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Czechoslovak Mathematical Journal, 17(92) 1967, Praha 

A GENERALISATION OF EHRESMANN'S JETS*) 

ALOIS SVEC, Praha 

(Received November 17, 1965) 

In this remark I merely show that a natural generalization of the notion ,,S-}QV' 
leads to natural non-trivial problems. 

0. In the study of the differentiable maps/ : M" -^ M'", M" and Af" being differen-
tiable manifolds, the fundamental notion is that of the jet of a map. The set of maps 
f, g,... : M" -> Af" such that Д(/) = fp{d), p e M"" being a fixed point, is decomposed 
in equivalence classes, / and g belonging to the same class if and only if 7p^^(/) = 
= fp^^{g). If M"" carries some ,,structure" it is possible to consider a more profound 
classification of the maps. By a structure I mean something like this: The p''-velocity 
in M" at X e M" is an r-jet of R^ into M" with the source 0 and the target x; let 
Tp{M", x) be the set of ^''-velocities in M" at x. Now, let W be an affine or vector 
bundle over M", W[x) being the fiber ober x e M". The structure is the set of maps 
(p[x) : Tp{M", x) -^ W(x). For example, the affine connection on M" provides such 
a structure, PF being the affine tangent bundle and p = 1. 

Let us restrict ourselves to the very simple case M" = R'\ M^ = R"^, n ^ m. 
Let/, g : R" -^ R'^hQ maps such that Jo(/) = fo{g) is an invertible jet with the source 
OGR"" and the target 0 e R"^. Let т" с Ĵ '" be given by (d/)o {R% Introducing the 
coordinates x' (i = 1, ..., n) in R" and y^" (a = 1,.,., m) in R"" such that т" is given 
by 3;" + ̂  = ... = j ; ' " = 0, our maps are given by 

(0.1) /--=ГИ' / = 1̂̂ 0-

Consider the numbers 

(0.2) 

*) This work was partly supported by the National Science Foundation through research 
projects at Brandeis University (Waltham, Mass., U.S.A.). 
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Let 1̂ 1, ..., t̂ s+i be vectors in т", the coordinates of v^ being (yj, .,., i;", 0 , . . . , 0). 
Define the vector î i * 1̂2 * • •. * t;̂ +1 by 

(0.3) [Vi*V2*-..*o,,,f= ^ C : , . . . „ ^ , / I ' . . . I ; : ; Y , 
« 1 = 1 ,...,n 

[wY being the coordinates of the vector w. This definition does not depend on the 
considered coordinate systems. 

Let L be a linear subspace of R"" through 0. We say that / , g belong to the same 
(s + l)~jet mod L if i?i * .. . * i;,+ i G L for each (s + l)-tuple v^, ...,v^+^e т". If 
LQ = Oe R'^, then fo^^{f) = fo^^{g) mod LQ is, of course, equivalent to fo^^{f) = 

This notion is of some use in the theory of deformations of submanifolds of 
a manifold S endowed with a Lie group G which acts transitively on S. Let M^, M2 
be two submanifolds of S, and / : M^ -> M2 be a diffeomorphism. Denote by G(x) 
the isotropy group of the point xe S, ®(x) с (S being its Lie algebra; suppose 
dim (5(x) = r. Let (S '̂'̂  be the manifold of r-dimensional subspaces of (5, and 
consider the maps cp^ : Mi ~> (5 '̂'̂  given by < ĵ(x) = Ш(х), x e F .̂ Let M = [j (6(x) cz 

xeS 

c= © '̂'̂ ; each map y : S -^ S given by 'у(х) = Ô̂ X, g e G, provides a map Г : M -^ M 
given by r((S(x)) = ®(ö^x). Denote by {Г} the set of such maps. We say t h a t / : M^ -> 
-> M2 is the deformation of order r if, for each x G M ^ , there is an element g^^G 
such that j^((Pi) = Гх{ГхЯ>2)^ ^x ^ {^} being induced by the map y{y) = g^y. It may 
well happen that, for some r, each diffeomorphism / : M1 -> M2 is the deformation 
of order r, however,/being the deformation of order r + 1, there is an element g eG 
such that / (x) = ^ (̂x) for each x G M ^ . AS the space © '̂'̂  has the structure of a vector 
space, we may apply the notion of our generalized jets to obtain non-trivial types of 
correspondences. 

In what follows, I shall study two very simple examples of this general situation. 

