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EIGENVALUES OF OPERATORS IN L^-SPACES 
IN MARKOV CHAINS WITH A GENERAL STATE SPACE 

ZBYNEK SIDAK, Praha 

(Received December 6, 1965) 

1. INTRODUCTION AND NOTATION 

The present paper is essentially an appendix to the preceding papers [3], [4]. All 
relevant definitions and assertions which are necessary for our present development 
may be found in detail in [4]; however, for the reader's convenience, some of them 
are also briefly listed here in Sections 1 and 2. 

Let X be a general abstract space of points x, with a Borel cr-field if of subsets in 
it. Consider a (^sub-stochastic) transition function p, that is a function p = pÇ , .) of 
two variables x eX and Ae^ satisfying: 

(i) p(x, . ) is a (j-additive non-negative measure on ^ for each xeX, and p(x, X)^l, 

(ii) p(., У4) is an S'-measurable function on X for each Ae^. 

Further, p is called a stochastic transition function if p{x,X) = 1 for each XEX, 
The iterates p̂ "̂  of p are defined as usually by 

p(«)(x, Л) - I Р^'^-^ХУ, A) P{X, dy) , with p̂ >̂ = p . 
Throughout the whole paper we shall assume that the transition function p is ir
reducible, which means that all of the measures 

v, = f;2-y"'(x,.) 

on Ж have, for all x eX, the same null sets. 
Furthermore, we shall suppose that we have some sub-invariant measure fi for p, 

i.e. some cr-additive non-negative a-finite measure /г on ^ , which is not identically 
zero, and which satisfies 

p{x. A) [i{dx) й р{А) for all Ae^ , 
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Moreover, in the whole paper we assume that this fi has the same null sets as the 
measures v .̂ (This assumption causes no loss of generality, see [4].) 

By the space Lj^fi), for 1 ^ a < oo, we understand the well-known Banach space of 
all complex-valued ^-measurable functions/on X integrable in their a-th power with 
respect to the measure /г, the norm being given by ||/||^ = [Jx l/WI"" M^-x:)]^ '̂'. 
Similarly, L^[ii) is the Banach space of all complex-valued .^-measurable //-essentially 
bounded / on X, with the norm Ц/Цоо — ^^s sup |/(x)]. The notation / ф 0 will be 

M X 

used for the fact that fi[{x;f{x) ф 0}) > 0. 
In the present paper we deal with the operator T^ defined in the space L^/f), 

1 ^ a ^ 00, by the formula 

TJ = ^f{y)p{.,dy) 

It is well known that T^ is a linear continuous operator in Lj^fi) with the norm 
||T^||^ ^ 1, whenever /i is a sub-invariant measure for p. (Note that the form of the 
operators T^ is the same for all a, the index a being used only for distinguishing the 
Banach spaces in which they act.) It is also immediately seen that 

т:/= !f{y)/"\.,dy), n 1,2,. . . 

Finally note for clarity that by an eigenvalue of T^ on the unit circle we mean 
a complex number 1 such that |A| = 1 and T^f = If /i-aimost everywhere for some 
/ ф О , / е £ Д / х ) . 

The purpose of the present paper is to find the eigenvalues of the operators T^ on 
the unit circle for different types of transition functions p. The results and methods 
are analogous to those in the previous papers [2] and [1] but, of course, they are 
much more general. 

2. KNOWN PRELIMINARIES 

Recall that in [4] (see also [3]) we have shown that an irreducible transition 
function p with a sub-invariant measure /i belongs precisely to one of the following 

types: either ^ p^"\x, A) — со for each Ae ^ such that fi(A) > 0 and each x (p is 
И = 1 00 

then called recurrent), or ^ p^"\x, A) < oo for each Ae ^ such that fi{A) < oo and 

//-almost all x (p is transient). Further, a recurrent p belongs precisely to one of the 
following types: either 

(1) l i m n - ^ f p^">(x,v4) 
n--^ CO m = l 

exists and is positive for each x and each Ae ^' such that jii[A) > 0 (p is called 
positive-recurrent), or the limit (1) is zero for each x and each Ae ßf such that 
fi[A) < 00 (p is null-recurrent). 
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In the whole present paper we shall assume that the following two conditions are 
satisfied. 

Condition CD (cyclic decomposition). There exists a decomposition of X into 
d -h 1 disjoint subsets CQ, C^, ..., Q _ i , D from ^ such that fi(D) — 0, and 
p{x, X — Cj+1) = 0 for each x e Cy, j = 0, 1, ..., J — 1 (where we also put Q = CQ). 

