratic mean and with their 
applications in physics in particular in hydrodynamics and in kinetic theory. It 
presents a systematic derivation of these equations and of other differential equations 
and systems of differential equations of higher orders. It first discusses processes 
which have only first derivative in quadratic mean (§ 1), further processes which have 
first and second derivative (§ 2), and finally processes with derivatives generaly to 
the r-th order inclusive (§ 3). The differential equations derived in § 3 have a general 
validity; equations of processes which have first and second derivative are their 
special cases. However, we derive in detail these equations, too, because they, especial
ly, are suitable for physical applications [9]. In its concluding part, the paper deals 
with analogous differential equations satisfied by transition probability densities. 
Under a certain assumption, these equations take on a simple form and in that case 
they became to some extent analogies of Kolmogorov equations for Markov processes 
continuous in time. 

The author wishes to thank Professor L. TRUKSA, P. MANDL and M. JIRINA for 
useful discussions on these topics and for many valuable suggestions. 

Notation. Let X(t) and Y(t) be random functions. We shall denote the con
ditional expectation of Y(t) relative to X{t) at instant t by E[Y{t) | X(^)] and 
£[y(f) I X(t)]xit)==x^ i-^- the conditional expectation of Y(t) for X{t) = x at instant t, 
by E[Y{t) I X{t) = x ] . If X{t) is a vector random function with components,J(rj(^), . . . , 
. . . , X„(r), we write X{t) = x for X^{t) = х^ , . . . , X„(t) = x„ where x = (x^, . . . , x„). 
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For short we shall often use other symbols for some conditional expectations, e.g. 
Vi{t I X, t) for E[Xlt) I X{t) = x ] , ¥iVj{t I X, t) for E[Xi{t) Xj(t) \ X(t) = x ] , alt \ x, t) 
for E[Xj(^) I X{t) = x] etc., where Xi{t) and X/^) denote the first derivatives of 
random functions Xi{t) and Xj{t) respectively, and Xi{t) denotes the second derivative 
of Xi{t). The abbreviation q.m. will be used for "quadratic mean". 

In the whole paper, we consider a function a continuous one only if it is simultane
ously finite. 

1. DIFFERENTIAL EQUATION OF STOCHASTIC PROCESSES 
WHICH HAVE FIRST DERIVATIVE IN QUADRATIC MEAN 

Let X{t) = [Xi^(t), ..., X„(r)] be a vector random function of continuous parameter 
(time) t e T = (—CO, + oo), whose components X^{t), ..., X^(t) are real second order 
random functions (see e.g. [ l ] , [2]) having first derivatives in q.m. Xi{t), , . . , X^{t) 
on T, i.e. they fulfil the following condition: 

(1) E[Xlt)Y < +00 , l i m £ 
•Xjt + At) - Xjt) _ ^^^^^ 

At 
= 0 ( / = 1,2...,n) 

whatever be t e T. 
We shall denote the distribution function of X(t) ai one instant t by F(x, t), x = 

= (xi, ..., x„) G jR„ = (— 00, 4- oo)", its distribution function at two instants t and f 
by F2(x, t; x\ t') and the conditional expectation £[X,(r) | X{t) = x] by Vi{t | x, t). 

We shall assume that the distribution function F(x, t) has a density, i.e. that there 
exists a Lebesgue measurable and integrable function/, for which 

(2) F(xi,...,x„,0=f ' ... I 
J — 00 J 

for all (xi, ..., x j e R„, t e T. 

fiu„...An,t)dèu.-.,d^. 

Theorem 1. Let besides condition (1) the following assumptions be fulfilled: 

(a^) There exists the density / ( x , t) corresponding to F(x, t), whose derivative 
dfjdt is continuous on R„ x T. 

(a2) Derivatives {djdx^ \yi{t | x, t)f{x, t)\ (i = 1, 2, ..., n) are continuous in 
(xi, ..,, x„) on R,j for every t e T, 

Then equation 

(3) M ^ + i; ±ivit\x,t)f{x,t)-]=^o 
Ot i=l 3x^ 

holds for all x e R„, t e T. ^) 

)̂ The continuity equation (3) for stochastic processes differentiable once in q.m. was first 
given in communication [3]. 
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Pro of. We shall use a method similar to that used by KOLMOGOROV [4] to derive the 
second equation for Markov processes continuous in time.^) Introduce an auxihary 
function (p{x) = (p{xi,..., x j which has the following properties: 

(Pi) Function (p{x) is non-negative and differs from zero only in the bounded 
interval M = (x; a^ < x^ < b^,..., a„ < x„ < ЬД i.e. 

(4) (p{x) > 0 if ^1 < xi < bi , . . . , a„ < x„ < fo„, 

^(x) = 0 if Xi S üi or x̂  ^ bi {i = 1, 2, ..., n) . 

(P2) Function (p{x) as well as its partial derivatives (p[ = dcpjdXi and (p'lj =• 
= d^cpjdxi dXj (ï, j = 1, 2, ..., n) are continuous on R„. 

Since, by its definition, the density function /(x, t) is Lebesgue measurable in R„ 
and for every t e T there holds 0 ^ SMK^^ 0 ^^ ^ 1, dx = dxi dx2 ... dx„, and 
since function (p{x) is continuous and bounded on M с i?„, integral J^ (p(x)/(x, t) dx 
exists and is finite. Thus, making use of assumption (ai) and of properties (Pi) 
and (P2) of function <p(x), we obtain 

(5) f Ф) ^ f c ^ ах = Ц cp{x)f{x, t) dx = 
J M ^t dtJM 

= Urn - {Elcp{X{t + Л0)] - Е1(р{Х{Щ} = lim ^ E[(p{X{t + At)) - ф(Х(0)] = 
At-*0 At At-^0 At 

= lim — [ФС^О - ^(^)] dF2(x, t; x\ t + At) = lim — [ ^ ç>'.(-̂ ) (̂ '» ~ ^0 + 
At^oAtjR^^ At-^oAtJ^^^ i=l ' 

+ i i t<Pij(0iK-^d{^j-^j)]àF2{x,t;x\t + At), 

where dx = dxi dx2 ... dx„, jR2n = К x КЛ = (^i,. • -, Q = [^1 + ^(x; - Xi), ..., 
...,x„ + 0 ( x ; - x„)],0< É)< 1. 

Since |<?>Jj(0| ^ ^ < +00 (i, j = 1, 2, ..., n) and, as follows from condition (1), 
E{(Xlt + Ar) - Xi(t))lAtY -^ E[Xlt)Y < +00, Ar -> 0 (i = 1, 2, . . . , n), we have 
by an immediate apphcation of Schwarz's inequality 

^' f .. (6) • I ™ 1 Ф ^ ( 0 {X[ - x,) (x} - X;) dF2(x, r; x', r + Ar) 

Xjt + Ar) - XJjt) Xj{t + Ar) - Xj{t) 

< 

<~\At\.E 
At At 

< 

^) We should like to emphasize, that stochastic processes differentiable in q.m. as considered 
in this paper are not assumed to be Markovian. On the other hand, processes for which the afore
mentioned Kolmogorov equation holds (see also [5] and [6]) are Markovian and, moreover, 
though continuous in time, have not generally derivatives in q.m. 
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2 
j^l/2 [^i{^ + AQ - Xjty 

At 
. £^/^ Xj{t + At) - Xjity 

At 
0 , Ar -> 0 . 