1. Let us consider two affine spaces Л", Л'" and the vector spaces F", F'" associated 
to them. Futher, let M*" cz Л", M"" с Л'" be two manifolds, and f : œ -^ M"" be 
a diffeomorphism of a neighborhood со cz Af of a point ]? G M**. Denote by т**, т"* 
the tangent vector spaces of the manifolds M'', M"" at the points p and f{p) resp. 

Theorem 1. Le^ us choose 

(1) a diffeomorphism F : Q -^ Ä'", Q a A" being a neighborhood of the point p, 
such that F | O ^ ^ = / ; 

(2) two vector fields v,w on Q such that Vp, Wp e т**. The vector 

(1.1) î̂ p * w^ = [ ,̂ w']p + [w, i?']p , 

where 

(1.2) t;; = ( d f ) ; ' ( d F ) , i ; , , w^ = ( d F ) ; i (dF). w, for x G ß , " 
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depends only on jl{f), (dF)^,, Vp and Wp. We have 

(1.3) Vp :^Wp = Wp^Vp, Vp^ (ccWp + oc'Wp) = a.Vp^Wp + a .Vp^Wp 

for Vp, Wp, Wp ex^ \ ОС, oc' e R . 

Proof. Choose the following ranges of indices 

ij, ... = 1, ,..,n ; a , /? , . . . = 1, ..., r ; Л, Б, ... = г + 1, ..., « , 

and use the summation convention. 
In the spaces Ä" and A"", let us choose the bases M, J^, ..., J„; M\ J[, ..., J^ such 

that: (a) p = M, f{p) = M'; (b) J^, ..., J^and J[,..., j ; are the bases of т' and x'" 
resp.; (c) {dF)p{z4i) = zV^ for each z \ ..., z"ei^. In some neighborhood of the 
point p, the manifold Af is given parametrically by 

(L4) x'=f{t\,..,f). 

Let us suppose that the point p corresponds to the values ^̂  = ... = f = 0, i.e. 

< • • " <Л = о. (|\=«. 

( / % denoting/'(0, ..., 0), and ^} being the Kronecker symbol. The other manifold M"* 
and the m a p / : œ -^ M'^ are given, at least locally, by the equations 

(1.6) y^ = g\t\...,f) 

where 

(1.7) (A=«. i^ii^K. 

The map F : Q -^ v4'" be given by the equations 

(L8) /=h\x\,..,x") 

with the obvious conditions 

The condition F = / on ß n со is expressed by the identity 

(1.10) g\t\ ..., 0 = h\f4t\ .... f),...,f"{t\ ..., f)) 
for small \f\. Derivating both sides of (1.10), we get 

dg' _ dh' df' д^g^ _ d^h^ df^ df 3/i' d^fj 
de дх' of ' df dt^ dx^ 5л;* df dt^ dx^ df dt^ ' 
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I.e. 

(1.11) 

The vector field v on Qht v = v'{x^, ..., x") J;, i.e. 

(1.12) 

We obtain 

dhJ д дУ д (1.13) (dFV v^ = vHx\ ..., x") , v' = vHx\ ..., x"") . 

and analogues equations for the vector field w = w'{x\ ..., x") J^ Further, 

dx' dx' dx^ 
(1.14) fü, w 1 = у' ^ + v'w' w 
^ ^ ^ -* Яv^ Яv•/ Яг^ Яv^ Яг-̂  

[w, i;'] 

^x' дх^ дх^ 

, dv' dh^ д , , дЧ^' д 
w . : h V-'W —-^ 7 V 

ôx^ dx^ dx^ dx' dx^ ôx^ 

dx^ dx' dx^ ' 

dw^ дУ _д_^ 
дх^ дх' дх^ ' 

and we get 

(1.15) \y, w% + [w, v% = 2{v% {w% 
dx' dx-'Jo dx' 

as a consequence of (1.9). According to the supposition {v^)o = (w'^)o = 0 and ( l .U) , 
we have 

(1.16) v^ * Wp = 2{v% {w% 
2fi d'f d'g' 

of dti'Jo \df dfjo Ji, 

the validity of the equations (1.3) being easy to see. Q.E.D. 
Let us write * j ^ ^ , A = (dF)^,, instead of * if there is the possibility of confusion. 