Condition PS (positivity for the same n). If A^, Ä2 с Cj for some j \ A^, A2 e .^, 
and fi{Ai) > 0, ß(A2) > 0, then for each x there exists some n = n(x) such that 
p^">(x, Л1) > 0, p^"\x, A2) > 0. 

Now define the functions e^, к = 0, 1, ..,, d — 1, by 

(2) e„{x) = e^'^'J^i^ for xeCj, 7 = 0, 1, • •., ^ - 1 , 
= 0 for X e D . 

(In particular, ^o(^) = 1 for x e X — D,) 
Let us now recall several known results, which will be useful for our future develop

ment. 

Lemma 1. / / the function e,^ e Lj[fi) and p is stochastic, then 

(3) T^Ci^ = e^^^^'^Cf^ ß-almost everywhere . 

This lemma appears as Lemma 6 in [4]. 

Lemma 2. For any complex ^-measurable function f on X we have, for all x and 
all n = 1, 2, ..., 

f{y)p^"\x,dy)\ (4) ''й/'•\x,X)(\f{y)\'p^^^Xx,dy). 

provided the integrals involved exist. If in (4) the case of equality occurs for some x 
and all n = 1, 2 , . . . , then f is constant pi-almost everywhere on each Cj,j = 0, 1, ..., 
. . , d - L 

This lemma appears as Lemma 2 in [4]. 

Lemma 3. If p is a recurrent transition function, then it is stochastic. 

This is an immediate consequence of Theorem 1 in [4], 

Lemma 4. If p is a positive-recurrent transition function, then fi(X) < 00. 

This assertion is a part of Corollary 2 in [4]. 

Lemma 5. If p is either null-recurrent, or transient and such that p{x, X) = 1 for 
fi-almost all x, then jn{X) = GO. 

This lemma coincides with Theorem 10 in [4]. 
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3. EIGENVALUES OF Г^, 1 ^ a < oo 

Lemma 6. Let h be an ^-measurable function on X such that h{x) ^ 0 and 
fx h{y) P{^^ ^y) ~ K^) f^^ fi-almost all x. Then either h{x) > 0 for ß-almost all x 
or h{x) == Ofor li-almost all x. 

Proof. If the last assertion of the lemma is not true, then h{y) > 0 for all y 
belonging to some set Л e ^ having the measure /г(Л) > 0. By our constant assump
tion on /г and v ,̂ we have also v^i^ ^ ^ ^^^ ̂ ^^^ ^- This gives, for each x, the exi
stence of some n = n{x) such that ]?^"\x, A) > 0. Hence, for /^-almost all x, 

h{x) ^ f h{y) p{x, dy) ^ . -. ^ f h{y) /?̂ ">(x, dj;) > 0 . 
J X J X 

Lemma 7. / / h ^ T^h and h ^ 0 fx-almost everywhere, where h e Lj^fi), 1 ^ a < 
< 00, then TJi = h jLi-almost everywhere. 

Proof. Obviously, we obtain 

J X J x 

Since the two extreme terms here coincide, also the second and the third terms must 
be equal, which gives the desired conclusion. 

Lemma 8. / / T^h = h fi-almost everywhere for some function h e L^(/i), 1 ^ a < 
< 00, then h is constant fx-almost everywhere. 

Proof. Clearly it is sufficient to give the proof only for h real. Let/^''^ be the func
tion on X identically equal to a non-negative constant a. Then ^Х/^^'ХУ) K ^ ? ^У) ^ 
= ap{x, X) S f^^'Xx) for all x. Setting g = h - f^""^ we have ^ (̂x) й h{x) and 
J*z 9{y) p{^^ ^y) ^ 9{^) for /z-almost all x. Finally, denote by g^ the function defined 
by g^{x) = g{x) whenever ^ (̂x) ^ 0, and by g^{x) = 0 whenever ^(x) < 0. It follows 
that 0 ^ g^{x) ^ |/z(x)| for all x, so that g'^ e Lj^fi), and it is easy to verify that 
g^[x) S ^хд^{у) p{^^^y) for /x-almost all x. Lemma 7 now implies ^ '̂̂ (x) = 
= Ix 9^{у) pi^^^y) fo^ ju-almost all x, and by Lemma 6 either g^{x) = 0 for 
/i-almost all x or Ö''^(X) > 0 for /^-almost all x. The first case yields, for /x-almost all x, 
the inequalities ^ (̂x) S 0, h{x) — f^'^Xx) S 0, h[x) ^ a. The second case yields, for 
jw-almost all x, g{x) > 0, h{x) — /^"^(x) > 0, h{x) > a. On choosing first a = 0 we 
see that the function h is either non-positive or positive, ju-almost everywhere. 
However, if h is positive it must be constant /i-almost everywhere, since a is an 
arbitrary non-negative number; if h is non-positive it suffices to change h 
into —h. 
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Lemma 9. Let ^х/{у) Р{^^^У) = ^f{^) for ß-almost all x, where |Я| = 1, / is 
.^-measurable, and \f{x)\ = с Ф 0 for ji-almost all x. Then 