Furthermore, since \(p[{x)\ ^ X < + oo (i = 1, 2, . . . , n), Schwarz's inequahty and 
condition (1) yield 

(7) 
At 

< K.E 

EL[{X{t))ï^ 

y, fX^jt + At) - Xlt) 

L Аг 

+ АО - Xit) 

- x^t) 

xlt) 

il ->0, A ( ^ 0 , 

and hence 

(8) E^<p[{X{t))^^^L±^^-^^'^-^E[cp[{X{t))xmi, At^O 

Finally, using eq. (8), assumptions (a^) and (аз) and properties ( P j and (P2) of 
function (p{x), we obtain 

(9) lim ~ <p'.{x) {x. - Xi) dF2(x, t; x', t + At) = 
A<-OA(JK^„ 

= E[<p[{Xit))Xlt)-\ = E{<p:{X{t))ElXit) I Z(0]} = 

(p[(x) vit I X, t)f{x, t)dx = \ ... (p[{x) vit I X, t)f{x, t) dxi ... dx„ = 
J Rn J ai J On 

= - I Ф)-^ [^i{t I ^. t)f{x, 0] dx . 
J M ^^i 

(the final result in this equation was obtained by the application of Fubini's theorem, 
and of assumption (аз) and properties (Pi), (P2) used when integrating by parts). 

Substituting the results of equations (6) and (9) in equation (5) we obtain 

(10) f ^(x) ^ ^ ) dx = - f cp{x) t — m I ^. t)f{x, 0] ax . 
JM ^t JM i-idXi 

As <р(х) is an arbitrary function except for properties (Pi), (P2) stated above, 
derivatives 3/(x, t)jôt and (djdxi) [pit | x, t)f(x, t)] (i = 1, 2, ..., м) are con
tinuous on R^ for all t e T(cf. assumptions (ai) and (аз)) and as for each x G R„ we 
can choose a bounded interval M cz R^ such that x e M, equation (10) implies 
equation (3) for all xeR„,teT, 
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2. DIFFERENTIAL EQUATIONS OF STOCHASTIC PROCESSES WHICH 
HAVE FIRST AND SECOND DERIVATIVE IN QUADRATIC MEAN 

Let the components of the vector random function X(t) described in § 1 have also 
second derivatives in q.m. Xi(t), ..., X^{t) on T, i.e. let the following condition be 
fulfilled in addition to condition (1): 

(11) lim E 
•Xjt + Ar) - Xjt) __ ̂  • 

At 
0 ( / = 1,2,..., w) whatever bet e T. 

Denote by Y{t) a vector random function [Y^{t),,.., У2„(0] with components 
7 , ( 0 - X i ( 0 , . . . , Ш - Х „ ( 0 , y„+i(0 = -^ i (0 . - - ' . Ы 0 = Х ( 0 and assume, 
that there exists a density of the probabihty distribution of Y(t), i.e. a density of the 
joint probability distribution of X^{t), ..., X^t), X^{t), ..., X^t)^ at one instant Г, 
which we denote by f{y, t), у -= (y^,..., У2„) e 1?2„. 

It follows from Theorem 1 that if assumptions (a J and (a2) in which we replace 
/ ( x , t), X = (xi, ..., x j , Vi(t \x,t) = E[Xi{t) I X(t) = x] and i = 1, 2, ..., n, respect
ively, b y / ( y , t), у = ( j i , ..., У2п\ E[Yj{t) I Y{t) = y] and j = 1, 2, ..., 2n, respect
ively, are fulfilled in addition to conditions (1), (11), the density/(y, t) satisfies the fol
lowing equation: 

(12) ^ ^ + Î ~ {ElUt) I no = УУ{У, 0} = О . 
dt ./=1 ôyj 

This equation can further take a simpler form. Proceeding analogously as in 
equation (9) and putting y^ = Xi, ..., y„ = x„, y^+ ^ = i; ,̂ ..., У2п = v„, (xi, ..., x j = 
= xe Rn, (v^, ...,v^) = vE R^, we namely obtain for 1 ^ j ^ n 

(13) E[cp'j(Y(t)) y,(0] = '''^'\,.Jiy,t)éy = 
ш,„ 3yj 

— f <piy)yj.n'^äy=-\ ^(x,.).,MjMdxd., 
jM2n ^yj JM.„ SXJ 

where (p{y) is a function with properties analogous to properties ( P j and (P2) of 
function ф(х), M2„ ^ Rn X Ä„ is a bounded interval in which function (p{y) differs 
from" zero and dy = dyi ау2 . . . ау2п- Further procedure, similarly as when deriving 
(3), leads to (12) in the form of 

/. \̂ ^fi^-, ^^ t) Д Ôf(x, V,t) " ^ ^_ , -, ^ 

^^ i = i dXf i= id i ;^ 

where by а (̂? | x, u, t) is denoted the expectation E[Xi{t) | X(t) = x, X(0 = ^ ] -
Hence, we may state the following 
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Theorem 1*. Let besides conditions (1) and (U) the following assumptions be 
fulfilled: 

(a*) There exists the density / ( x , v, t) = f(x^, ..., x„, v^, ..., v^, t) of the joint 
probability distribution o/Xi(^) , ..., X„(r), Z i ( 0 , ..., X„(0 "^hose derivative dfjdt 
is continuous on R„ x R„ x Tand derivatives dfjdxi (i = 1,2,..., n) are continuous 
in (xi, ..., x„, v^, ...,v^ on Rn X R^^ for every t e T. 

(a*) Derivatives (djôvi) [äi(t | x, v, t)f{x, v, tj] (/ = 1,2,..., n) are continuous in 
(xi , . . . , x„, f 1, ..., v„) on R„ X R,^ for every t e T. 

Then equation (14) holds for all x e R„, v e JR,„ t e T. 

From equation (14) we can derive in a straightforward manner other differential 
equations satisfied, like equation (3), by density / (x , t). The general procedure is 
carried out in papers [7] and [8]. Equation (14) is first multiplied by a chosen 
function of variables x^, . . . , х„, v^, ..., i;,„ t, then integrated with respect to v^, .... v^ 
over the whole range R^. Under convenient assumptions, one can then carry out 
integration by parts and exchange the sequence of integration and differentiation in 
some of the integrals. Following simple rearrangements, we obtain a differential 
equation in which the density/(x, t) and, in addition to it, only relevant conditional 
expectations for given X{t) appear. 

Even though the procedure is simple, we must assume, when applying it, that 
equation (14), satisfied by density/(x, v, t) rather than by density/(x, t), holds and 
that density/(x, v, t) fulfils a number of additional conditions. 

However, it is possible to derive equations of the type mentioned, satisfied by/(x, r), 
without making use of/(x, v, t), namely by a method similar to that used when deriv
ing (3). We shall derive in this manner several equations which are of significance 
particularly in physical applications [9]. Assumptions which we shall use in doing so 
are simple and, so far as the physical aspects are concerned, ordinary. 

We shall use abbreviations Vi{t | x, t), ViVj{t 
: x ] , E[Xlt)Xj{t) I X(t) = x] and E[Xj{t) 
First, we shall prove the following 

X, t) and äi{t I X, t) for E[Xi{t) | X{t) = 
X{t) = x] , respectively. 

Theorem 2. Let besides conditions (1) and (11) the following assumptions be 
fulfilled: 

(Ai) There exists the density / ( x , t) = / (x^, ..., x„, t) for every t e T 

(A2) Derivatives (ôjôt) [vi{t | x, t)f{x, r)] (/ = 1, 2, ..., n) are continuous on 

R„ X T. 