Theorem 2. Be given manifolds M\ iV in A" and M'\ N"" in A"". Let p e M\ 
qeW be fixed points and со cz M^, œ' cz iV neighborhoods of p and q resp. Be 
given diffeomorphismsf : œ -> M'\f' : ш' -> N'\ cpico-^ N'; cp{p) = q. Without loss 
of generality, we may restrict ourselves to the case œ' = cp[œ), all considerations 
being local Consider the map cp' :f{œ) -^ f\co') given by the commutative diagram 

f 
M' ZD œ >f{œ) c M'' 

AT'' ZD cp{œ) = co'~ 
f 

-^f\œ') cz N''. 
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Denote by i : АГ -> M', i' = M " -> M" the identity maps. Let us suppose 

Then 

implies 

{^'Щ Vp^f,A^p = ^p^f\A^^p 

for each Vp, Wp e т*" and each A : V -^ F " such that A\^r = (cl/)^. //(1.19) is satisfied 
for each Vp, Wp e т^ and at least one A, we have (1.18). 

Proof. The proof follows directly from the explicit formula (1.16). 

Theorem 3. Let Af с A", M"" cz A"" he manifolds and / : ш -> M"* be a diffeo-
morphism, со с М^ being a neighborhood of the point p e M\ Let A : V" -> V" 
be a non-singular linear transformation such that A\^r = {àf)pj ^^d let 0 ф г̂ ,̂ E т"" 
be a fixed vector. The vector V = Vp * j ^ ^ Vp has the following geometrical significa
tion: 

Let 7 : (—1, 1) -^ Af be any curve through p; suppose e.g., (̂O) — p; which is 
tangent to Vp\ i.e. the vectors Vp and {ау\ (1) are linearly dependent. There is г > 0 
such that y{( — E, e)} cz œ. Let us define the curve y' : ( —e, г) -> A" by the formula 
y'(^t) = (A~^fy) (t) for f e ( —г, г). Of course, ji(y) = 7o(7')- There are three possible 
cases: 

A. V=O.Thenjl{y)=jl{yy 
B. F Ф 0, V and Vp being linearly dependent. Then jl(y) Ф JoC?')? ^^^ there is 

a small number e^, 0 < ê  < e, and a diffeomorphism ô : ( —S], Ci) -> ( — e, e) such 
that jl{y) = jl{y") where y'Xt) = (fS) {t) for t e{-8,, s,). 

C. Vand Vp are linearly indepedent. ThenjKy) ф jl{y') and there are no г̂  and ô 
satisfying the condition B. Let A"~^ be any hyperplane in A"^ which does not contain 
the vectors F, Vp in its vector space, and let n : .4" --> Л""'^ he the paralie! projection 
in the direction V. Then jl{ny) = jl{ny'). 

Moreover, in the case В there is no projection ж satisfying the condition C. 

Proof. The proof of this theorem is more simple than its statement. Let us keep 
the notation of the proof of Theorem 1. The curve у be given by 

(1.20) f = c\t), te (-1,1); сЩ - О , 

i.e., in the linear coordinates in A", by 

(1.21) x'=f{c'{t),...,c\t))^F\t). 
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The curve y'is given by > 

(1.22) x^^gXc\t),...,cXt)) ^G\t). , 

Because of (1.5) and (1.7), we have 

i-e. Jo(y) = JoiY)' Of course, 

Q + 0 being a real number. From 

dt^ ~ df dt^ dt dt df ~dt^ 

and the similar equation for d̂ G*/df̂ , we obtain 

(1.24) Ш 0 - - ^ О Ч ^ ^ ^ 

If F = 0, we have (d^G7dt^)o = {d^'F^ldt^ for each i, and A is proved. Now, let us 
consider the case B, i.e. 

(1.25) " V=a(^\j,, O^aeR, 

Let Ô = ô{t) be an arbitrary function which is defined for Г e ( — 81, е^) and is such 
that ^{(~8i, e )̂} с ( —e, г) and 

^<»'-'u-(f) _ 2 ^dr /o 2^ 

The curve Y' = 7'<5 is given by H\t) = G'(5(f)), and we have 

/-. о̂ ч irri^ /^A / d ^ ' \ /dG^ /d^HA /d'G'\ a /dG^ 

I.e. 

substituting (1.25) and (I.263) into (1.24). The case С is obvious from {1.Щ. 
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2. The goal of this paragraph is merely to show a utilization of our *-multiplication 
which may lead to natural non-trivial problems in areas which are considered to be 
' 'known". 

