Czechoslovak Mathematical Journal

Paul F. Conrad
Lex-subgroups of lattice-ordered groups

Czechoslovak Mathematical Journal, Vol. 18 (1968), No. 1, 86-103

Persistent URL: http://dml.cz/dmlcz/100814

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

LEX-SUBGROUPS OF LATTICE-ORDERED GROUPS ${ }^{1}$)

Paul Conrad, New Orleans
(Received August 8, 1966)

1. Introduction. A convex l-subgroup C of an l-group G will be called a lex-subgroup if C is a proper lexicographic extension of a convex l-subgroup. These subgroups are extremely useful in determining the structure of G. The main reasons for this are that two lex-subgroups are either disjoint or comparable, and a maximal lex-subgroup is the double polar of a special element. In Section 3 we derive these and other useful properties of lex-subgroups and use them to determine structure theorems for l-groups. In particular, we obtain the main structure theorems in [3] and [7] as corollaries of Theorem 5.1.

The author wishes to thank Richard Byrd, Alfred Clifford and Norman Reilly, each of whom made many useful suggestions when this material was presented in a seminar at Tulane University.

Notation. We shall use the standard notation for l-groups (see for example [5]). If $\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ is a set of l-groups, then $\sum A_{\lambda}\left(\prod A_{\lambda}\right)$ will denote the small (large) cardinal sum of the A_{λ}. In particular, if $\Lambda=1, \ldots, n$ is finite, then $A_{1} \oplus \ldots \oplus A_{n}$ will denote the cardinal sum (that is, the direct sum, where $\left(a_{1}, \ldots, a_{n}\right)$ is defined to be positive if each $a_{i} \geqq 0$). If X and Y are subsets of an l-group G, then [X] will denote the subgroup of G that is generated by X and $X \| Y$ will denote that X and Y are not comparable with respect to inclusion, and $X \backslash Y$ will denote the elements in X that are not in Y. If $g \in G$, then $G(g)$ will denote the principal convex l-subgroup that is generated by g. Thus

$$
G(g)=\{x \in G:|x| \leqq n|g| \text { for some } n>0\} .
$$

2. Lex-extensions and polars. In this section we collect some well known facts that will be used throughout this paper. The material on prime subgroups and lexextensions may be found in [3] and [4], and most of the material on polars is due to Šik [8] and [9]. Throughout this section let G be an l-group.
[^0]A convex l-subgroup C of G is said to be prime if the lattice of (right) cosets of C. in G is totally ordered. In particular, if $C \triangleleft G$, then G / C is an o-group. Moreover, the following are equivalent
(1) C is prime.
(2) If $a, b \in G^{+} \backslash C$, then $a \wedge b \in G^{+} \backslash C$.
(3) The convex l-subgroups of G that contain C form a chain.
G is a lex-extension of a convex l-subgroup C if
(i) C is prime, and
(ii) $g \in G^{+} \mid C$ implies $g>C$.

If $C \neq 0$, then (ii) implies (i). An element $a \in G$ is a non-unit if $a>0$ and $a \wedge b=0$ for some $0<b \in G$. If N is the set of all non-units of G, then $[\mathrm{N}]$ is an l-ideal of G

Theorem 2.1. Let C be a convex l-subgroup of an l-group G. G is a lex-extension of C if and only if $C \supseteq[N]$, and all other convex l-subgroups of G are contained in $[N]$. If $0 \neq C \subset[N]$, then there exists a prime subgroup D of G such that $C \| D$ and hence $[N]$ is the smallest (non-zero) convex l-subgroup of G that is comparable with every convex l-subgroup of G.

If G is a lex-extension of C, and $C \subseteq E$, where E is a convex l-subgroup of G, then G is a lex-extension of E. Finally, the following are equivalent for $C \neq 0$.
(1) G is a lex-extension of C.
(2) C is comparable with all other convex l-subgroups of G.

There are two other characterizations of [N] due to Lavis [6]. For $g \in G$ Lavis defined $g \approx 0$ if there exist $g_{1}, \ldots, g_{n} \in G$ such that

$$
g\left\|g_{1}\right\| g_{2}\|\ldots\| g_{n} \| 0
$$

Theorem 2.2. $\left.[N]=[\{g \in G: g \| 0\}]=\{g \in G: g \approx 0 \text { or } g=0\}^{2}\right)$.
We shall call [N] the lex-kernel of G and denote it by $L(G)$. A value of $0 \neq g \in G$ is a convex l-subgroup of G that is maximal without containing g. Each value of g is prime, and $g>0$ if and only if $M+g>M$ for all values M of g. If M is the only value of g, then g is said to be special and in this case M is also called special.

The polar of a subset X of G is the convex l-subgroup

$$
X^{\prime}=\{g \in G:|g| \wedge|x|=0 \text { for all } x \in X\}
$$

Sik [8] has shown that the set of all polars in G is a complete Boolean algebra.

[^1]Theorem 2.3. For a convex l-subgroup $A \neq 0$ of G the following are equivalent.
(a) A is an o-group.
(e) $A^{\prime \prime}$ is a maximal convex o-subgroup.
(b) If $0<a \in A$, then $a^{\prime}=A^{\prime}$.
(f) $A^{\prime \prime}$ is a minimal polar.
(c) A^{\prime} is a prime subgroup.
(g) A^{\prime} is a maximal polar.
(d) A^{\prime} is a minimal prime subgroup.
(h) Each $0 \neq a \in A$ is special.

Proposition 2.4. If A and B are convex l-subgroups of G and $0=A \cap B=$ $=(A \oplus B)^{\prime}$, then $A^{\prime \prime}=B^{\prime}$.

Proof. Since $A \cap B=0, A \subseteq B^{\prime}$ and hence $A^{\prime \prime} \subseteq B^{\prime \prime \prime}=B^{\prime} . A^{\prime} \cap B^{\prime} \subseteq(A \oplus B)^{\prime}=$ $=0$ and hence $B^{\prime} \subseteq A^{\prime \prime}$.
3. Lex-subgroups. A convex l-subgroup C of an l-group G is a lex-subgroup if C is a proper lex-extension of a convex l-subgroup. If, in addition, there does not exist a proper lex-extension of C in G, then C is a maximal lex-subgroup. A po-set S is a root system if for each $s \in S,\{x \in S: x \geqq s\}$ is totally ordered.

In the next four propositions we shall assume that A and B are lex-subgroups of G and that $A(B)$ is a proper lex-extension of $U(V)$.
3.1. If $A \| B$, then $A \cap B=0$. In particular, the set of all lex-subgroups of G form a root system with respect to inclusion.

Proof. Select $0<a \in A \backslash(B \cup U)$ and $0<b \in B \backslash(A \cup V)$. Since $A \cap B$ is a convex l-subgroup of A, it is comparable with U (Theorem 2.1). If $A \cap B \subseteq U$, then $a>U \supseteq A \cap B$ and if $A \cap B \supseteq U$, then by Theorem 2.1, A is a lex-extension of $A \cap B$ and once again $a>A \cap B$. Similarly $b>A \cap B$ and hence since $a \wedge b \in$ $\in A \cap B$, it follows that $a \wedge b$ is the largest element in $A \cap B$. Therefore $A \cap B=0$.
3.2. (Clifford) $\left(A \oplus A^{\prime}\right)^{+}=\left\{x \in G^{+}: x\right.$ does not exceed every element in $\left.A\right\}$. In particular, $G=A \oplus A^{\prime}$, provided that A is not bounded in G.
This is part of Lemma 6.2 in [3].
3.3. If $a \in A \backslash U$, then $a^{\prime}=A^{\prime}$ and $a^{\prime \prime}=A^{\prime \prime}$ is a lex-extension of A and of U, and a maximal lex-subgroup of G. If $U=0$, then $A^{\prime \prime}$ is the largest convex o-subgroup of G that contains A. If $U \neq 0$, then $U^{\prime}=A^{\prime}$ and $U^{\prime \prime}=A^{\prime \prime}$ is the largest lexextension of U in G.