(A3) Derivatives (djoxj) ly~ivj{t | x, t)f(x, tj] {ij = 1, 2, ..., n) are continuous 
in ( x i , . . . , x„) on Rnfor every t e T 

(A4) Functions äi{t I X, i)f{x, t) {i = 1,2,.. . , n) are continuous in (x^, ..., x„) 
on R„ for every t e T. 
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Then the system of equations 

PI " Я 
(15) ^ [vit I X, t)f(x, 0] + I T- U¥^jit I X. t)f(x, 0] - ^i(t I ^. 0/(^, 0 = 0 

ot j=i dxj 

(i = 1,2, ,.., n) 

holds for all X e R„ and t e T, 
Proof. We shall introduce again the auxihary function (p{x) with properties 

indicated in § 1. Making use of condition (1), of assumptions (Aj) and (A2) and of 
the fact that (p(x) is continuous and bounded on M cz R^^ we obtain 

(16) f çix)^[vlt\x,t)f{x^t)]dx:^^ 
JM ^t ot 

(p(x) Vi(t I X, t)f{x, t) dx 

= lim ^E[(p{X(t + At))Xlt + At) - (p{X(t)) XЩ = 
At-^O At 

= lim 1 E{lcp(X{t + At)) - (p{X(t))] Xlt)} + 
Af->0 A^ 

+ lim - E{(p{X(t + АО) [X^t + АО - 1,(0]} (/ = 1, 2, ..., n) . 
At-*0 At 

We shall first compute the second term in the resultant expression in (16). According 
to conditions (1) and (11) and assumption (A^), we have 

(17) lim - E{(p(X{t + At)) [Z,(r + АО - X^t)]} = 
At-^O At 

\=^ELix(tj)^^L±A^tim + 
Ar->0 [ At J 

+ lim £ Д f cp'jiQ) [Xj{t + At) - Z,(0] [X^t + At) - X,(t)]\ = 
At-*0 lAtj=l J 

= E[cp{X{t)) X,(0] (p(x) ai{t I X, t)f(x, t) dx , 

where Ô = {Xtit) + K^iit + At) - ХЩ, ..., X^t) + ^{Xlt + At) - X„(f)]}, 
0 < 5 < 1, since E{(p{X{t)) [Xit + At) - X^jAt} -> E\<p{X{t)) ХЩ, At -> 0, 
as follows from (11) in view of the fact that (p{x) is bounded in R„ ^), and since 

)̂ This relation can be proved similarly as relation (8). 
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as follows by Schwarz's inequality from (1), (11) and from the fact, that |ФХО)| = 
^ К < + 0 0 . 

In the computation that follows, we shall introduce an auxiliary random function 
U(t) = [U^{t), ..., U^t)] defined by relations 

(18) и It) = X,{t) for \X,{t)\ й A , 

[/,(0 = 0 for \Xit)\ > A {i= 1,2,...,^), 

where Л is a chosen number, 0 < Л < + oo. 
Now, we rearrange the first term in the resultant expression in (16) as follows: 

(19) lim ~ E{[ç(X{t + At)) - cp(X(t))] X,(0} = 
Af->0 At 

= lim 1 E{l<p(X(t + At)) - (piXit))] U,{t)} + 
Ar->0 A^ 

+ lim i E{[(p{X(t + At)) - (р{ХЩ [Xlt) - t/(0]} = 
At-*0 At 

= lim 1 £{ f; cp'j(X(t)) IXjit + At) - Xjit)] и it)} + 
At^O At j=l 

+ lim I £{ É t WUS) [Xjit + At) - Xjit)-] [X,(t + At) - X,(0] Uit)} + 
At-^0 At J=1 Л-1 

+ lim 1 £{ i cp'jiQ) [Xjit + At) - Xjit)] [X^t) - Uit)]} , 
At-*0 At J=l 

where S = {X,it) + 0[X,it + At) - X,it)l ..., X„it) + (9[X„(f + At) - ХЩ], 
0 < 0 < 1, Q = {X,(0 + &{X,{t + At) - Xi(0], ..., Xlt) + &[X„it + At) -
- XJM, 0 < 9 < 1. 

Since 1^X^(0)1 ^ ^ < +00, \(p"jlS)\ ^C < +00, |t/j(0| ^ Л < +00 (г, у, к = 
= 1,2,..., п) for all f 6 T, it follows from Schwarz's inequality and from (1) first that 

1 E{cp%X{t)) [Xj{t + At) - Xj(t)] U,(t)} - . E{cpXX(t))Xjit) U,it)} , Л̂  - . 0 , 
At 

which can be proved similarly as (8), further that 

i E{W;,iS) [Xjit + At) - Xjit)] [X,it + At) - X,it)] Ult)}\ ^ 

At. E^n p + Ar)-X,(OJ ^,, mt^At)-XM ^ , ^ Д, ^ , ^ 
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eventually 

^ E{cp'j{Q) [Xjit + At) - Z,(0] [^,(0 - urn 
At 

< 

й К . E"^ Г ^ (t + At) - Xj{t)' 
At 

'.£'/^[х,(0-с/,0)Г 

- . к . E'l\Xj{t)f . E'l\Xit) - Uit)Y , At^O. 

According to condition (1) £[A',(0]^ < +аэ (/ = 1, 2, ..., n). Therefore 

К . E'l\Xj{t)Y . £ ' '"[1,(0 - Uit)Y - . 0 , A-^ +00, 

and hence 

E{<p',{X{t)) 1,(0 (/,(0] - E[<p'j{X{t)) 1,(01,(0] , A-^+co, 

since |£{<р;.(Х(0) 1,(0 [1,(0 - t^.(0]}| й KE'l\Xj{t)YE''\Xit) - иЩ\ 
Thus by letting Л --> + oo and then by substituting the results just arrived at in (19)̂  

we obtain 

(20) lim 1 E{[cp{X{t + АО) - Ч'ШЩ 1,(0} = £{ I 4>'m)) ^Â^) ^Ш = 

LH Ф) I E Г" l^i^Â^ I ^̂  0/(^^ 0]} dx 
i = i ax,-

according to condition (1), assumptions (Aj), (A3) and properties (P^) and (P2). 
Finally, substituting (17) and (20) in (16), we obtain 

(21) [ ф)^[v,{t\x,t)f(x,t)]dx = 

= - Ф) \ I T" U^ji^ I ^' 0/(-> .̂ 0] > dx + (p(x) ä,(r I X, 0/(^, 0 dx 
JM 0=1 dxj J J,^ 

(i - 1,2, . . . , n ) . 

Making use of assumptions (A2), (A3) and (A4) and of the fact, that (p{x) is an 
arbitrary function except for properties (Pjjand (P2) and that for each x G î „ we can 
choose a bounded interval M a R^^ such that x e M, we can prove immediately, that 
(21) implies (15) for all x e R„, t e T, 

Thus the proof of Theorem 2 is completed. * 
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A further system of differential equations of the same type as (15) can be derived 
analogously: 

(22) - [v:irj{t I X, t)f{x, 0 ] + I — U^kit I X, t)f{x, t)] ~ 
Ot k=l OXj^ 

- 'ä^j{t I X, t)f{x, t) - ajv{t I X, i)f{x, f) - 0 (/, j = 1, 2, ..., n) 

where t ^ ( ^ | x, r), vîv]v~„{t | x, t) and ä ^ ( t [ x, t) denote E[Xi(t)Xj{t) | X(t) = x ] , 
£[X,(OXXOJffc(0 I ^ ( 0 = ^] and £ [ 1 ^ ( 0 1 X 0 I ^ ( 0 = ^] {hi. /c = 1, 2, ... , n) 
respectively. 