(a) p[x, X) = 1 for fi-almost all x, 
(b) Я̂  - 1, i.e. X = e^'^'^'^for some /c = 0, 1, ..., J - 1, 
(c) f{x) = Co eJ^x)for ^-almost all X, with Cj^ being the function introduced in (2) 

and CQ some constant. 

Proof. First, by our assumption we obtain easily that also 

(5) /(>') P'"\-^, ày) ^ A"/(x) for n = 1, 2, . . . , and /z-almost all x . 

Hence, if x is such that ]/(x)| = c, we get by (5) and Lemma 2 

(6) c' = l/WP = И"/(х)Р = f{y)p'"\x,ày) < 

й P^"\x, X) \f{yf p^"\x,ày) = c^[p^''\x,X)f й с' 

Since the two extreme terms in (6) coincide, all terms here must be equal. Therefore 
p^"\x, X) = 1; in particular, for n = 1, p{x,X) = \. Thus, since | / (x) | = с for 
ju-almost all x, the assertion (a) is proved. 

Further, since we have equalities in (6), we get by Lemma 2 that / is constant 
^-almost everywhere on each Cp j = 0, 1, ..., d ~ L In other words, there exist 
some constants Co, c^, ..., Q _ I such that 

(7) f{x) = с J for /i-almost all xe Cj. 

Taking some x e Cj for which the last equality holds and for which p^'"(x, X) = 1 
(which is possible in view of (a)), we obtain, using (5) for n = d, that 

^"Cj = ?J>f{x) f{y)p^'\x,dy) = cj p^'\x, dy) = с J, 

which gives the assertion (b). 
Finally, the assertion (c) is obtained easily from (5) for n = 1, 2, ..., (i — 1, taking 

into account (7), (a), and (b). 

Theorem 1. Let the transition function p be positive-recurrent. Then the set of all 
eigenvalues of the operator T̂  (1 ^ a < oo) on the unit circle consists precisely of the 
numbers ê Ttifc/d̂  /c = 0, 1 , . . . , d - 1, and every eigenfunction f e Lj^jx) for which 

(8) TJ = e^'^'^^'^f ^-almost everywhere 

is equal ß-almost everywhere to some multiple of the function e^. 
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Proof. First, by Lemma 4, ê . e Lj^fi). Hence, by Lemma 3 and Lemma 1, each of 
the numbers ĝ ^̂ '̂ /̂*̂  is an eigenvalue of T^. 

For the proof of the opposite assertion let us assume that T^f = If ß-almost every
where, where |Я| = 1, / ф О, feLj^ii). Now, denoting by | / | the function whose 
value at the point x is |/(x)| , we obtain | / | == |Я/| ^ T^\f\' Hence, Lemma 7 gives 
T,\f\ = 1/1, and, by Lemma 8, | / | is constant /z-almost everywhere. Thus we may 
use Lemma 9, and the theorem follows. 

Theorem 2. Let the transition function p be null-recurrent or transient. Then the 
operator T̂  (1 ^ oc < oo) has no eigenvalues on the unit circle. 

Proof. Suppose, on the contrary, that TJ = Xf /г-almost everywhere for some 
feLlii)J Ф 0, |Я| = 1. Then | / | = \Щ й T,\fl which gives, by Lemma 7, T, | / | = 
= | / | , and, by Lemma 8, | / | is equal ju-almost everywhere to some constant с ф 0. 
Hence we may use Lemma 9(a), obtaining p{x, X) = 1 for /x-almost all x, which 
further shows, by Lemma 5, that fi(X) = oo. Thus jx l/WI'^K^^) "= c"" ß(X) = oo, 
but this contradicts the assumption / e L^(/i). 