Proof. If $U=0$ and $0 \neq a \in A$, then A is an o-group and hence by Theorem 2.3, $a^{\prime}=|a|^{\prime}=A^{\prime}$ and $A^{\prime \prime}$ is a maximal convex o-subgioup of G. If M is a convex o-subgroup of G and $M \supseteq A$, then $M \cap A^{\prime \prime} \supseteq A \neq 0$ and hence by $3.1 M \subseteq A^{\prime \prime}$. Therefore $A^{\prime \prime}$ is the largest convex o-subgroup of G that contains A.

Suppose that $U \neq 0$. Clearly $A^{\prime} \subseteq U^{\prime}$. If $0<x \in U^{\prime} \backslash A^{\prime}$, then $x \wedge y>0$ for some $0<y \in A$ and hence $x \geqq x \wedge y \geqq u>0$ for some $u \in U$, but this contradicts the
fact that $x \in U^{\prime}$. Therefore $U^{\prime}=A^{\prime}$. If $a \in A \backslash U$, then $a>U$ and hence $G(a) \supset U$. Thus $a^{\prime}=G(a)^{\prime} \subseteq U^{\prime}=A^{\prime}$ and since $a \in A, a^{\prime} \supseteq A^{\prime}$. Therefore $a^{\prime}=A^{\prime}=U^{\prime}$. Now

$$
G \supseteq A^{\prime \prime} \oplus A^{\prime} \supseteq A \oplus A^{\prime} .
$$

If $0<g \in A^{\prime \prime} \backslash A$, then $g \in G^{+} \backslash\left(A \oplus A^{\prime}\right)$ and hence by $3.2 g>A$. Thus $U^{\prime \prime}$ is a lexextension of A and hence a lex-extension of U. If M is a proper lex-extension of U in G, then by the above argument $M \subseteq M^{\prime \prime}=U^{\prime \prime}$. Therefore $U^{\prime \prime}$ is the largest lexextension of U in G.
3.4. If C is a convex l-subgroup of G and $C \supset A^{\prime \prime}$, then $C \supseteq A^{\prime \prime} \oplus D$ for some non-zero convex l-subgroup D of G.

Proof. Let D be the polar of $A^{\prime \prime}$ in C. If $D=0$, then by 3.2 each $0<x \in C \backslash A^{\prime \prime}$ must exceed $A^{\prime \prime}$. Thus C is a proper lex-extension of $A^{\prime \prime}$, but this contradicts the fact that $A^{\prime \prime}$ is a maximal lex-subgroup.

The following theorem is an immediate consequence of 3.3.
Theorem 3.5. Let $M \neq 0$ be a convex l-subgroup of G. The lex-extensions of M in G form a chain in $M^{\prime \prime}$. In particular, a non-zero polar admits no proper lexextensions, and the set of all lex-subgroups of G form a root system with respect to inclusion. If M is a lex-subgroup of G or if M admits a proper lex-extension, then $M^{\prime \prime}$ is a maximal lex-subgroup and the largest lex-extension of M in G.

The following theorem is proven in [4].
Theorem 3.6. For $g \in G$ the following are equivalent.
(1) $G(g)$ is a lex-subgroup.
(2) g is special in G.
(3) g is special in $G(g)$.
3.7. For $0<g \in G$ the following are equivalent.
(a) $y \notin L(G)$ the lex-kernel of G.
(b) g is special and a unit.

Proof. a) \rightarrow b). If $0<g \in G \backslash L(G)$, then $G(g)$ is a proper lex extension of $L(G)$ and hence by Theorem $3.6 g$ is special and clearly g is a unit.
b) \rightarrow a). By Theorem $3.6 G(g)$ is a proper lex-extension of $U=L(G(g))$ and $g \in$ $\in G(g) \backslash U$. Since g is a unit, $g^{\prime}=0$ and hence $g^{\prime \prime}=G$. By $3.3 G=g^{\prime \prime}$ is a lex-extension of U and hence by Theorem $2.1 U \supseteq L(G)$. Therefore $g \notin L(G)$.

Theorem 3.8. For a convex l-subgroup A of G the following are equivalent.
(a) A is a lex-subgroup.
(b) $G(a) \subseteq A \subseteq a^{\prime \prime}$ for some special element a of G.

Proof. a) \rightarrow b). Let $U=L(A)$ and consider $0<a \in A \backslash U$. By 3.3

$$
U \subset G(a) \subseteq A \subseteq A^{\prime \prime}=a^{\prime \prime}
$$

and $a^{\prime \prime}$ is a lex-extension of U. Thus $G(a)$ is a proper lex-extension of U and hence by Theorem 3.6 a is special.
b) \rightarrow a). By Theorem $3.6 G(a)$ is a lex-subgroup and hence a proper lex-extension of $V=L(G(a))$. Clearly $a \in G(a) \mid V$ and hence by $3.3 a^{\prime \prime}$ is a lex-extension of V. Therefore A is a proper lex-extension of V.

Note that if A is a maximal lex-subgroup, then $A=a^{\prime \prime}$.

Corollary 1. For a convex l-subgroup A of G the following are equivalent.
(a) A is a maximal lex-subgroup.
(b) $A=a^{\prime \prime}$ for some special element a of G..
(c) A is a lex-subgroup and also a polar.

In particular if a is a special element of G, then $a^{\prime \prime}$ is a maximal lex-subgroup and $|a|>L\left(a^{\prime \prime}\right)$.

Proof. We have shown that (a) implies (b). If (b) holds, then by the theorem A is a lex-subgroup and clearly A is a polar. Finally since a non-zero polar admits no proper lex-extensions (Theorem 3.5) it follows that (c) implies (a).

Corollary II. If $a_{1}, a_{2}, \ldots, a_{n}$ are disjoint special elements of G and no $a_{i}^{\prime \prime}$ is bounded in G, then $G=a_{1}^{\prime \prime} \oplus a_{2}^{\prime \prime} \oplus \ldots \oplus a_{n}^{\prime \prime} \oplus D$ for some convex l-subgroup D of G.

Proof. Since $a_{1}^{\prime \prime}$ is a lex-subgroup, we have by 3.2 that $G=a_{1}^{\prime \prime} \oplus a_{1}^{\prime}$. Consider a_{i}, $i \neq 1$. Since $a_{i} \in a_{1}^{\prime}, a_{i}^{\prime \prime} \subseteq a_{1}^{\prime}$. By Theorem $3.6 a_{i}$ is specia! in $G\left(a_{i}\right) \subseteq a_{1}^{\prime}$ and hence by Theorem $3.6 a_{i}$ is special in a_{1}^{\prime}. Thus by induction $a_{1}^{\prime}=a_{2}^{\prime \prime} \oplus \ldots \oplus a_{n}^{\prime \prime} \oplus D$, and hence $G=a_{1}^{\prime \prime} \oplus \ldots \oplus a_{n}^{\prime \prime} \oplus D$.