Equations (15) and (22) are closely related inasmuch as all conditional moments 
appearing in (22) are one order higher with respect to Xj{t) than the conditional 
moments appearing in the corresponding terms of (15). It is thus obvious that the 
assumptions under which equations (22) hold differ from the assumptions (A^) —(A4) 
only in that the conditional moments they concern are also one order higher with 
respect to Xj{i) than the conditional moments in the corresponding assumptions 
(Ai) —(A4). As to conditions (1) and (11), it is sufficient to complement them with the 
following subsidiary condition: 

(23) ^\Xi{t)Y < + 00 (/ = 1, 2, ..., n) whatever be teT. 

To demonstrate it, we shall prove the following 

Theorem 3. Let besides conditions (1), (11) and (23) the following assumptions be 
fulfilled: 

(A[) There exists the density / ( x , t) = / (x^, ..., x„, t) for every t e T. 

(A2) Derivatives (djdt) l_ViVj{t | x, t)f(x, r)] (i, j = 1, 2, ..., n) are continuous on 

К X T. 
(A3) Derivatives (djdxj,) [viVjVj^^t | x, t)f{x, tj] {i,j, к — 1, 2, ..., n) are continuous 

in (xi, ..., x j on Rnfor every t e T. 
(A4) Functions aiVj{t | x, i)f{x, t) {i,j = 1, 2, ..., n) are continuous in (x^, ..., x„) 

on jR„for every teT. 

Then the system of equations (22) holds for all x e R^ and t e T. 

Proof. Again we shall use the auxihary function (p{x) introduced in § 1. According 
to condition (1) and assumptions (A^) and (A2) we have 

(24) Ф) - [y^j{t I X, t)f{x, 0 ] àx = ^ \ (p{x) ̂ i^j{t I X, t)f{x, t) dx = 
JM ^t dtjM 

= lim 1 {E[cp(X{t + At))Xlt + At)Xj(t + At)] ~ E[cp(Xit)) X,{t) XЩ} . 
дг-*о At 
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Now, we shall introduce the function U(t) defined by relations (18). According to 
conditions (1), (11) and properties (Pi), (Pj) of (p(x), we may write 

(25) E[(p(X(t + АО) Xlt + АО Xj(t + АО] - £[<p(X(0) X^t) X/O] = 

= E{[cp(X{t + АО) - <P(X(0)] ï/,(0 Ujit)} + 

+ E{[<p(X{t + АО) - (p(Xm [xmXjit) - C/,.(0 [7,(0]} + 
+ E{(p(X{t + At)) [Xiit + АО Xj{t + At) - Xi{t) Xj{t)]} = 

= £{ t cpl(X{t)) lX,it + АО - X,{t)] и It) и jit)} + 

+ E{t t WUS) lX,(t + At) - X,(t)-} [Xlt + АО - X,(0] U^t) Uj{t)} + 

+ £{ t «p̂ Cö) [Xu(t + АО - ^i(0] [Xiit) - и it)] Xj(t)} + 

+ £{ 14>m [Xu(t + At) ~ xm [x/o - Vj{i)\ vii)) + 
fc = l 

+ £{,p(X(f + АО) IXit + АО - X,.(0] ^XO} + 
+ E{<p{X{t + АО) [X/f + АО - X / 0 ] ^;(0} + 
+ E{q,{X{t + АО) [Х,.(г + АО - X,(0] [^/^ + АО - X/0]} , 

where S = {Xi(0 + e\X,it + АО - X,(0], ..., X„(0 + © W ^ + АО - X„(0]}, 
0 < 0 < 1, e = {X^{t) + 9[Xi(/ + АО - Xi(0], ..., X„(0 + ^Xlt + АО -
- X„(0]}, 0 < Ö < 1. 

Substitute the resultant expression (25) in (24). 
Since \ц>'1Х{{))\ SK< +00, \(pl,{X{t))\ ^ С < +oo, |i7,.(0| UA< +oo ((, fc, Z = 

= 1, 2, . . . , и) for all Ï 6 r, it follows from (1) that 

(26) 
At 

E{(pl(X(t)) lX,{t + АО - X,{t)-\ и it) Uj{t)} 

^ E{(p',iXit)) Xlt) и It) и jit)} , At^O, 

which can be proved similarly as (8), and that 

(27) ~ E{i(p'US) lX,it + At) - X,it)-] [X,(f + АО - ХЩ и,it) и jit)} 
At < 

%\CA^ At. E'l^ -X,it + АО - X,it)-
At 

Ti/2 № {t + АО - x,(0' 
tA 

0, Af -> 0 . 

From (23) it follows by Schwarz's inequality that 

(28) E{[Xlt) - Uit)f [Xjit)Y} й E''\Xit) - Uit)f . E'^\Xjit)f -. 0 , 
Л ^ +00 (( , j = 1,2,. . . , n ) . 
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Therefore, according to (1), 

1 
(29) lim 

Ar-^O At 

s к . lim E 

EWm [x,{t + At) - x^{t)\ \xit) - U;(0}] х/г)}! ^ 

vi \Ш±^.:1АЩ. E^>\\xit) - iJii)Y [x,(/)]^} = 
At 

= к. E'i\xii)Y. E'/̂ {[x,(0 - vit)Y \x,{t)Y) - 0, л -> + œ, 
1 

lim 
Ai 

£{Ф;(0) \xit + АО - ;r,(0] \x,{t) - {7/0] t//(0} < 

S к . E"'{X,it)r . E^'\[Xjit) - üj(t)f [Uit)f} -.0, A^+œ. 

From (29) it follows that 

\E{<p',{X(t))m[4i)4t) - Viit) [//Olli й 

й K.E\ut) \_m - ^m ш \ + ̂  • щш \.ш - t̂ /oi t/,(oi - о, 
Л -> + 00 . 

Hence, by letting A-^ +oo, we obtain 

(30) £{<pi(X(0) 1.(0 ^i{t) urn - . E{cp',{X{t)) Xit) j , ( 0 Ut)} = 

I cp'tlx) ViVjVj,{t I X, r) / (x, 0 dx = ф) - - ^ [î /«;,t;fc(̂  I X, t)f{x, t)] dx 
M ^^k 

according to condition (23), assumptions (A^), (A3) and properties (P/) and (P2). 
Since \(p(X(t + At))\ ^ JB < +00, Schwarz's inequahty and condition (11) yield 

(31) 

< в 

--- E{<piX{t + АО) [Mt + АО - 1,(0] [! / ' + АО - 1/0]}! й 
At 

At.E'l^ Xit + АО - Ht)' 
At 

£1/2 Г ^ (t + АО - 1/0" 
А( 

О , Af -> О . 