4. EIGENVALUES OF T^ 

Lemma 10. / / the transition function p is recurrent, and if h S T^h ii-almost 
everywhere, with h being some real function in L^[fi), then T^h ~ h ß-almost 
everywhere. 

Proof. Setting g = Т,̂ /г ~ h, we have g e L^{jj), g ^ 0, and T^h = h Л- g. 
We obtain successively T^^h = T^h + T^g,..., T^'^^h = T^h + l^g. On adding 
these equalities we get 

r=l r = 0 r = 0 

that is 

(9) tKd-T"J^h-h. • 
r = 0 

Consider now the set N,, = {у, д{у) Ш к~^]Л being а positive integer. We have 

(10) 

r — 0 ''~^ J X V Nk 

Therefore, by (10) and (9), we obtain 

tp''\x,N,) ^ k\\ i r^dU ^ ^(ll̂ '̂ ^^IU + IIMU) й 2k\\h\U < CO 
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for each positive integer n and for /x-almost all x, which gives 
00 

YJ P^''\X, NJ^) < 00 for ju-almost all x . 
r = 0 

However, since p is recurrent, this may occur only if fi{Nk) = 0. Now, к was arbitrary,, 
00 

and hence fi{{y; g{y) > 0}) = /i( U Ni^ = 0; this means that f̂ = 0 /i-almost every-
k=l 

where, and the assertion follows. 

Lemma 11. / / the transition function p is recurrent, and if T^h = h fi-almost 
everywhere, with h e L^^fi), then h is constant pt-almost everywhere. 

The p r o o f follows the same pattern as that of Lemma 8, only Lj^ii) is replaced 
by Lj^jj), and Lemma 10 is used in place of Lemma 7. 

Theorem 3. Let the transition function p he recurrent. Then the set of all eigen
values of the operator T^ on the unit circle consists precisely of the numbers e^^^^'^^ 
/c == 0, 1, .,.,d-~ 1, and every eigenfunction f e Lj^pi) for which 

(11) T^f--= e'^'^'^'^f ß-almost everywhere 

is equal ß-almost everywhere to some multiple of the function e,^. 

The p r o o f follows the same pattern as that of Theorem 1, only L^(/i), Lemma 10 
and Lemma 11 are used in place of L^(ju), Lemma 7, and Lemma 8, respectively. 

Theorem 4. Let the transition function p be transient and stochastic. Then each 
number e^""'^!^, к = 0,1, ...,d ~ 1, is an eigenvalue of the operator T^; namely, 

(12) T«.e,==e^--^/4. 

The p r o o f is immediate by Lemma 1. 

E x a m p l e 1. Under the assumptions of Theorem 4, the operator T^ may have 
also other eigenvalues on the unit circle in addition to the eigenvalues е̂ яг/с/с̂ ^ ^ _ 
= 0, l , . . . , d — 1. This is seen by the following example (given as Example 1 in [1]), 
even for a denumerable space X : Let X = {..,, —2, — 1 , 0, 1, 2, . . . } , and let 

p{j\j - 1) = h p{jJ + 1) - i for j < 0 , 

p{0,-l)=:p{0,0) = p{0,l) = i , 

p{jj - 1) = i, PUJ + 1) == * for J > 0, 

p(j^ /c) = 0 otherwise. Puting f(k) = 3(—1)'^' — 2( —i)''"' for every integer k, we 
h a v e / e L^(/i), T^f = —f, so that — 1 is an eigenvalue of T^, though d = 1. 

Similarly, T^ may have also other eigenvectors associated to the eigenvalues 
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^inikid jj^ addition to the eigenvectors e^^, shown in (12). This may be seen again with 
the aid of the preceding transition function p. Namely, putting д[Щ = 2~^, g{ — k) = 
= 2 - 2"^ for /c ^ 0, we have g e L^{fi) and T^g = g, in addition to T^CQ = CQ. 
(See Example 2 in [1].) 

Example 2. It is easy to find a sub-stochastic transition function, which is transient 
but not stochastic, such that the corresponding operator T^ has no eigenvalues on the 
unit circle. For example, choose some p such that p(x, X) ^ r for all x, where r < 1. 
Then it is immediately seen that || T^ || ^ S r so that, by a well-known theorem, each 
eigenvalue Я of T^ satisfies |yi| ^ r. 