Theorem 3.9. For an l-group G the following are equivalent.
(a) There exists a maximal disjoint subset $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$ of G, and in addition each s_{λ} is special and no $s_{\lambda}^{\prime \prime}$ is bounded in G.
(b) There exists an l-isomorphism σ of G such that

$$
\sum A_{\lambda} \subseteq G \sigma \subseteq \prod A_{\lambda}(\lambda \in \Lambda)
$$

where A_{λ} is an l-group and $A_{\lambda} \neq L\left(A_{\lambda}\right)$ for each $\lambda \in \Lambda$. In any such representation $\left\{\bar{A}_{\lambda} \sigma^{-1}: \lambda \in \Lambda\right\}$ is the set of all unbounded maximal lex-subgroups of G, where

$$
\bar{A}_{\lambda}=\left\{\left(\ldots, x_{\mu}, \ldots\right) \in \prod A_{\lambda}: x_{\mu}=0 \text { for all } \mu \neq \lambda\right\} .
$$

Proof. a) \rightarrow b). By Corollary I of Theorem 3.8 each $s_{\lambda}^{\prime \prime}$ is a maximal lex-subgroup, and hence by $3.2 G=s_{\lambda}^{\prime \prime} \oplus s_{\lambda}^{\prime}$ for each $\lambda \in \Lambda$. Thus each $g \in G$ has a unique representation $g=g_{\lambda}+g^{\lambda}$, where $g_{\lambda} \in s_{\lambda}^{\prime \prime}$ and $g^{\lambda} \in s_{\lambda}^{\prime}$. The mapping $g \rightarrow g_{\lambda}$ is an l-homomorphism of G onto $s_{\lambda}^{\prime \prime}$ with kernel s_{λ}^{\prime}. Define

$$
g \sigma=\left(\ldots, g_{\lambda}, \ldots\right) \in \prod s_{\lambda}^{\prime \prime} .
$$

Then σ is an l-homomorphism with kernel $\cap s_{\lambda}^{\prime}$ and since $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset, $\cap s_{\lambda}^{\prime}=0$. Therefore σ is an l-isomorphism of G into $\prod s_{\lambda}^{\prime \prime}$. Consider $0<x \in s_{\lambda}^{\prime \prime}$. If $\alpha \neq \lambda$, then $s_{\alpha} \wedge s_{\lambda}=0$ and hence $s_{\alpha} \in s_{\lambda}^{\prime}$. Thus $x \wedge s_{\alpha}=0$ and hence $x \in s_{\alpha}^{\prime}$. Therefore

$$
(x \sigma)_{\alpha}= \begin{cases}x & \text { if } \alpha=\lambda \\ 0 & \text { otherwise }\end{cases}
$$

and it follows that $\sum s_{\lambda}^{\prime \prime} \subseteq G \sigma \subseteq \prod s_{\lambda}^{\prime \prime}$.
b) $\rightarrow a$). For each $\lambda \in \Lambda$ pick $0<a_{\lambda} \in A_{\lambda} \backslash L\left(A_{\lambda}\right)$ and let \bar{a}_{λ} be the element in $\prod A_{\lambda}$ with λ-th component a_{λ} and all other components 0 , and let $s_{\lambda}=\bar{a}_{\lambda} \sigma^{-1}$. Then $\left\{\bar{a}_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset of $G \sigma$ and hence $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset of G. Moreover, $\bar{a}_{\lambda}^{\prime \prime}=\bar{A}_{\lambda}$ which is an unbounded lex-subgroup of $G \sigma$. It follows that $s_{\lambda}^{\prime \prime}$ is unbounded in G and that $G\left(s_{\lambda}\right)$ is a lex-subgroup. Thus each s_{λ} is special.
Suppose that $\left\{M_{\alpha}: \alpha \in A\right\}$ is the set of all unbounded lex-subgroups of G. By 3.1 $M_{\alpha} \cap M_{\beta}=0$ if $\alpha \neq \beta$ and hence by Theorem 2.1 in [3]

$$
M=\left[U M_{\alpha}\right]=\sum M_{\alpha}
$$

By Theorem 3.9 there exists an l-isomorphism σ of $M^{\prime \prime}$ such that

$$
\sum M_{\alpha} \subseteq M^{\prime \prime} \sigma \subseteq \prod M_{\alpha} .
$$

Now $G \supseteq M^{\prime \prime} \oplus M^{\prime}$ and it would be useful to know under what conditions $G=$ $=M^{\prime \prime} \oplus M^{\prime}$; but the author has not been able to answer this question.

Theorem 3.10. The subgroup S of an l-group G that is generated by the special elements of G is an l-ideal.

Proof. Suppose that $0<a \in G$ is special and consider $0<x \in G(a)$. Then $a<$ $<a+x \in G(a)$ and hence $G(a)=G(a+x)$. Thus by Theorem $3.6 a+x$ is special and hence $x=-a+a+x \in S$. Thus we have shown that $G(a) \subseteq S$ and it follows that

$$
S=[\bigcup\{G(a): a \text { is special in } G\}]=\bigvee G(a)
$$

and hence S is a convex l-subgroup of G. If $G(a)$ is a lex-subgroup, then so is $G(-g+$ $+a+g$) for each $g \in G$. Therefore $S \triangleleft G$ and hence S is an l-ideal of G.

If $\left\{C_{\alpha}: \alpha \in A\right\}$ is a chain of lex-subgroups of G, then $C=U C_{\alpha}$ need not be a lexsubgroup or a polar.

The following theorem gives an important relationship between lex-subgroups and polars (see Theorem 5.2). An l-group G is said to be finite valued if each $0 \neq g \in G$ has only a finite number of values or equivalently if each value of g is special (Theorem 3.8 in [4]).

Theorem 3.11. For an l-group G the following are equivalent.
(1) The lattice of all filets of G satisfies the DCC (descending chain condition).
(2) G is finite valued and the root system $M(G)$ of all maximal lex-subgroups of G satisfies the DCC.

Proof. A filet chain is a set of strictly positive elements of G

such that $a_{i} \wedge b_{i}=0$ and $a_{i} \geqq a_{i+1} \vee b_{i+1}$. McAlister ([7] Proposition 2.1) has shown that (1) holds if and only if each filet chain is finite.

1) \rightarrow 2). If $a_{1}^{\prime \prime} \supset a_{2}^{\prime \prime} \supset \ldots$ is a descending chain in $M(G)$, then by $3.4 a_{i}^{\prime \prime}=a_{i+1}^{\prime \prime} \oplus$ $\oplus B_{i+1}$, where $0 \neq B_{i+1}$ is a convex l-subgroup of G. Thus by selecting $0<b_{i+1} \in$ $\in B_{i+1}$ we get a filet chain which is necessarily finite. Thus there are only a finite number of $a_{i}^{\prime \prime}$ and hence $M(G)$ satisfies the DCC.

Suppose (by way of contradiction) that $0<g \in G$ has an infinite number of values. Then by Theorem 3.8 in [4] at least one, say G_{α}, is not special. Let G^{α} be the convex l-subgroup of G that covers G_{α} and let G_{β} be another value of g. Pick $0<a \in$ $\in\left(G^{\alpha} \backslash G_{\alpha}\right) \cap G_{\beta}$ and $0<b \in\left(G^{\beta} \backslash G_{\beta}\right) \cap G_{\alpha}$. Then it follows by Theorem 3.8 in [4] that a has an infinite number of values. Without loss of generality we may assume that g exceeds a and b. Moreover

$$
\begin{aligned}
& a=a \wedge b+\bar{a} . \bar{a} \in G^{\alpha} \backslash G_{\alpha} \text { and hence has an infinite number of values. } \\
& b=a \wedge b+\bar{b} . \bar{b} \in G^{\beta} \backslash G_{\beta} . \bar{a} \wedge \bar{b}=0 .
\end{aligned}
$$

Thus we can construct an infinite filet chain

but this contradicts (1).
2) $\rightarrow 1$). Suppose (by way of contradiction) that

is an infinite filet chain. Since each b_{i} is the join of disjoint special elements, we may assume that each b_{i} is special. Also $a_{1}=c_{1}+\ldots+c_{n}$, where the c_{i} are disjoint and special. Thus without loss of generality we may assume that $c=c_{1}$ exceeds an infinite number of the b_{i}. Pick $i>j$ such that $c>b_{i}$ and b_{j}. If $c \wedge a_{i}=c$, then $a_{i} \geqq$ $\geqq c>b_{i}$, a contradiction. If $c \wedge a_{j}=c \wedge a_{i}$, then $c \wedge a_{j} \geqq b_{j}$, a contradiction. If $c \wedge a_{i}=b_{j}$, then $c \wedge b_{j}=b_{j} \geqq c \wedge a_{j}$, a contradiction. Therefore

and hence we have an infinite filet chain in which the largest element is special.
Now repeat the argument on $c \wedge a_{k}$, where k is the least positive integer such that $c>b_{k}$. In this way we get an infinite filet chain of special elements, but this contradicts the fact that $M(G)$ satisfies the DCC. ${ }^{3}$)
4. Root systems. The proofs in this and the next section are conceptually simplified by the following abstraction of the root system $M(G)$ of all maximal lex-subgroups of an l-group G.