According to definition (18), conditions (1), (11) and properties (Pj) and (Pj) we 
may write 

i- E{q>iX{t + At)) [Xit + At) - 1,(0] 1/0} = , 
At 

= 1 £{<p(i(0) [4t + АО - 1,(0] 1X0} + 
At 

+ 7 £{ i <pm) lut + АО - ^.(0] [Ut + АО -1,(0] и м + 
At fc=i 

At k=l 
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Then, Schwarz's inequality and (1), (11), (28) yield 

< К A At 

- E{(pm [x,{t + At) - x,{t)-] [Ut + АО - m i um\ й At I 
1̂/2 rut + At) - x,{t)-j ^,„ rxjt + At) - m j _, 0, Af -* 0 , 

A( 
E{<pm ix,it + At) - x,{t)-] m [x,(o - uj{t)-]}\ й 

<K.E^ 

Hence also 

„2^X,(t + At)- X„{t)Y pi/2 
At 

• Е''чт)т i m - ч т - о, л - + « 

- E{cp;,{Q) ix,it + At) - x,{t)-] x,{t + At) [x,(0 - [/,(0]} 
At 
Finally, as follows from (1) and (11), 

1 

0 , A -^ +00 

At 
E{(p{X{t)) [X,(f + At) - Xi(t)] Xj{t)} ^ E{(piXit)) Xlt) Xj{t)} , At -- 0 , 

which can be proved similarly as (8). 
Altogether, we have 

(32) lim — E{(p{X{t + АО) [Xlt + A^ - X,(0] Xj{t)} = 
At-*0' At 

= E{(p{X(t)) lit) X/t)} = f (f>{x) ïï;vjt 1 X, t)f{x, t) dx , 
J M 

according to conditions (1), (11) and assumption (A^). 
Substituting first (25) and then (26), (27), (29), (30), (31) and (32) in (24), we obtain 

(33) f cp{x)~ll^j(t\x,t)f(x,t)-]dx= ^[ cpix)\t /-[t¥W^(H^'0/(^,0]jdx 
JM St JM [k=idxj^ J 

(p{x) \ß^j{t \x,t) + aplt I X, i)\ f{x, t) dx . 

4-

+ 

Making use of assumptions (AQ, (A3) and (A4) and of the fact, that (p{x) is an 
arbitrary function except for properties (Р^) and (P2), we can prove immediately, 
that (33) imphes (22) for all x e R„, t e T, 

Thus the proof of Theorem 3 is completed. 
Close connections between systems of differential equations (3), (15) j^nd (22) can 

be revealed by comparing one with another. First of all, each successive system con-
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tains conditional moments which are one order higher with respect to Xi(t) 
(i = 1, 2, .,., n) than the conditional moments appearing in the corresponding terms 
of the preceding system as already mentioned when comparing systems (15) and (22). 
Another connection is as follows: in the first equation, i.e. in (3), partial derivatives 
of products v^(t I X, t)f{x, t), ..., v„{t I X, t)f(x, t) with respect to variables x^, ..., x„ 
appear and in the subsequent system of equations (15) partial derivatives of the 
same products with respect to t appear. Partial derivatives with respect to X-[, . . ., X„ 
found in (15) are those of products l^jit | x, t)f{x, t) which contain conditional 
moments one order higher than moments Vi{t | x, t). In the next system (22) partial 
derivatives of products ViVj{t | x, t)f{x, t) with respect to t appear etc. Of course, we 
can also derive other systems of differential equations of this type which, together 
with the systems mentioned, form a family in which each two succeeding systems 
relate in the manner stated above. There thus follows in this family, after system (22), 
a system containing derivatives (djdt) [viVjVkit | x, t)f{x, r)], further a system con
taining derivatives {dldt)l_ViVjVj^Vi(t\x,t)f{x,t)] (г, j , fc, I = 1, 2, ..., n) etc. It is 
possible to derive these systems by a method similar to that used when deriving (3), 
(15) and (22) and that under the conditions (1) and (11) suitably complemented by 
some subsidiary condition similar to (23) and under the assumptions which are 
appropriately modified assumptions (Ai) —(A4), or possibly {A[) — {A'4). 

The systems of partial differential equations of this type can generally be written 
in the form 

(34) ^ {ЕциФ- • • imf" \m - -̂ j /(^, 0} + 
ot 

j=lÔXj 

- 1 kjE[Xj(t)(Ut)r--(mf'-''---iUt)y"\m = .x]/(x,o = 0 
(ic,,...,fc„ = 0,1,2,...), 

where we put {Xi(t)Y' = 1, when fc. = 0 (i = 1, 2, . . . , n). 
When /<i = /c2 = ... = К = 0, (34) turns into (3); when ki = 1 and kj = 0 for 

j 4= i, (34) turns into (15) etc. 
To derive equations (34), we can start from the integral j ^ ^W (^/^0 • 

. {E[(Xi(t)y' ,,.(X„{t)f^ I X{t) = x]/(x, t)} dx and proceed analogously as when 
deriving (15) or (22). However, this derivation is much more extensive than that of 
(15) or (22). Therefore, we shall not give it. 

As a corollary of Theorems 1 and 2 we obtain 

Theorem 4. Let conditions (1), (11), assumptions (a^), {SL2) of Theorem 1 and 
assumptions (A2), (A3) and (A4) of Theorem 2 befuIfiUed. Further, let the following 
assumptions be fulfilled: 
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(Аз) Derivatives (d^jdXi dî) [vi(t [ x, t)f{x, tj] {i = 1, 2, ..., n) are continuous in 
{xi, t) on Ri X T/or a / / ( x j , ..., x,-_i, x, + i, ..., x„) e jR„_i. 

(Ag) There exist derivatives {d-^jdxj dx^ [yt^M \ '^' O/C^' 0 ] ^^^^ {^l^^d • 
. [äi(r I X, 0 / ( ^ . 0 ] ('' i == 1,2,..., n) for all x e /?„, t e T. 

Then equation 

Pixfix t\ " " d^ . 
(35) '--^ - X E ^ l^^iVjit -, t)f{x, 0] + 

ОТ" / = 1 i = 1 OXj CXi 

+ i ~-iält\x,t)f{x,t)]=0 
i = l OXi 

holds for all X G jR„, t e T, 

Proof. From equation (3) (cf. Theorem 1) and assumptions (аз), (Аз) and (A5) it 
follows that 

for all xeR^,teT. Substituting for {djdt) [v;{t \ x, t)f{x, t)] from (15) (cf. Theo
rem 2) and making use of assumption ( A^) we obtain (35). 

3. DIFFERENTIAL EQUATIONS OF STOCHASTIC PROCESSES WHICH 
HAVE DERIVATIVES IN QUADRATIC MEAN UP TO THE r-th ORDER 

Let the components of the vector random function X{t) described in § 1 have 
derivatives in q.m. up to the r-th order inclusive on T, i.e. let the following condition 
be fulfilled: 

(36) E[Xlt)Y < + 00 , lim £ 

(i = 1, 2, ... , n; / = 0, 1, 2, ..., г — 1) whatever be t e T, 

-X\'\t + At) - Xm _ ^ ( , + r,(,)" 
At 

2 
= 0 

(here X^'\t) denotes the derivative of the Z-th order of random function Xi{t)). 
Denote by Z{t) a vector random function [Zi(f), ..., Z^{t)ll, N = rn, with 

components Z , (0 = X,it), . . . , Z„(0 = X^t), Z„^,{t) = ^^,(0, ..., Z^t) = X„{t), 
Z2„+iO) = ^i(0> ••- 2з„(0 = ^„(0, ..., Z(,_„„^,(0 = A'''\t), ..., Z^O = 

Zj{t) = Xlt) for j = l,2,...,n, 

Zft) =Zj_lt) for j = и + 1, и + 2, ..., N . 