Let S be the set of surfaces M in A^ such that at each point pe M there are exactly 
two asymptotic tangents. Let f : M -^ M'; M, M' G S; be a diffeomorphism, and 
denote by 1(1?) the tangent plane of M at p e M. The map / i s called the fii~ déformât ion 
{i = 1, 2, 3) if for each point p e M there is a linear transformation Cp : V^{A^) -^ 
-> V^{A^) such that Срт(р) = (d/)^ and */,cp('^(p)) (1) = trivial zero-vector space; 
(2) = one-dimensional tangent vector space at p; (3) = an asymptotic vector space 
at p. Here, V^(A^) denotes the vector space associated to A^, and *(L) is the set of 
all vectors l^ * I2; /1, /2 ̂  ^• 

Theorem 4. (1) / / / : M -> M' is a {ii-deformation (i.e. a deformation of second 
order), the surf aces M, M' are equal up to an affine colli neation of A^. (2) Let M e S 
be given. The couples (/, M') such that f : M -^ M' is a 112-deformation exist and 
depend of five functions of one variable. (3) The triplets (/, Af, M') such thatf : M -> 
-^ M' is a fi^-deformation exist and depend on seven functions of one variable. 

In (2) and (3), we suppose that M and M' are not equal up to an affine colhneation. 
The generality is to be understood in the terms of Cartan-Kuranishi's theory of 
systems in involution. 

Proof. Associating to each point p e M the frame Л, J i , J2, J3 such that A = p 
and J i , J2 are tangent vectors, we may write (at least locally) 

(2.1) dA = œ^J^ Л- (D^J2 , dJ2 = œ\j^ + 0)2^2 + ^2«^з » 

d J i = œ\j^ + coiJ2 + (J^\Jz ? ^^^3 = ^^з*^! + ^\^2 + ^3*^3 

with the integrability conditions 

(2.2) àœ' = CO"' л œ] , dcof = w] A œi; ij = 1, ..., 3 . 

Our surface is given by the equation 

(2.3) œ^ = 0 

with the integrability conditions 

(2.4) col = otco^ + ß(^^ ' ^ 2 = ß ^ ^ + У<̂ ^ • 

The vectors J^, J2 being asymptotic, we may choose the frames in such a way that 

(2.5) (ol = ш^, ©2 = ш \ 

the integrability conditions being 

(2.6) 2œl A œ^ + {œ\ + o)l ~ œl) A CÔ  = 0 , 

{œ\ + a>2 ~ CO3) л û>̂  -f 2û)2 л a>^ = О. 
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The surface M' be given by the equations (23'), (2.5') and the diffeomorphism/ by 

(2.7) T̂  - 0 , T̂  - 0 ; 

we use the notation 

(2.8) T̂" = m' - œ^, т{ = œj - со'/ . 

The differential d/ being now given by 

(d/) ( x ^ i + XV2) = x4[ + х^Г2 , 

let С : F^ -> K^ be given by C(jc^J,) - x'J-. We have 

(2.9) 2 . ( O J V I + 0/J2) ^f,c {соЧ^ + C0V2) -

= (т}ш^ + xloj^) Ji + {xlo/ + T2C0 )̂ J2 + (TICO^ + T2Û> )̂ J3 , 

this equation being deduced from the expression С d^A — d^A' following the proof 
of Theorem 3. Finally, from (2.7) and the obvious equation т^ = 0 we get 

(2.10) T\ = a'o)' + bW , 4 = h'œ^ + cW ; г = 1, 2, 3 . 

(1) The triplets (/, M, M") such t h a t / : M -^ M ' is a /ii-deformation are given by 
the equations (2.3), (2.5), (2,3'), (2.7) and 

(2.11) TÎ =г1'=т1==т1 = т1 = 4 = 0 

with the integrability conditions (2.6) and 

(2.12) ' 0)̂  л T̂  = ш^ л T̂  =: 0 , ш^ л Тз = ш^ л T̂  = 0 , 

ш^ л Тз = ш^ л Тз = О. 

From (2.12), we obtain Тз = Тз = Тз = О, and the surfaces M, M' are equal up to 
an affine collineation A^ -> A^, the systems (2.1) and (2.Г) being equal. 