Let S be a root system that satisfies the DCC and consider $s \in S$. Each chain in S for which s is an upper bound is a well ordered set and hence has an ordinal number for its "length". We define the length of s to be the least upper bound of the lengths of the chains strictly below s. In particular, the minimal elements of S have length 0 . The α-th level of S consists of the elements of length α together with those elements b of length $\beta<\alpha$ such that b is maximal in S or b is covered by an element of length $>\alpha$.
4.1. If $a \neq b$ belong to the α-th level of S, then $a \| b$.

Proof. If $a>b$, then b has length $<\alpha$ and is not maximal in S. Thus b is covered by an element c of length $>\alpha$ and hence $a \geqq c>b$, but this means that a has length $>\alpha$, a contradiction.
4.2. Each o-permutation π of S permutes the elements in the α-th level.

Proof. a has length α if and only if $a \pi$ has length $\alpha . a$ is maximal in S if and only if $a \pi$ is maximal in $S . b$ covers c if and only if $b \pi$ covers $c \pi$.

[^2]4.3. If $\alpha \leqq \beta<\gamma, a$ has length α and a is in the γ-th level, then a is in the β-th level.

Proof. If a is not covered, then a is maximal in S and hence belongs to the β-th level. Clearly a belongs to the α-th level. If $\alpha<\beta$ and b covers a, then since a is in the γ-th level it follows that b has length $>\gamma$ and hence a is in the β-th level.
4.4. If b covers a and b has length $\beta+1$, then a is in the β-th level.

Proof. If a has length $<\beta$, then since a is covered by an element of length $>\beta$, a is in the β-th level.
4.5. If a has length $\alpha+1$, then a covers an element of length α.

Proof. There exists a chain below a of length $>\alpha$ and hence one of length $\alpha+1$. Let b be the maximal element in this chain. Then a covers b and b has length α.

Suppose that $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset of G and that each a_{λ} is special. For each $\lambda \in \Lambda$ let $A_{\lambda}=a_{\lambda}^{\prime \prime}$. If $\alpha \neq \beta$, then $A_{\alpha} \cap A_{\beta}=0$ and hence

$$
A=\left[\bigcup A_{\lambda}\right]=\sum A_{\lambda} .
$$

Let

$$
T=\left\{C \in M(G): C \supseteq A_{\lambda} \text { for some } \lambda \in \Lambda\right\} .
$$

Then T is a root system and we shall first show that each $C \in T$ is determined by the A_{λ} that it contains.
4.6. If $\Delta \subseteq \Lambda$, then $\left(\sum A_{\delta}\right)^{\prime \prime}=\left(\sum A_{\lambda}\right)^{\prime}$, where $\delta \in \Delta$ and $\lambda \in \Lambda \backslash \Delta$, and each $C \in T$ is of this form. In particular, if $D \in T$ and $D \supset C$, then there exists $A_{\lambda} \| C$ such that $D \supset A_{\lambda}$.

Proof. $A=\sum A_{\delta} \oplus \sum A_{\lambda}$ and if $0<x \in A^{\prime}$, then $x \wedge a_{\lambda}=0$ for all λ and hence $x=0$. Thus by Proposition $2,4,\left(\sum A_{\delta}\right)^{\prime \prime}=\left(\sum A_{\lambda}\right)^{\prime}$. If $C \in T$, then $C \supseteq A_{\gamma}$ for some $\gamma \in \Lambda$, and if $\lambda \in \Lambda$, then $A_{\lambda} \cap C=0$ or $A_{\lambda} \subseteq C$. For otherwise by $3.1 A_{\lambda} \supset A_{\gamma}$ which is impossible. Thus there exists a subset Δ of Λ such that $C \supseteq \sum A_{\delta}(\delta \in \Delta)$ and $C^{\prime} \supseteq \sum A_{\lambda}(\lambda \in \Lambda \backslash \Delta)$ and hence $\left(\sum A_{\delta}\right)^{\prime \prime} \subseteq C \subseteq\left(\sum A_{\lambda}\right)^{\prime}$.

Now let
$S=\{C: C$ is the join of a chain in T and C has no proper lex extension in $G\}$. Note that $T \subseteq S$. Moreover $C \in S$ is a lex-subgroup if and only if $C \in T$. For if $\left\{X_{\beta}\right.$: $\beta \in B\}$ is a chain from T with no maximal element, and $\cup X_{\beta}$ is a lex-subgroup, then $\bigcup X_{\beta}=a^{\prime \prime}$ for some special element, but then $a \in X_{\beta}$ for some β and hence $a^{\prime \prime} \subseteq X_{\beta}$, a contradiction.
4.7. If $C=\bigcup C_{\gamma}$ and $D=\bigcup D_{\delta}$ belong to S and $C \| D$ then $C \cap D=0$. In particular S is a root system.

Proof. If $0=C_{\gamma} \cap D_{\delta}$ for all γ and δ, then

$$
C \cap D=C \cap\left(\cup D_{\delta}\right)=U\left(C \cap D_{\delta}\right)=U\left(\left(\cup C_{\gamma}\right) \cap D_{\delta}\right)=U\left(C_{\gamma} \cap D_{\delta}\right)=0 .
$$

If $C_{\gamma} \cap D_{\delta} \neq 0$ for some γ and δ, then by 3.1 we may assume that $C_{\gamma} \supseteq D_{\delta}$. Thus since the elements of T that contain D_{δ} form a chain it follows that C and D are comparable a contradiction.
4.8. If $C, D \in S$ and C covers D, then $C \in T$.

Proof. If $C \notin T$, then $C=U C_{\gamma}$ where $\left\{C_{\gamma}: \gamma \in \Gamma\right\}$ is a chain in T and each $C_{\gamma} \subset C$. If each $C_{\gamma} \subseteq D$ then $C \subseteq D$ and if $C_{\gamma} \cap D=0$ for all γ, then $C \cap D=0$. Thus there exists a C_{γ} such that $C \supset C_{\gamma} \supset D$, a contradiction.
4.9. If T satisfies the DCC, then so does S.

Proof. Suppose that $M_{1} \supset M_{2} \supset \ldots$, where the $M_{i} \in S . M_{1}=U C_{\gamma}$ is the join of a chain from T. If $C_{\gamma} \cap M_{2}=0$ for all γ, then $M_{1} \cap M_{2}=0$ and if $C_{\gamma} \subseteq M_{2}$ for all γ, then $M_{1} \subseteq M_{2}$. Therefore at least one C_{γ} properly contains M_{2} and hence we have

$$
M_{1} \supseteq K_{1} \supset M_{2} \supseteq K_{2} \supset M_{3} \supseteq \ldots
$$

where the K_{i} belong to T, and hence there can only be a finite number of the M_{i}.
Remark. We can derive 4.7, 4.8 and 4.9 in terms of abstract root systems, but the formulation becomes somewhat messy.

Now suppose that T and hence S satisfies the DCC and let $\left\{A_{\lambda}^{\alpha}: \lambda \in \Lambda_{\alpha}\right\}$ be the α-th level of S. In particular $\Lambda_{0}=\Lambda$. If $\lambda_{1}, \lambda_{2}, \in \Lambda_{\alpha}$, then by $4.1 A_{\lambda_{1}}^{\alpha} \| A_{\lambda_{2}}^{\alpha}$ and hence by $4.7 A_{\lambda_{1}}^{\alpha} \cap A_{\lambda_{2}}^{\alpha}=0$. Therefore
4.10. $A^{\alpha}=\left[\cup A_{\lambda}^{\alpha}\right]=\sum A_{\lambda}^{\alpha}$.
4.11. If $A \triangleleft G$, then $A^{\alpha} \triangleleft G$.