Assume that there exists a density of the probabihty distribution of Z((), i.e. 
a density of the joint probability distribution of functions X^if), ..., X„{i) and their 
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derivatives in q.m. up to the order г - 1 inclusive, at one instant t, which we 
denote by /,(z, 0̂  ^ = (^j, •••, ZN)^I^N = (-^У +OO)^ N = rn. 

As a generaUzation of Theorem 1*, we have the following 

Theorem 1*"̂ '. Let besides condition (36) the following assumptions be fulfilled: 
(a**) There exists the density /^(z, t) = /X^i, •••̂  ^N^ 0 ^/ ^̂ ^ jomr probability 

distribution of Z^{t), ..., Z^f) whose derivative df^jdt is continuous on R^ç x T and 
derivatives df^jdzj(J = 1, 2, .../N — n) are continuous in (zj, . . . , Zдr) on Rj^for every 
teT 

(a**) Derivatives {djdzj) {ElZj{t) \ Z(t) = z]fiz, t)} (j = N - n + U..„N) are 
continuous in (z^, ..., z^) on Rj^ for every t e T, 

Then equation 

(37) dU^-
dt + 1 

. /=1 
- j + n ' 

dZ: 
+ i --^-{£[z,(0 I z(r) = z]/Xz,0} = o 

J = /V-/ l+ 1 OZ : 

holds for all z e R^, t e T 
The proof of Theorem 1** is analogous to that of Theorem 1*. 
Equation (37) turns into (14), or into (3), when N = In, or when N = n. 
It is possible to derive other differential equations from equation (37) in a similar 

manner as from equation (14) (cf. § 2). Equation (37) is first multiphed by a chosen 
real function g of variables z^, ..., z^,t and then integrated with respect to z^„+1, ..., 
• •., 2:̂  (1 ^ m g r — 1) over the range R^^-^^n- Under well-known assumptions, one 
can then carry out integration by parts and exchange the sequence of integration and 
differentiation in some of the integrals. Following simple rearrangements, we obtain 

л mn л 

(38) ^Ш„/.]+ E f - [ ( Ä . / J 
dt j==idzj 

+ I dg 
j=i\dzj 

J m 0. 

where /^ = /ш(^ь • • •. ^тю О denotes the density of the joint probability distribution 
of Z,{t%...,ZUt) and (^),„Д^2'Д„, (Ö̂ 7ör)̂ ^̂  denote the conditional 
expectations of the corresponding functions for Zi(r) = Zj, .,., Z^„(̂ ) = z^„ at 
instant t (for short, we do not write arguments of the functions in (38)). There is 

J m /,dz^„+i ...dz,v , 

{g)mfm = gLdz,„„+^ . . . d z ^ , 
J RN-ПШ 

i^Xfn. = f 9Zj,J. dz„,„. 1 • • • d-v (1 è j й mn) 
JRN-mn 

etc. 
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It can easily be proved, that if m ^ 2, we may substitute (gZj)^ = (g)^ Zj+n and 
{{dgjdzj) Zj)^ = (dgjdzjX, Zj+„ for j S (m - 1) n in (38). 

It is possible to derive equation (38) by a method similar to that used when deriving 
(15) and (22), too, namely by computing the integral Ĵ ^̂ ^ ^(^/^0 Ш)т/т] dz^ . . . dz^„ 
(m = 1, 2, ..., г — 1) where ф = iA(zi, ,. . , z^„) is a function with properties 
analogous to those of function (p(xi, ..., x„) introduced in § 1 and M^„ с R^^ is 
a bounded interval in which ф differs from zero. This method is particularly well 
suited, when function g has such a form that it follows immediately from condition 
(36), or possibly from (36) and some simple subsidiary condition similar to (23), that 
function G{t) = g(Zi(t), . . . , Zjv(r), t) is differentiable in q.m. By this method we can 
prove in a straightforward manner the following 

Theorem 5. Let H(t) be a real second order random function having first deriva
tive in q,m. È{t) on T. Let besides condition (36) the following assumptions be 

fulfilled {write (Hl„, (Я),. and {IfzXfor E[H{t) \ Z,{t) = z „ ..., Z^t) = z j , 
E[H{t) I Z,(t) = z i , ..., Z^t) = z j and E[H{t) Zj{t) | 2^(0 = z,, . . . , Z^t) = 
= ^m/i]? respectively): 

{^i) There exists the density f^ = fmi^u "-^ ^тю^) of the joint probability 
distribution of Zi{t), ...,Z^„„(r), i ^ m -й r,r being the positive integer appear
ing in (36), for every t e T. 

(s/2) Derivative {djdt) [ (Я)^ /^] is continuous in (z^, ... , z^„, t) on R^„ x T. 
(j/3) Derivatives {djôzj) [ ( H Z j ) ^ / J ( j = 1, 2, ..., mn) are continuous in (z^, . . . , 

. . . , z^J on R^„ for every t e T, 

(j/4) Function {H)^f„^ is continuous in (z^, . . . , z^„) on Rmnfo^ every t e T. 
Then equation 

(39) ' -- [(H)„/j + E — [(Щи.] ~ (S)./„ = 0 
Ot J^^^^j 

holds for all (z^, ..., z^„) e î ,„„, t e T. 

If m ^ 2 , we can substitute (5/5z,.) [ (HZ^) , / , ] = z,.+„(Ö/öz,.) [ ( ^ ) . /m] for 
j ^ (m - 1) n Ш (39). 

The p r o o f of Theorem 5 is analogous to that of Theorem 2. To prove it, it is 
sufficient to replace function Xi{t) and its conditional expectation Vi{t I x, t) by H{t) 
and (Я)^ respectively, and also \X^{t),..., X„(0], {x^,..,, x„)J(x, t), (p(x) and ; , к = 
= 1,2, . . . , n by [ Z i ( 0 , . . . , Z^„(0], (zi, ..., z^„), /^(z i , .. . , z^„, t\ il/{z^, ..., z^„) and 
7, к = 1, 2 , . . . , mn respectively, in the procedure used when deriving (15) (cf. 
equations (16)-(21)). 

Remark 1. If H(t) = g{Zi{t% ..., Z^(t), t) and, at the same time, Я = dg jot + 
N 

+ E i^dl^^j) ^P Й being the derivative in q.m. of Я , (39) turns into (ЗЙ). 
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Remark 2. Since [2 , (0 , . . . ,Z„„(0] = [X.it),..., X„(t)] = X(t), (z,, ..., z^„) = 
= (x i , . . . , x„),f„{zi,..., 2„„, () = / ( x , t) for m = 1, (39) turns into (15), when m = 1, 
Я ( 0 = Xi{t) or into (22), when m = 1, Я (0 = 1;(0 Xj(t). 

Furthermore, putting m = 1, Я(г) = X,(l) in (39), we obtain 

(40) ^ [й;(г I X, 0/(^, 0] + t T^ [^( ' I ^. 0/(^, 0] - Ht I >̂ 0/(^, 0 = 0, 
ot j=i dXj 

where а (̂г \x,t) = E[Xlt) \ X{t) = x ] , ä^{t \x,t) = E[Xi{t) Xj{t) \ X{t) = x ] , in 
accordance with the notation introduced in § 2, and Ь̂ (г \x,t) = E[Xi{t) | X(t) = x] . 