E x a m p l e 3. On the other hand, if p is transient and not stochastic, the cor
responding operator T^ may still have some eigenvalues on the unit circle; this may 
be seen by the following example. First, choose for each n = 1,2,. . . some number b,„ 

00 

0 < b„ < 1, such that the infinite product ЦЬ^ = b exists, and 0 < Ь < 1. (E.g., we 

00 00 

may put b„ = exp [ - l / n ^ ] , so that f l /̂i = ^^P ["" ^ V"^] = ^^P [-^^1^1) 

Further, choose also a„ such that 0 < a„ < 1 ~~ b»- Now, take X = {..., - 2 , - 1 , 
0, 1, 2 , . . . } , and define the transition function p by 

p{0,l) = p{0,-\)^i, 

p{n,n+ i) = p{-n,-n - i) = b„ for n = l, 2 , . . . , 

p{n,n~ l) = p{-n,-n + \) = a„ for n = l , 2 , . . . , 

p{j, k) = 0 otherwise. Note that, in particular, p[x, X) < 1 for all xeX. 
We shall now construct a function / e L„(^^) satisfying T„f = f. First, setting 

/ (0) = 0, /(1) = 1, / (~1) = - 1 , we have clearly (T^f) (0) = /(0)- Further, T^f = 
= / means, for n = 1, 2 , . . . , 

(13) / (n) = p{n, n + \)f{n + 1) + p{n, n - l ) / ( « - 1) = 

= bj{n + l) + a„f{n- 1)> 

that is 

(14) /(n + l) = f [/(«)-«„/(«- !)]• 

Therefore, evidently, the values/(« + 1), n = 1, 2, • • •' '̂ '̂̂  ^^ computed successively 
from (14). Finally, p u t / ( - n ) = - / ( n ) for n = 2, ^' ••• 

Now, we shall prove 

(15) f{n) > / ( n - 1) ^ 0 for n = K2,... 
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Clearly, these inequalities (15) are true for w = 1. Further, if (15) is true for some n, 
then (13) and (15) gives 

f{n) S Kf{n + 1) + (1 - K)f{n - 1) < bj{n+ 1) + (1 - b,)/(n) , 

that is f{n) < f[n + 1), which shows the validity of (15) in general. On the other 
hand, (14) and (15) entail, for n = 1, 2, ..., 

(16) /(п + 1 ) ^ Я ^ ) ^ Я ^ 1 1 и ^ . . . ^ i g J _ - . l < o o . 

и = 1 

Thus О й f{n) S Ъ~^ for п - О, 1, 2,. . . , and, more generally, -Ъ~^ ^ /(n) g Ь^^ 
for all neX. Therefore, on gathering the results, we have / e L^{fi), / ф 0, T^f = / , 
so that the number 1 is the eigenvalue of T^. 
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Резюме 

СОБСТВЕННЫЕ ЗНАЧЕНИЯ ОПЕРАТОРОВ В ПРОСТРАНСТВАХ Lp 
ДЛЯ ЦЕПЕЙ МАРКОВА С ПРОИЗВОЛЬНОЙ СИСТЕМОЙ СОСТОЯНИЙ 

ЗБЫНЕК ШИДАК (Zbynëk Sidâk), Прага 

Рассматривается неприводимая субстохастическая переходная функция р ~ 
= р(х, А) в произвольном пространстве X состояний х, для которой существует 
субинвариантная мера ji. Обозначим через L^(/i) (1 ^ а < со) пространство всех 
комплексных функций / на X, для которых ]\f\\a = [Jxj/Wl'' lJi{àx)Y^°' конечна; 
L^(ju) будет аналогичное пространство тех/, для которых |/1|оо = ^ss sup | / W | 

конечна. Определим оператор Т̂  (1 ^ а ^ оо) в пространстве Lj^fi) соотноше
нием Т , / = Ĵ /̂(> )̂ р(., dj;). 
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При некоторых предположениях (тех же самых, как в [3], [4], но очень широ
ких) доказывается: Для положительной возвратной р с периодом d множество 
всех собственных значений Г̂  (1 ^ а < оо) на единичной окружности совпадает 
с множеством |̂ 2̂̂ ^̂ /̂ ; Ä: = О, 1, ..., d — 1}, и собственные подпространства, 
принадлежащие к этим значениям, одномерны; аналогичный результат верен 
для Too и возвратной р. Для нулевой возвратной и для невозвратной р опера
тор Тд ( 1 ^ а < о о ) не имеет никаких собственных значений на единичной 
окружности. Для невозвратной стохастической р все числа е̂ я»̂ /̂ ^ /с = О, 1,..., 
..,, d — 1, являются собственными значениями Т^, и нельзя утверждать больше. 
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