Proof. Since $A=\sum A_{\lambda}$ is the indecomposable representation of A it follows that each inner automorphism π of G induces a permutation on $\left\{A_{\lambda}: \lambda \in \Lambda\right\}$. Thus π induces a permutation on T and hence on S. By 4.2π induces a permutation on the α-th level of S and hence $A^{\alpha} \pi=A^{\alpha}$. Therefore $A^{\alpha} \triangleleft G$.
5. Lex-sums of L-groups. An l-group G is a lex-sum of l-groups $\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ if for some ordinal σ there exists a chain of convex l-subgroups

$$
A^{0} \subseteq A^{1} \subseteq \ldots \subseteq A^{\alpha} \subseteq \ldots \subseteq G
$$

one for each ordinal $\alpha<\sigma$, such that $G=\bigcup A^{\alpha}$ and $A^{\alpha}=\sum A_{\lambda}^{\alpha}\left(\lambda \in \Lambda_{\alpha}\right)$, where each A_{λ}^{α} admits no proper lex-extensions and the following are satisfied.
(A) $\Lambda_{0}=\Lambda$ and $A_{\lambda}^{0}=A_{\lambda}$ for each $\lambda \in \Lambda$.
(B) $A_{\lambda}^{\alpha+1}=A_{\beta}^{\alpha}$ for some $\beta \in \Lambda_{\beta}$ or $A_{\lambda}^{\alpha+1}$ is a proper lex-extension of a small cardinal sum of two or more of the components of A^{α} and at least one of these components of A^{α} is not contained in any A^{u} with $u<\alpha$.
(C) If α is a limit ordinal, then there exists a cofinal sequence B in $\{\mu: \mu<\alpha\}$ and for each $\beta \in B$ a component $A_{\gamma \beta}^{\beta}$ of A^{β} such that A_{λ}^{α} is a proper lex-extension of $\sum A_{\gamma_{\beta}}^{\beta}(\beta \in B)$ or the $A_{\gamma_{\beta}}^{\beta}$ form a chain and A_{λ}^{α} is a lex-extension of the join of this chain.

If, in addition, each A^{α} is an l-ideal, then we say that the lex-sum is normal. If $\sigma \leqq \omega$, then (C) is vacuous, and in this case we call the result an ω-lex-sum. An ω-lex-sum is restricted if the cardinal sum referred to in (B) is finite.

Remark. The concept of a restricted ω-lex-sum was introduced in [3]. The above generalization is essentially the same as MCAlister's definition of a τ-lexico-sum in [7]. It differs only in (C) as follows: if α is a limit ordinal and A_{λ}^{α} is a proper lexextension of $\sum A_{\gamma_{\beta}}^{\beta}$, then by McAlisters definition A_{λ}^{α} appears first as a component of $A^{\alpha+1}$. Also in [3] and [7] only normal lex-sums were considered.

The following is our main structure theorem, all other theorems in this section are corollaries of this one.

Theorem 5.1. Suppose that $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset of an l-group G and that each a_{λ} is special. Then G is a lex-sum of the groups $A_{\lambda}=a_{\lambda}^{\prime \prime}$ if and only if
(a) $T=\left\{C \in M(G): C \supseteq A_{\lambda}\right.$ for some $\left.\lambda \in \Lambda\right\}$ satisfies the DCC , and
(b) for each $g \in G^{+}$there exists an $a \in A=\sum A_{\lambda}$ such that $g+a$ is finite valued. If this is the case, then G is a normal lex-sum of the A_{λ} if and only if $A \triangleleft G$. Moreover, $A \triangleleft G$ if G is representable (as a subdirect sum of o-groups) or A is the basis subgroup of G or $|\Lambda|=n$ is finite and G does not contain $n+1$ disjoint special elements.

Proof. The verification that (a) and (b) are necessary conditions for G to be a lexsum of the A_{λ} is straightforward and will be left to the reader. Suppose that (a) and (b) are satisfied, then we have all the material in Section 4 at our disposal.

In particular, we let $\left\{A_{\lambda}^{\alpha}: \lambda \in \Lambda_{\alpha}\right\}$ be the α-th level of S. Then by $4.10 A^{\alpha}=\left[U A_{\lambda}^{\alpha}\right]=$ $=\sum A_{\lambda}^{\alpha}$ and $A=A^{0}=\sum A_{\lambda}$. Thus (A) is satisfied.
(1) $G=U A^{\alpha}$.

For clearly $\cup A^{\alpha} \supseteq A$ and if $g \in G^{+} \backslash A$, then $g+a$ is finite valued for some $a \in A$ and hence $|g+a|=g_{1}+\ldots+g_{n}$, where the g_{i} are special and disjoint. Thus $g_{i} \in g_{i}^{\prime \prime} \subseteq \bigcup A^{\alpha}$ and hence $|g+a| \in \bigcup A^{\alpha}$, but since $\bigcup A^{\alpha}$ is a convex l-subgroup it follows that $g \in \bigcup A^{\alpha}$.
(2) If $C \in S$, then $C=\left(\sum A_{\delta}\right)^{\prime \prime}=\left(\sum A_{\lambda}\right)^{\prime}=C^{\prime \prime}$, where $\delta \in \Delta$ and $\lambda \in \Lambda \backslash \Delta$. By 4.6 we may assume that $C \in S \backslash T$. Also by $4.6\left(\sum A_{\delta}\right)^{\prime \prime}=\left(\sum A_{\lambda}\right)^{\prime}$ for any subset Δ of Λ. Now $C=U C_{\alpha}$, where $\left\{C_{\alpha}: \alpha \in a\right\}$ is a chain in T. Let $\Delta=\left\{\delta \in \Lambda: A_{\delta} \subseteq C_{\alpha}\right.$ for
some $\alpha \in a\}$. Then $\sum A_{\delta} \subseteq \cup C_{\alpha}=C$ and hence $\left(\sum A_{\delta}\right)^{\prime \prime} \subseteq C^{\prime \prime}$. If $\lambda \in \Lambda \backslash \Delta$, then $A_{\lambda} \cap C_{\alpha}=0$ and hence $A_{\lambda} \subseteq C_{\alpha}^{\prime}$ for all α and so $\sum A_{\lambda} \subseteq \cap C_{\alpha}^{\prime}=C^{\prime}$. Therefore

$$
\sum A_{\delta} \subseteq C \subseteq\left(\sum A_{\delta}\right)^{\prime \prime}=\left(\sum A_{\lambda}\right)^{\prime}=C^{\prime \prime} .
$$

Suppose (by way of contradiction) that $0<g \in C^{\prime \prime} \mid C$. Then $g+a$ is finite valued, where $a=a_{1}+a_{2}, a_{1} \in \sum A_{\delta}$ and $a_{2} \in \sum A_{\lambda}$. In particular, $g \wedge\left|a_{2}\right|=\left|a_{1}\right| \wedge\left|a_{2}\right|=$ $=0$ and so $\left|g+a_{1}\right| \wedge\left|a_{2}\right|=0$. Thus if M is a value of $g+a_{1}$, then $a_{2} \in M$ and so M is a value of $g+a$. Therefore $g+a_{1}$ is finite valued and belongs to $C^{\prime \prime} \backslash C$ and hence it follows that there exists $0<s \in C^{\prime \prime} \mid C$, where s is special.