(2) Let MG S be given, i.e. the left-hand side forms in (2.3) and (2.4) are known. 
The couples (/, M') such that f : M -^ M' is a yL(2-deformation and */,c('^) = (•) «̂ i 
are given by the system (2,3'), (2.7) and 

(2.13) 4 = ^l = x\ = xl = 0 

with the integrability conditions 

(2.14) û>̂  л x\ + co^ л T2 = 0 , ml л i j - (aco^ + ßw^) л т^ = 0 , 

Т2 л û>? + {ßo)^ + усо )̂ л т^ = О, (аа>^ + i8ö>̂ ) л (тз - т^) = О , 

{ßm^ + уш^) л т^ + т^ л (асо^ + ßoy^) = О . 
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This system is in involution, the determinant of the polar matrix being equal to 

œl{œ^œl + co^œl) {TICOI - COITI) . 

(3) The triplets (/, M, M') such t h a t / : M -^ M' is a /i3-deformation and */,c('̂ )̂ = 
= (.) J i , Ji being an asymptotic vector, are given by (2.3), (2.5), (2.3'), (2.7) and 
(2.13) with the integrability conditions (2.6) and 

(2.15) ш^ л T{ + cô  л T2 = 0 , col A TI + œ^ A TI = 0, 

T2 л ш^ + cô  л T3 = 0 , ш̂  л Тз — cô  л 12 = о , 

со̂  л (т^ - r î ) = о . 

The determinant of the polar matrix is 

2œ\œY{œ4l - cohl) , 

and the system is in involution. Q.E.D. 

3. In this paragraph, we shall describe the set of (so-called special) diffeomorphisms 
f : Q -^ Л'^, Q c: A^, with this property: there is a vector field F on ß such that 
^*/,d/^ " (•) ^for ^Щ vector fields v, w on O. The *-multiplication being commuta
tive, it is sufficient to replace the considered property with a weaker one: t^*/,d/^ = 
= (.) F for each vector field v on Q. The only diffeomorphisms f : Q ~> A^ with 
^*/,d/^ ~ ^ ^^^ ^^^^ î  on ß being the affine colhneations, we exclude them from 
further consideration. 

To each point p e Q, let us associate a frame A, J^, J2, J3 in A^ and A\ J[, J2, J3 
in A'^ such that A = p, A' = f[p) and (d/)^, (x'Jf) = x4\. Then we have the equations 

(3.1) àA = œ^Ji, dJi = œiJj ; dA' = œ''J\, dJ\ = œ\4] 

with the integrability conditions 

(3.2) dco' = œ^ A coj, dco{ = œ\ A œ{ ; 

dœ'' = œ'J A (D'Î , dœ/ = œf ^ -^'' к ' 
the map/be ing expressed — see (2.8) for notation — by 

(3.3) T̂  = T̂  = T̂  = 0 . 

Of course, we suppose 

(3.4) (o^ A 0)^' л ш^ Ф 0 . 

It is easy to obtain - see (2.9) - the formula 

(3.5) (ш'70 ^fA^'Ji) = i^'-^i • 
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L e t / be special, and suppose that the vector field F coincides with J3. The special 
diffeomorphisms / satisfy the system (3.3) and 

(3.6) TÎ = T? = TÎ - T̂^ - T^ - T^ = 0 . 

The integrability conditions of (З.З) and (3.6) are 

(3.7) co^ л Ti 4- cô  л T2 + ш^ л T3 = 0 , 

(3.8) œl A т1 == col A т1 = col A т1 = (Jul A т1 = col A т1 = œj A т1 = О . 

The map / being not an affine coUineation, we have 

(3.9) T̂  Ф 0 for at least one i = 1, 2, 3 . 

This assumption and (3.8) lead to 

(3.10) col A œl --= 0, 

and there is a 1-form в such that col = a^9, col = ^2^- We have 

dJ3 = 0(^1 J i + a2J2) + 0)3/3 , 

and we may specialize the frames in such a way that 

(3.11) оэ1 = 0. 

Further, we have dcol = col A (^1 ~" ^l)^ ^^^ ^^^ ^^se 0)3 = 0 is geometrically 
significant. Let us introduce the following types of correspondences: 

Type I is given by the system (3.3), (3.6) and 

(3.12) œl=^œl = 0; 

Type П is given by the system (З.З), (3.6) and 

(3.13) соз = 0 , ш ^ ф О . 

First of all, let us determine the correspondences of type L For co^ = co^ = 0, 
we have 

dA = co^J^ , dJ3 = (co^)^i=„2 = o J3 . 

dA' = CO^r^ , d J ^ = {col + ^з)со1=со2 = 0 ^3 , 

i.e., both the points A, A' run along a line. It is easy to see 

Theorem 5. The special diffeomorphisms f : Q -^ A'^ of type I are given, in 
suitable coordinate systems in A^ and A'^, by 

m 
(3.14) x' = ax + by , y' = ex + ey , z' ~ (p{x, y, z) . 



