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YEXOCJIOBALIKMIN MATEMATUYECKUN XVPHAI

M. iym Yexoc. yKoii Axad HayK
T. 17 (92) [IPATA 18.1X. 1967 r., No 3

ON THE POLAR DECOMPOSITION OF SCALAR-TYPE OPERATORS

MarTA KovARikovA, Kosice

(Received October 14, 1965)

In [3] it is proved that for an arbitrary scalar-type operator S we have S = A + iB,
where A and B are commuting scalar-type operators with a real spectrum and i is the
imaginary unit. This decomposition is analogous to the expressing a complex number
in the form A = o + if, where « and f are real numbers.

The present paper deals with the so-called polar decomposition S = RU of the
scalar-type operator S, where R and U are commuting scalar-type operators, R has
a real spectrum and the spectrum of U lies on the boundary of the unit circle. Thus,
an analog of expressing a complex number in the form A = ge'” is under considerat-
ion. :

The polar decomposition of a normal operator (thus a scalar-type operator) in
a Hilbert space is well-known [2].

The concepts and results from the theory of spectral operators used here are
published in [1].

Notation. Denote p the complex plane, K the boundary of the unit circle in p,
P the set of all non-negative real numbers, and P the set of all positive real numbers.

P will be the algebra of Borel sets on K and 4, the algebra of Borel sets on P.

Definition. The scalar-type operator S is said to be pseudo-unitary, if o(S) < K.
Before proving our theorem we shall prove the following lemma.

Lemma. Let A be a set and & be an algebra of its subsets. Let E be the spectral

measure defined on &. Let f and g be two bounded %B-measurable complex functions
defined on A. Then

) [ 0tz am) = | ) a0) [ o aee).
The integral is that defined in [1].

313



Proof. Let f, g be Z-measurable finite-valued functions on A. Due to the multi-
plicative property of the spectral measure E (1) is valid.

If f, g are bounded #-measurable functions on A, then there exist two sequences
Jfu g, of #-measurable finite-valued functions such that f, — f, g, = g uniformly
on A. According to (1) and definition of the integral we have

[ @0 az(e) = 1 [ 14210610kt -
- lin‘n Lf"(Z) dE(z) JAQ,-(Z) dE(z) = Lf (z) dE(2) j Ag(z) dE(2) .

Theorem. Let X be a Banach space and S € B(X) be a scalar type operator with
the resolution of identity E.

Then there exist operators R and U such that

(i) S = RU where R is scalar-type and U is pseudo-unitary
(i) R commutes with U and the operators R and U commute with S
(iii) o(R) = {o: 0 = ||, 2€ o(S)}
(iv) if in addition S™' € B(X), then E = Ep ® Ey, where Eg and Ey are resolut-
ions of identity for R and U, respectively. Under this assumption the decomposition
S = RU is unique and the spectrum of the operator U is given by

o(U) = (4 1 = nfll n e ()}

Proof. If 0 =« P and 6 = K, then ¢ x § denotes the set of all ordered pairs of
numbers (g, 17), where ¢ € o, € 5. Since every complex number A can be written
in the form 1 = ge'?, 6 x § can be identified with the set of complex numbers of
the form {).: )= 0e" peoa, e“”eé}. Then the set P x K represents the entire
complex plane without the origin.

We define
(2) Ex(c) = E(o x K) for oe%,,
Ey(8) = E(P x 9) for 1¢0, e By,
Ey(3) = E(P x ) + E({0}) for 1€, deBy.
Thus, Eg is a spectral measure on %,. Let us prove that Ey is a spectral measure
on %By. We have
Ey(0) = E(P x 0) = E(0) =0,
Ey(K) = E(P x K) + E({0}) = E(p) =1I.
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If 6,,0,€ B and 1 €5, N 5, then

Ey(, n'8,) = E(P x 6, 0 8,) + E({0}) = E(P x &,) E(P x &,) + E({0}) =
E(P x 8,) E(P x &,) + E({0}) E(P x &,) + E(P x 4,) E({0}) +
+ EX({0}) = (E(P x 8,) + E({0})) (E(P x 4,) + E({0})) =

= Ey(3,) Ey(3,) .

Il

An analogous calculation shows that E, has all properties of a spectral measure. The
uniform boundedness of E; on %y is obvious.

Define
l/|i| for A0, dep
) =
ol {1 for =0
and
(3) R =j 0 =0dEg(e) and U = j z dEy(z) .
P K

According to Lemma 6 in [1] R and U are scalar-type operators with resolutions
of identity E, and Ey, respectively. U is pseudo-unitary and ¢(R) = P. From the
definition of R and U it follows that

R = J [ dE(]) and U = J o(7) dE(A).
14 p
Using the lemma we have

rU = [ 2] 4 j p(3) dE(A) = j Vo) [ ota)ants) -
4 14 a(S a(S

~

= [ Plotyare = | b
a(S)—{0}

J a(S)

dE(7) + J A dE() =

{0}

=| AdE(}) = S.
Jp
Therefore (i) is proved. From the lemma there follows the commutativity of the
operator R with U and of the operators R and U with S, and hence (ii). To prove (iii)
consider that R is a continuous function of S. .
Let now S™' e B(¥X). Then E({0}) = 0 and in (2) we have E(8) = E(P x &) for
every 0 € Hg.

(4)  Eg(o) EU((?) = E(oc x K)E(P x 8) = E((c x K)n (P x 8)) + E({0}) =
= E((c n P) x 8)u {0}) = E(c x 9).
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Let pairs of operators Ry, U; and R,, U, satisfy (i) to (iii) and let their resolutions of
identity be Eg, E; and Fy, Fy, respectively. Due to (4) we have E = E; ® Ey and
E = FR ® FU'

If 0 € Bp and 6 € Ay, the identities

E(0 x K) = Ex(0) E(K) = Eg(o)
E(0 x K) = Fx(0) Fy(K) = Fy(o)
E(P x 3) = E(P) E(5) = Ey(0)
E(P x 5) = Fy(P) Fy(5) = Fu(9)

are valid. This implies Eg(c) = Fg(c)and Ey(8) = Fy(8); thus R, = Ryand U, = U,.
Finally,

K

U= _[ A dE(2) = _[ (1) GE() = j A aE).

The function @(4) is continuous on some neigborhood of the spectrum of the opera-

tor S and therefore U = ¢(S), o(U) = o(¢(S)) = ¢(a(S)) = {A: 2 = #/[n|, n e o(S)},
and the proof is completed.

Note. As we can see in the proof of the theorem, the operator U need not be uniquely

determined if S™! ¢ B(x) Defining the resolution of identity Ey as in the proof of the
theorem we have

o(U) = {A: 4 =n|n|, nes(S) — {0}} U {1}.
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