If $s \in C_{\alpha} \oplus C_{\alpha}^{\prime}$ for some α, then since s is special it must belong to C_{α}^{\prime}. If $C_{\beta} \subseteq C_{\alpha}$, then $s \in C_{\alpha}^{\prime} \subseteq C_{\beta}^{\prime}$ and if $C_{\beta} \supseteq C_{\alpha}$ and $s \notin C_{\beta}^{\prime}$, then $s \notin C_{\beta} \oplus C_{\beta}^{\prime}$ and hence $s>C_{\beta} \supseteq$ $\supseteq C_{\alpha}$ which is impossible. Therefore $s \in \bigcap C_{\alpha}^{\prime}=C^{\prime}$ and so $s \in C^{\prime} \cap C^{\prime \prime}=0$, a contradiction.
Therefore $s \notin C_{\alpha} \oplus C_{\alpha}^{\prime}$ for all α, and hence $s>C_{\alpha}$ for all α. We shall show that in this case $s^{\prime \prime}$ is a proper lex-extension of C, but this contradicts the fact that $C \in S$. Thus to complete the proof of (2) it suffices to show that if $0<x \in s^{\prime \prime} \backslash C$, then $x>C$. As above $x+a$ is finite valued for $a \in \sum A_{\delta} \subseteq C$. Thus $x+a=x_{1}+\ldots+x_{n}$, where each x_{i} is special and hence comparable to zero. If $x+a \leqq 0$, then $0<x \leqq$ $\leqq-a \in C$ and so $x \in C$, a contradiction. Similarly at least one of the positive x_{i} is not in C and so we may assume that $0<x_{n} \in s^{\prime \prime} \mid C$ and hence $x_{n}>C$. Thus $x_{n}-a>$ $>C$ and $x_{n}-a$ is special with the same value as x_{n}. Therefore $x=\left|x_{1}\right|+\ldots+$ $+\left|x_{n-1}\right|+\left|x_{n}-a\right|>C$ and so (2) is established.
Now suppose that $C=A_{\lambda}^{\alpha}$ is in the α-th level of S. We must show that (C) (B) are satisfied according as α is a limit ordinal or not. If C has length $\beta<\alpha$, then by $4.3 C$ belongs to the γ-th level for all $\beta \leqq \gamma<\alpha$ and so (B) and (C) are satisfied. Thus we may assume that C has length α. By (2) $C=\left(\sum A_{\delta}\right)^{\prime \prime}$. If Δ consists of a single element δ, then $C=A_{\delta}^{\prime \prime}=A_{\delta}$ and so C has length 0 . Thus we may assume that Δ contains at least two elements. For each $\delta \in \Delta$ let D_{δ} be the join of the chain of elements in T that contain A_{δ} and are properly contained in C.

Case I. $D_{\delta}=C$ for some $\delta \in \Delta$. Then C is the join of a chain $\left\{A_{\gamma \beta}^{\beta}: \beta \in B\right\}$ of T each of which is properly contained in C and hence belongs to a lower level. Suppose (by way of contradiction) that for all $\beta \in B, \beta \leqq \delta<\alpha$. Since C has length α there exists a chain $\left\{C_{i}: i \in I\right\}$ of length $>\delta$ and such that each $C_{i} \subset C$. If $C_{i} \cap A_{\gamma \beta}^{\beta}=0$ for all i and all β, then

$$
\left(\cup C_{i}\right) \cap C=\left(\cup C_{i}\right) \cap\left(\cup A_{\gamma_{\beta}}^{\beta}\right)=\bigcup\left(C_{i} \cap A_{\gamma_{\beta}}^{\beta}\right)=0
$$

a contradiction. It follows that there exists C_{i} of length $>\delta$ such that $C_{i} \cap A_{\gamma_{\beta}}^{\beta} \neq 0$ for some β. Thus C_{i} and $A_{\gamma_{\beta}}^{\beta}$ are comparable. If $C_{i} \subset A_{\gamma_{\beta} \beta}^{\beta}$, then $A_{\gamma_{\beta}}^{\beta}$ has length $>\delta$. If $A_{\gamma_{\beta}}^{\beta} \subseteq C_{i}$, then since T is a root system and C is the join of the chain of the $A_{\gamma_{\beta}}^{\beta}$ it follows that $A_{\gamma_{\beta}}^{\beta} \supseteq C_{i}$ for some $s \in B$, which is again impossible. Therefore B is cofinal with $\{\mu: \mu<\alpha\}$ and so (C) is satisfied.

Case II. $D_{\delta} \neq C$ for all δ. Then since Δ contains more than one element $D=$ $=\sum D_{\delta} \subseteq L(C)$. Suppose (by way of contradiction) that $0<g \in L(C) \backslash D$. Then $g+a$ is finite valued for some $a=a_{1}+a_{2}$, where $a_{1} \in \sum A_{\delta}$ and $a_{2} \in \sum A_{\lambda}$. As above it follows that $g+a_{1}$ is finite valued and belongs to $L(C) \mid D$. Thus there exists a special element $0<q \in L(C) \backslash D$. If $q^{\prime \prime} \subset C$ then $q \in D$ and if $q^{\prime \prime}=C$ then $q>L(C)$ both of which are impossible. Therefore C is a proper lex-extension of $D=L(C)$.

If $\alpha=\beta+1$, then since C covers each D_{δ}, the D_{δ} must by 4.4 have length β and hence each D_{δ} belongs to the β-th level. Thus (B) is satisfied.

If α is a limit ordinal, then since each chain under C must contain one of the A_{δ} and C has length α it follows that α is the least upper bound of the lengths of the D_{δ}. Thus (C) is satisfied.

Therefore G is a lex-sum of the A_{λ} and by $4.11 G$ is a normal lex-sum if and only if $A \triangleleft G$. All that remains to be shown is that $A \triangleleft G$ under any of the given hypothesis. If G is representable, then Sik [9] has shown that each polar is normal. Thus each A_{λ} is normal and hence $A \triangleleft G$. The basis subgroup of an l-group is normal (see the discussion of basic elements and the basis subgroup given below).

Suppose $|\Lambda|=n$ is finite and that G does not contain $n+1$ disjoint special elements. If Q is a subset of G and $g \in G$, then let $Q^{g}=-g+Q+g$. If $A_{i}^{g} \cap A_{j}=0$ for $j=1, \ldots, n$, then $a_{i}^{g}, a_{1}, \ldots, a_{n}$ are disjoint, but this contradicts the fact that a_{1}, \ldots, a_{n} is a maximal disjoint set. Thus $A_{i}^{g} \cap A_{j} \neq 0$ for some j and hence by 3.1

$$
A_{i}^{g} \subset A_{j} \quad \text { or } A_{j}^{-g} \subset A_{i} \quad \text { or } A_{i}^{g}=A_{j} .
$$

Suppose (by way of contradiction) that $A_{i}^{g} \subset A_{j}$. Then $A_{k}^{g} \subset A_{j}$ or $A_{k}^{g} \cap A_{j}=0$ for all k, and by $3.4 A_{j} \supset A_{i}^{g} \oplus Q$, where $0 \neq Q$ is a convex l-subgroup of G. Pick $0<q \in Q$. If no other A_{k}^{g} is contained in A_{j}, then $q, a_{1}^{g}, \ldots, a_{n}^{g}$ are disjoint and so $q^{-g}, a_{1}, \ldots, a_{n}$ are disjoint, a contradiction. Therefore

$$
A_{j} \supset A_{i}^{g} \oplus A_{k}^{g} .
$$

But then $a_{i}^{g}, a_{k}^{g}, a_{1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_{n}$ are disjoint and special, a contradictior. Thus it follows that $A_{i}^{g}=A_{j}$ and hence $\dot{A} \triangleleft G$. This completes the proof of Theorem 5.1.

An element $s \in G$ is basic if $s>0$ and $\{x \in G: 0 \leqq x \leqq s\}$ is totally ordered. This is equivalent to the fact that $G(s)$ is an o-group [3], and hence to the fact that $s^{\prime \prime}$ is a maximal convex o-subgroup (Theorem 2.3). A subset $S=\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ is a basis for G if S is a maximal disjoint subset and each a_{λ} is basic. In this case $A=\sum a_{\lambda}^{\prime \prime}$ is the basis subgroup of G, and since $\left\{a_{\lambda}^{\prime \prime}: \lambda \in \Lambda\right\}$ is the set of all maximal convex θ-subgroups of $G, A \triangleleft G$.

The equivalence of (a) and (c) in the next theorem has been proven by McAlister [7].