As a corollary of Theorems 1, 2, 3 and 5 we obtain 

Theoreme. Let condition (36) be fulfilled for r = 3. Let condition (23), assumptions 
(a^), (a2) of Theorem 1, assumptions (A2), (A3), (A4) 0/ Theorem 2, assumptions 
(A2), (A3), (A4) 0/ Theorem 3 an J assumption (A5) 0/ Theorem 4 be fulfilled. 
Assumptions (^2)? (^^з) ^"^ (-̂ ^4) 0/ Theorem 5 let be fulfilled for m = 1, H{t) = 
= Xi{t) (i = 1, 2, ..,, n). In addition to it, let the following assumptions be fulfilled: 

(A7) Derivatives (d^jdXj dt) lyivj{t | x, t)f{x, tj] {i,j = 1, 2, ..., n) are continuous 
in{Xj,t)onR^ X T / o r a / / ( x i , . . . , x^_i, Xy+i, ..., х„)еЯ„_1. 

(Ag) Derivatives {d^'jdxi dt) {(djôt) [vi(t j x, t)f(x, t)]} (/ = 1, 2, ..., n) are con
tinuous in (xi, t) on Ri X Tfor all (x^, ..., x^_i, x^+i, ..., x j e Rn-i-

(A9) T/iere exist derivatives (d^jdxj^ dxj) [viVjVj,{t | x, t)f(x, t)], {d^jdxj, dXj dxi) . 
. [viVjVk{t I X, t)f{x, tj], {djdxj) \ß]vlt I X, t)f{x, t)\ and {д\дх^ \b{t \ x, t) f{x, i)\ 
{i,j, к = 1, 2, ..., n)for all x e R„, t e T 

(Aio) Derivatives (d^'jdXj dxi) [ ä ^ ( t | x, t)f{x, f)] (i, j = 1, 2, ..., n) are con
tinuous in (xi^Xj) on R2 for all (x^, . . . , x ^ . j , x^+i, ..., Xy_i, Xy+i, ..., x„) ei^„_2, 
ÎGT. 

Then equation 

(41) ^Ж^) + t Î; t — 1 ^ - [iw(t IX, o/(x, 0] -
dt 1 = 1 j = i fc=i dxj^dXjOXi 

- 3 i i - ^ [^(^ IX, o/(x, 0] + i ^ [5<(̂  IX, t)f(x, 0] = 0 
i = l j = l OXj OXf i = l CXi 

holds for all x e R„, t e T 

Proof . From equation (15) (cf. Theorem 2), assumptions (A3), (A2), (A7) and 
assumption (j/2) for m = 1, H(t) = Xi{t) {i = 1, 2 , . . . , n) it follows that 

(42) ^ [б,(. I X, t)f(x, t)] = - Д £ - 1 ^ [i^(r I X, t)f{x, 0]J + 

+ l [ â , ( f | x ,0 / (x ,0 ] (J = l,2,...,n) 
dt 

for all X e Ä„, ( e T. 
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Making use of equation (3) (cf. Theorem 1), assumptions (a2), (A2), (A5), (Ag) and 
of the fact, that derivatives id^ldt^)[yi{t\x,t)f(x,ty] exist for ail x G JR„, teT 
according to assumptions (A7), (^^2) and equation (42), we obtain (cf. the proof of 
Theorem 4) 

for all X E R„, t E T, 
Substituting first for (dj.dt) [l^jit \ x, t) /(x, t)] from (22) and for {djdt) . 

. [alt I X, t)f{x, r)] from (40) into (42) and then for (d^ldt^) [v^t \ x, t)f{x, t)] from 
(42) into (43) and making use of assumptions (A9), (A^) we obtain (41). 

Remark 3. It is possible to derive equation (41), too, by differentiating (35) with 
respect to t and by substituting for the corresponding terms from (22) and (40). 

Equations (3), (35) and (41) form a family in which each successive equation con
tains a partial derivative of the density /(x, t) with respect to Г, which is one order 
higher than that found in the preceding equation. The other terms appearing in these 
equations are, altogether, partial derivatives with respect to variables x^, ...,x„, 
namely partial derivatives of products of/(x, t) with conditional product moments 
of derivatives of random functions X\{t), ..., X„(t), the highest order of derivatives 
of X^(t), ..., X„{t) in these moments in each equation being equal to the order of the 
partial derivative of/(x, t) with respect to t. Of course, we can also derive other partial 
differential equations of this type which, together with the equations mentioned, form 
a family of partial differential equations, in which each two succeeding equations 
relate in the manner stated above. There thus follows in this family, after equation 
(41), an equation containing derivative d'^f{x, i)ldt^, further an equation containing 
d^f{x, i)jdt^ etc. It is possible to derive these equations by a procedure similar to 
that used when deriving (35) and (41), namely by differentiating the preceding 
equation with respect to t and by substituting for the corresponding terms from 
relevant equations of the type (34) or (39). 

4. DIFFERENTIAL EQUATIONS SATISFIED 
BY TRANSITION PROBABILITY DENSITIES 

In differential equations stated in §§1 — 3, there appear exclusively densities of 
non-conditional probability distributions. However, analogous equations, satisfied 
by the corresponding densities of conditional probability distributions (transition 
probability densities), can be derived by similar methods for stochastic processes 
dealt with in this paper. Each of those equations differs from its counterpart stated 
in §§ 1 — 3 only by that there appears in it the corresponding transition probability 
density instead of non-conditional probability density and that all the moments it 
contains are conditional moments relative to the same conditions as those in its 
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counterpart supplemented by the conditions to which the transition probability 
density relates. 

Thus e.g. the counterpart of equation (3) is the following differential equation: 

д " д 
(44) - - Q{^^ t I Xo, ^o) + E -;"" l^ii^ 1 ^0. toi ^ . 0 Q{^^ t I Xo, to)] = 0 . 

Ct i^lCX^ 

Here, Q{X, t | XQ, to) denotes the density of the conditional probability distribution of 
random function X{t) = [Xi(^), ..., Xj^t)\ described in § 1, for X{to) = XQ, Ô ̂  T, 
teT- {to}, Xo = (xoi, ...,Xo„)ei^„, x = (x^, ..., x„) e/?„ and Vi{t\xo,to\ x,t) 
denotes E\Xlt) | X{to) = XQ, X{t) = x ] . 

It is obvious that equation (44) can be derived by the same method as equation (3) 
under assumptions analogous to those of Theorem 1. In this manner, we can prove 
e.g. the following theorem which is entirely analogous to Theorem 1 : 

Theorem 7. Let XQ = (-̂ ôî  • • •? ^on) ^ ^n? ô ̂  ^- ^^^ the condition 

(45) E{[Xlty]'\X{to) = Xo} < +CX), 

~Xlt + At) - X,{t) 
lim £ - ^̂ .(0 X{to) = Xo} = 0 (/ - 1,2, . . . ,n) 

Ar 

be fulfilled for every t e Г. Further, let the following assumptions be fulfilled: 
(a'l) There exists the density Q(X, t I XQ, ^O) ^/ the conditional probability 

distribution of X{t) = [^iCO? •••» ^nW] /^^ ^(^o) = -̂ o? "^hose derivative dqjdt is 
continuous in (x^, ..., x„, ï) ow R^ x (T— {̂ o})-

(a2) Derivatives {д\дх^ [0,(г [ Xo, to; x, t) Q{X, t | XQ, fo)] (* = 1,2,..., /?) arg con-
tinuous in (xj, ..., x„) on R„ for every teT— {to}. 

Then equation (44) holds for all x e R„, teT— {to}-

To p r o v e Theorem 7, we start from the integral Ĵ ^ (p{x) (djdt) Q{X, 11 XQ, ^O) ^^^ 
where (p(x) is the auxiliary function introduced in § 1, and proceed similarly as when 
proving Theorem 1 (cf. equations 5 — 10). 