Let us consider type IL From (3.8), we obtain 

(3.15) TI = a^col , TI = «20)^ , T̂  - аз^з , 

and we have aj, = a2 = аз = 0 only for affine coHneations. Further, Ш3 л dco3 = 0, 
and such a function t exists (at least locally) that col A dt = 0. df being the differential 
of our map, let us introduce the affine collineations С = C{p) : A^ -> A'^, p e Q, 
by CA = A\ CJi = J\ = (d / ) (J , . ) .WegetdC. Л =. 0 ,dC. /^ = а^со^Гз, dC . J2 -
= 0620)3/3, dC . J3 = 0630)3/3. The affine collineations С depend on t only, and if the 
point A runs through the plane given by a^^^ + ^2^^ + ^^"^ = 0 in the local 
coordinates Л + ^^Ji + (^ /̂2 + ^^^ъ^ ^ is fixed. Roughly speaking, we get two 
one-parametric systems of planes a(t), (x\t) in a i-1-correspondence in A^ and A'^ 
resp., and our diffeomorphism is the union of 00 ̂  affine collineations between the 
couples of corresponding planes. This being done, we have only to consider the 
possibilities for the structure of the families a(f), a'{t) and the structure of the family 
С = C{t) : (x{t) -^ (x'{t). To obtain the precise statement, let us introduce the following 
sets of homeomorphisms / : ß -> Л^, Q a Ä^ (we present only the types of these 
maps; in each case, we must establish the conditions for the functions in the formulas 
in order to obtain really a diffeomorphism — not a map only; this is left to the reader): 

(a) fe Ф1 is given by 

/o i ^ \ / \ ^^ i (^^ ' ) d^û) i (w) 

dw dw^ 

У = 92(w) + и - ^ ^ + V — ^ ^ ^ , z - фз(>у) + и -^^^^^ + V ^') ^ ; 
dw dw^ dw dw^ 

(b) / G Ф2 is given by 

(3.17) 
/ \ , dç)i(w) , . d<x>2(w) / N dö>3(w) 

X = и (pi(w) + V - ^ ' ^ ^, J = w ̂ 2(w) + î  ^ - , 2 = w (p^{w) + t; ^^^ ^ ; 
dw dw dw 

(c) / 6 Ф3 is given by 

(3-18) X = (p^{w) + и + v^ d(pi{w) 
dw 

/ Ч <^Я>2М { \ . d^3(w) 
dw dw 

(d) / G Ф4 is given by 

(3.19) X = и + V (pi{w) , у = V (p2{w) , z = Î; (p^{w) ; 

(e) / G $ 5 is given by 

(3.20) X = и + (pi{w), у = V + (P2{w) , z = ^3(w) . 
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Theorem 6. The special diffeomorphisms F : Q -^ A'^, Q a A^, of type II are 
constructed as follows: Take two diffeomorphisms f : Q -^ A^, f':Q-^ A'^; 
Q c: Ä^\ f еФ1, f e Ф^ (the values of i,j being specified below) such that the map 
F :f(Q) -> A'^ given by the commutative diagram 

Q с 

be a non-linear diffeomorphism. The diffeomorphism F is special of type II in the 
following cases: ( l ) / e Ф„Г e Ф,; (2 ) /e Ф^,/' e Ф2; (3)/€ Ф3,/ ' e Ф,; (4)/б Ф^, 
f e Ф2; (5) /6 Ф4,/' e Ф ;̂ {6)feФ„f' e Ф,; {7)fe Ф5,/' e Ф .̂ 

Author's address: Praha 8 - Karlin, Sokolovska 83, CSSR (Matematicko-fyzikalni fakulta 
Karlovy university). 

Резюме 

ОБОБЩЕНИЯ ИНФИНИТЕЗИМАЛЬНЫХ РОСТКОВ ЭРЕСМАНА 

АЛОИС ШВЕЦ (Alois Svec), Прага 

Для отображения/: M -^ N; М, N — многообразия в Л"; дается обобщение 
линеаризирующего соответствия Вилла-Чеха. Решаются некоторие проблемы 
существования специальных отображений / : М^ -^ N^ ъ случае п = 3 и отобра
жений / : А^ -> А^. 
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