Theorem 5.2. For an l-group G the following are equivalent.
(a) G is a normal lex-sum of o-groups $\left\{A_{\lambda}: \lambda \in A\right\}$.
(b) G is finite valued and $M(G)$ satisfies the DCC.
(c) The lattice of filets of G satisfies the DCC.

If this is the case, then $A=\sum A_{\lambda}$ is the basis subgroup of G.
Proof. By Theorem 3.11 (b) and (c) are equivalent. a) \rightarrow b). Pick $0<a_{\lambda} \in A_{\lambda}$. Then clearly $a_{\lambda}^{\prime \prime}=A_{\lambda}, A=\sum A_{\lambda}$ is finite valued and $M(G)=\left\{C \in M(G): C \supseteq A_{\lambda}\right.$ for some $\lambda \in \Lambda\}$. Thus by Theorem 5.1 (b) is satisfied.
b) $\rightarrow a$). If $0<g \in G$, then $g=g_{1} \vee \ldots \vee g_{n}$, where the g_{i} are disjoint and special. If g_{1} is not basic, then $g_{1} \geqq g_{11} \vee g_{12}, g_{11} \wedge g_{12}=0$ and g_{11}, g_{12} are special. If g_{11} is not basic, then find g_{111}, g_{112} etc. Thus we get a descending chain $g_{1}^{\prime \prime} \supset g_{11}^{\prime \prime} \supset \ldots$ in $M(G)$ which is necessarily finite. Therefore g exceeds a basic element and hence by Theorem 5.1 in [3] G has a basis $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$. Thus it follows by Theorem 5.1 that G is a lex-sum of the o-groups $A_{\lambda}=a_{\lambda}^{\prime \prime}$ and since the basis subgroup $A=\sum A_{\lambda} \triangleleft G, G$ is a normal lex-sum of the A_{λ}. Thus a lex-sum of o-groups is necessarily normal.

The following is an unpublished theorem of Norman Reilly.
Corollary. For an l-group G the following are equivalent.
(i) G is finite valued and each element in $M(G)$ has finite length.
(ii) G is a normal ω-lex-sum of o-groups.

There is a natural relationship between Theorems 5.1 and 5.2.
Theorem 5.3. Suppose that G is a normal lex-sum of maximal lex-subgroups $\left\{A_{\lambda}=a_{\lambda}^{\prime \prime}: \lambda \in \Lambda\right\}$. Then $N=\sum L\left(A_{\lambda}\right)$ is an l-ideal of G and G / N is a normal lex-sum of the o-groups $\left(N+A_{\lambda}\right) / N$.

Proof. Since $A=\sum A_{\lambda} \triangleleft G$ and this is the irreducible representation of A, it follows that an inner automorphism of G must induce a permutation of the A_{λ} and hence a permutation of the $L\left(A_{\lambda}\right)$. Thus $N \triangleleft G$ and hence N is an l-ideal. By Theorem 5.1 $T=\left\{C \in M(G): C \supseteq A_{\lambda}\right.$ for some $\left.\lambda \in \Lambda\right\}$ satisfies the DCC and each $X \in G / N$ is finite valued. Also

$$
\frac{N+A_{\lambda}}{N} \cong \frac{A_{\lambda}}{N \cap A_{\lambda}}=\frac{A_{\lambda}}{L\left(A_{\lambda}\right)}
$$

and hence $\left(N+A_{\lambda}\right) / N$ is an o-group and $\sum\left(N+A_{\lambda}\right) / N$ is the basis subgroup of G / N. Thus by Theorem $5.2 G / N$ is a normal lex sum of the o-group $\left(N+A_{\lambda}\right) / N$.

Theorem 5.4. Suppose that $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ is a maximal disjoint subset of an l-group G and that each a_{λ} is special. If each $0<g \in G$ is disjoint from all but
a finite number of the a_{λ}, then G is a restricted ω-lex-sum of the groups $A_{\lambda}=a_{\lambda}^{\prime \prime}$, and a normal lex-sum of the A_{λ} if and only if $A=\sum A_{\lambda} \triangleleft G$.

Conversely, suppose that G is a restricted ω-lex-sum of a set $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ of maximal lex-subgroups and pick $0<b_{\lambda} \in B_{\lambda} \mid L\left(B_{\lambda}\right)$ for each $\lambda \in \Lambda$. Then $\left\{b_{\lambda} ; \lambda \in \Lambda\right\}$ is a maximal disjoint subset of G, each b_{λ} is special and each $0<g \in G$ is disjoint from all but a finite number of the b_{λ}.

Proof. The verification of the converse is straightforward and will be left to the reader. Let $T=\left\{C \in M(G): C \supseteq A_{\lambda}\right.$ for some $\left.\lambda \in \Lambda\right\}$ and consider $C=\left(\sum A_{\dot{j}}\right)^{\prime \prime} \in T$. If Δ is infinite and $c \in C \backslash L^{\prime}(C)$, then $c>L(C) \supseteq \sum A_{\delta}$ and hence $c \wedge a_{\delta}>0$ for all $\delta \in \Delta$, a contradiction. Therefore Δ is finite and hence it follows from 4.6 that C has finite length in T. In particular, T satisfies the DCC. Moreover, if G is a lex-sum of the A_{λ}, then it is necessarily a restricted ω-lex-sum.

In order to complete the proof of the theorem it suffices by Theorem 5.1 to show that for each $0<g \in G$ there exists an $a \in A$ such that $g+a$ is finite valued. Now $g \wedge a_{\lambda_{i}}>0$ for $i=1, \ldots, n$ and $g \wedge a_{\lambda}=0$ for all other $\lambda \in \Lambda$. Let M be a value of $g+a=g+a_{\lambda_{1}}+\ldots+a_{\lambda_{n}}$. If $a_{\lambda_{i}} \notin M$, then $M \subseteq N$ the value of $a_{\lambda_{i}}$ and if $M \subset N$, then $a_{\lambda_{i}}<g+a \in N$, a contradiction. Thus if $a_{\lambda_{i}} \notin M$, then M is the value of $a_{\lambda_{i}}$. Suppose that M is not a value of $a_{\lambda_{i}}$ for any i, then $a_{\lambda_{1}}, \ldots, a_{\lambda_{n}} \in M$. Suppose (by way of contradiction) that $M \not \ddagger a_{\lambda_{i}}^{\prime}$ for $i=1, \ldots, n$ and pick $0<x_{i}$ in $a_{\lambda_{i}}^{\prime} \mid M$ for $i=1, \ldots, n$. Then $x=g \wedge x_{1} \wedge \ldots \wedge x_{n} \notin M$ but $x \in \cap a_{\lambda}^{\prime}=0(\lambda \in \Lambda)$ a contradiction. Thus $M \supseteq a_{\lambda_{i}}^{\prime}$ for some i and hence $M \supseteq G\left(a_{\lambda_{i}}\right) \oplus a_{\lambda_{i}}^{\prime}=X$. But by Theorem 3.6 in [4] X is a prime subgroup of G and hence there exists at most one value of $g+a$ that contains it. Therefore $g+a$ has at most n values.

Corollary I. Let $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ be a set of disjoint special elements of an l-group H and let $G=\left\{a_{\lambda}: \lambda \in \Lambda\right\}^{\prime \prime}$. If each $0<g \in G$ is disjoint from all but a finite number of a_{λ}, then G is a lex-sum of the maximal lex-subgroups $a_{\lambda}^{\prime \prime}$.

Corollary II. If $0<g \in G$ has only a finite number of values, then $G(g)^{\prime \prime}=g^{\prime \prime}$ is a lex-sum of a finite number of maximal lex-subgroups.