Analogously, we can prove, as a modification of Theorem 7 in which condition (1) 
instead of (45) is used, the following 

Theorem 7*. Let to e T. Let besides condition (1) the following assumptions be 
fulfilled: 

(aï) There exists the density fii^o^ to', x, t) of the probability distribution of 
X{t) = [Xi(0» • • •? X„(t)] at two instants to, tfor every teT— {to}, whose derivative 
dfijdt is continuous in (xoi, ..., ^ою ^i? •••' ^ю 0 ^^ ^n ^ ^n x (Г— {̂ o})-

(аз) Derivatives {djoXi) [y^t \ XQ, to', x, 0/2(^0. tol x, f)] (i = 1, 2 , , . . , n) are con
tinuous in (xoi, ..., Xon, Xi,..., x„) on R„ X R^ for every teT - {to}. 
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Then equation (44) holds for all x e R„, t e T — {to} and for each XQ for which 
Q{X, t\xo, to) is defined. 

Proof. We start from the integral JM^XM Ç^oi^o) ^ W (^/^ОЛС-^о? ô̂  ^? 0 ^^o dx 
where (poi^o) is an auxiliary function with properties analogous to those of function 
(p{x), Mo c: i?^ is a bounded interval in which (Poi^o) differs from zero, dxo = 
= dxoi dXo2 ••• dxo„ and dx = dx^ dx2 . . . dx„. Proceeding analogously as when 
deriving equation (3) we find easily, that 

я " Я 
(46) —/2(^0. ^o; X, 0 + E T~ l^i(^ I ̂ 0, ^0; ̂ ^ t)f2{^o. toi X, 0 ] = Ö 

ot 1 = 1 dxi 

holds for all Xo e i^„, x e R„, t e T - {to}. 
Considering the fact that Q(X, t\xo, to) is defined by the relation 

(47) Q(x,t\xo,to)- f^^''o,to;x,t) 
JRnJiy^O^ ^05 ̂ ? Ч QX 

for each Xo for which ^R^^f2(^0^ 0̂? x> 0 ^^ does not vanish, we obtain (44) for each XQ 
for which Q{X, 11 Xo, to) is defined by dividing (46) by ^R^f2(^0^ 0̂? ^^ 0 ^^^ 

Thus the proojf of Theorem 7* is completed. 
As a corollary of Theorems 1 and 7* we obtain 

Theorem 8. Let to e T. Let condition (1), assumptions (a'l), (a2) of Theorem 7*, 
and assumptions (a^), {3,2) of Theorem 1, in which f(x, t) = |я„/2(-^о? ô? >̂ 0 d->Co, 
be fulfilled. Further, let the following assumption be fulfilled: 

(а'з) There exist derivatives ^/г/Зл:^ for every XQ G i?„, x e i^„, t e T ~ {to} and 
derivatives dfjdXifor every x e R^, t e T{i = 1, 2, ..., n). 

Then equation 
я " Я 

(48) - - ^(xo, to\x,t) + Y. ^iit I -̂ ^ 0 T " ^G^o. 0̂ U , 0 + 
d̂  i = i ox,-

1 " ^ 
+ - ; — : E — (^(^0, 0̂1 X, 0 / (^ ' 0 [̂ i(̂  I -̂ 0̂, ̂ 0; ̂ , 0 - ^iit I л:, 0]} = 0 ' 

/ ( x , f) i = i dXi 

where Q{XO, to I x, )̂ denotes the density of the conditional probability distribution 
of X(to) = [Xi(^oX •••' ^n(^o)] / o r X(0 = X, holds for all Xo e R„, t e T - {to} and 
for each x for which Q{XO, to | x, t) is defined. 

Proof. Putting ^R^f2(^0^ hi X? 0 dxo = / (x , t), we have 

(49) ^ ( х о , Г о | х , 0 = ^ ^ % ^ ^ ^ 

for each x for which f(x, t) Ф 0, according to definition (47). 

74 



From (49) and assumptions ( a j , (a'O it follows that 

(50) A e(xo, '0 I X, 0 - - Ц Д Uxo, to-,-, t) + 4 ( ^ £ L V ^ ) . 1 / ( , , , ) = 0 
dt / ( x , t) ot J [X, t) at 

for/(x, 0 + 0. 
Substituting first for ^/2/^^ from (46) (cf. the proof of Theorem 7*) and for dfjdt 

from (3) (cf. Theorem 1) and then for /2 from (49) into (50) and making use of 
assumption (а'з) we obtain (48) for all XQ e JR„, t еТ — {ÎQ} and for each xe R„ for 
which/(x, t) Ф 0, i.e. for each x for which ^(XQ, 0̂ | »̂ 0 is defined by (49). 

Thus the proof of Theorem 8 is completed. 

Remark 4. To derive equation (48), we can use also equation (44) instead of (46). 

Remark 5. Assume, that X(t + At) is conditionaly independent of X{to) given X{t) 
for ÎQ < t < t + At or possibly îor t + At < t < to. Then, if condition (1), assump
tion (a'l) and assumption (a2) in which we replace Vi{t | XQ, t^; x, t) by Vi(t | x, t) are 
fulfilled, we can find by the procedure used when proving Theorem 7*, that (44) turns 
into 

я " Я 
(51) - - ^(x, t I Xo, to) + Y ~- lvi{t I X, t) Q{X, t I Xo, to)] = 0 

ot i=i dxi 

and hence, if also assumptions (a^), (a2) and (а'з) are fulfilled, (48) turns into 

Ô " Э 
(52) •-- ^(xo, to\x,t) + Y ^i^ I ̂ ' 0 T~ ^C^o. 0̂ U , 0 = 0 , 

ot i=i ox I 

which can be proved quite analogously as Theorem 8. Equations (51) and (52) are 
to some extent analogies of the forward equation and the backward equation, 
respectively, for continuous Markov processes derived by Kolmogorov [4], [12]. 

Similarly as equation (44) is an analogy of equation (3), the remaining equations 
stated in §§ 1 — 3 have their analogies, too, satisfied by the corresponding transition 
probabihty densities. We shall present these equations here no further; as already 
mentioned, we obtain them immediately from the equations stated in §§ 1 — 3 if we 
supplement in each of them both the probability density and all the conditional 
moments by an appropriate condition. These equations can be, similarly as (44) and 
(48), simplified if the assumption stated in Remark 5 or possibly an analogous assump
tion is fulfilled. The problems just mentioned will be dealt with in detail in our next 
paper. 
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Резюме 

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 
ДЛЯ СТОХАСТИЧЕСКИХ ПРОЦЕССОВ, 

ОБЛАДАЮЩИХ ПРОИЗВОДНОЙ В СРЕДНЕ]^ КВАДРАТИЧЕСКО]У[ 

КАРЕЛ КОШТЗ^Л (Karel Kostal), Прага 

В работе систематически выводятся дифференциальные уравнения для век
торных стохастических процессов, обладающих производной в среднем квадра-
тическом. Сначала изучаются процессы обладающие первой и второй производ
ной. Для них выводятся подробно дифференциальные уравнения, находящие 
приложения особенно в физике. Затем выводятся дифференциальные уравнения 
для процессов, имеющих производные в общем до порядка г. В заключитель
ной части работы исследуются аналогичные уравнения, которым удовлетворяют 
соответствующие плотности вероятностей перехода. 
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