Proof. $g=g_{1}+\ldots+g_{n}$, where the g_{i} are disjoint and special and clearly

$$
G(g)^{\prime \prime}=\left(G\left(g_{1}\right) \oplus \ldots \oplus G\left(g_{n}\right)\right)^{\prime \prime}=\left\{g_{1}, \ldots, g_{n}\right\}^{\prime \prime}
$$

The result now follows from Corollary I.
If a_{1}, \ldots, a_{n} is a finite maximal disjoint subset of G and each a_{i} is special, then by Theorem 5.4 G is a lex-sum of the groups $A_{i}=a_{i}^{\prime \prime}$. Byrd [2] has shown that the set S of all the conjugates of the A_{i} is finite. Thus G is a normal lex-sum of the minimal elements in S. Thus by Theorem 5.3 there exists an l-ideal N of G such that $a_{i} \notin N$ for $i=1, \ldots, n$ and G / N is a lex sum of a finite number of o-groups. Whether or not this can be generalized to an infinite set $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ that satisfies the hypotheses of Theorem 5.4 is not known.
6. L-Groups with a finite basis. We shall first consider l-groups that satisfy (F) each $0<g \in G$ exceeds at most a finite number of disjoint elements or equivalently each bounded disjoint subset of G is finite. In [3] it is shown that if G satisfies (F), then G has a basis. Moreover, G satisfies (F) if and only if each $G(g)$ has a finite basis. It is easy to show that a representable l-group G satisfies (F) if and only if G is a subdirect sum of a small cardinal sum of o-groups (see for example [1]). The following is one of the main theorems in [3].

Theorem 6.1. An l-group G is an ω-lex-sum of o-groups if and only if it satisfies (F).

Proof. Suppose that G satisfies (F) and let $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ be a basis for G. Then $\left\{a_{\lambda}: \lambda \in \Lambda\right\}$ satisfies the hypotheses of Theorem 5.4 and hence G is an ω-lex-sum of the o-groups $a_{\lambda}^{\prime \prime}$. The converse also follows from Theorem 5.4.

Corollary. (Finite Basis Theorem) An l-group G is a lex-sum of a finite number of o-groups if and only if it has a finite basis.
Let Γ be an index set for the set of all pairs $\left(G^{\gamma}, G_{\gamma}\right)$ of convex l-subgroups of G such that G_{γ} is a value of some $g \in G$ and G^{γ} covers G_{γ}. Define $\alpha<\beta$ in Γ if $G^{\alpha} \subseteq G_{\beta}$ or equivalently $G_{\alpha} \subset G_{\beta}$. Then Γ is a root system. The groups G_{γ} are called regular. From [3] and the theory in this paper it follows that the following statements about an l-group G are equivalent.
(1) G has a finite basis.
(2) Each disjoint subset of G is finite.
(3) Γ contains only a finite number of maximal chains ("roots").
(4) Each proper convex l-subgroup of G has a finite basis.
(5) G is a lex-sum of a finite number of o-groups.
(6) Each convex l-subgroup C of G has an irreducible representation

$$
C=C_{1} \oplus \ldots \oplus C_{n}(n \text { finite }) .
$$

(7) G is finite valued and $M(G)$ is finite.
(8) The lattice of filets of G is finite.

Corollary. For an l-group G the following are equivalent.
(a) G has only a finite number of convex l-subgroups.
(b) Γ is finite.
(c) G is a lex-sum of a finite number of o-groups and each o-group used in this construction has only a finite number of convex subgroups.

Proof. Since each convex l-subgroup of G is the intersection of regular subgroups it follows that (a) and (b) are equivalent.
a) and b) \rightarrow c). Clearly G has a finite basis, and hence G is a lex-sum of a finite number of o-groups. Let A_{i}^{r} be a group in the r-th level with $N=L\left(A_{i}^{r}\right)$. Then since there exists a one to one correspondence between the convex subgroups of A_{i}^{r} / N and the convex l-subgroups of G that lie between A_{i}^{r} and $N, A_{i}^{r} / N$ has only a finite number of convex subgroups.
c) \rightarrow a). If C is a lex-subgroup of G, then $A_{i}^{r} \supseteq C \supseteq L\left(A_{i}^{r}\right)$ for some r and i. Now for a given r and i there exist only a finite number of such subgroups C and hence it follows that there exists only a finite number of lex-subgroups. But each convex l-subgroup of G is the cardinal sum of a finite number of lex-subgroups, and hence (a) is satisfied.

This last result can be generalized. The rank of an o-group H is the order type of its chain of convex subgroups. In particular, H has inversely well ordered rank means that each ascending chain of convex subgroups is finite.

Lemma 6.2. For an o-group H the following are equivalent.
(a) H has inversely well ordered rank.
(b) $\Gamma=\Gamma(H)$ is inversely well ordered.
(c) Each convex subgroup is principal (that is, has the form $H(a)$).

Proof. Clearly (a) implies (b).
b) \rightarrow c). If $0<x \in C$ a convex subgroup, then there exists a regular subgroup $K \subset C$. Let M be the largest such subgroup and consider $0<a \in C \mid M$. If $0<c \in$ $\in C \mid H(a)$, then there exists a regular subgroup N such that $M \subset H(a) \subseteq N \subset C$, a contradiction. Therefore $C=H(a)$.
c) \rightarrow a). If \mathscr{C} is a set of convex subgroups of H, then $S=\mathrm{U}_{C \in \mathscr{C}} C=H(a)$ for some $a \in H$. But then $a \in C \in \mathscr{C}$ and hence $H(a) \subseteq C \subseteq S=H(a)$. Thus C is the largest element in \mathscr{C}.

Theorem 6.2. For an l-group G the following are equivalent.
(1) Each convex l-subgroup of G is finitely generated.
(2) Each convex l-subgroup of G is principal.
(3) Γ has only a finite number of roots and satisfies the ACC.
(4) G has a finite basis and each of the o-groups used in lex-sum construction of G has inversely well ordered rank.

Proof. 1) \rightarrow 2). If g_{1}, \ldots, g_{n} generate the convex l-subgroup C of G, then $g=$ $=\left|g_{1}\right|+\ldots+\left|g_{n}\right| \in C$ and hence $G(g) \subseteq C$, but each $\left|g_{i}\right| \in G(g)$ and hence g_{1}, \ldots $\ldots, g_{n} \in G(g)$. Therefore $G(g)=C$.
2) \rightarrow 3). If a_{1}, a_{2}, \ldots is an infinite disjoint set, then $G\left(a_{1}\right) \oplus G\left(a_{2}\right) \oplus \ldots$ is not principal. Thus each disjoint subset of G is finite, and hence Γ has only a finite number of roots. To complete the proof of this implication it suffices to show that a chain of regular subgroups that contains a given minimal prime subgroup M is inversely well
ordered. Let \mathscr{C} be a set of regular subgroups that contain M. Then exactly as in the above proof of c) \rightarrow a) it follows that \mathscr{C} contains a largest element.
$3) \rightarrow 4$). Clearly G has a finite basis. Consider A_{i}^{r} with lex kernel N. We must show that the regular subgroups of A_{i}^{r} containing N are inversely well ordered. But if M is a prime subgroup of G that does not contain A_{i}^{r}, then $M \cap A_{i}^{r}$ is a prime subgroup of A_{i}^{r} and this mapping σ is one to one onto (see the proof of Theorem 3.5 in [4]). The set \mathscr{S} of regular subgroups of G that contain $N \sigma^{-1}$ but not A_{i}^{r} are mapped by σ onto the set of regular subgroups of A_{i}^{r} that contain N. Since $N \sigma^{-1}$ is prime in G it follows that \mathscr{S} is a chain in Γ and hence it is inversely well ordered. Therefore the regular subgroups of A_{i}^{r} containing N are inversely well ordered.
4) $\rightarrow 1$). If C is a lex-subgroup of G, then $A_{i}^{r} \supseteq C \supset N=L\left(A_{i}^{r}\right)$ for some r and i and A_{i}^{r} / N has inversely well ordered rank. Thus by Lemma $6.2 C / N$ is generated by a single element $N+c$, where $0<c \in C$. If $0<x \in C$, then $N+x<N+m c$ for some $m>0$ and hence $x<m c$. Therefore $C \subseteq G(c)$ and clearly $C \supseteq G(c)$. Thus each lex-subgroup of G is principal. But it is easy to check that each non-zero convex l-subgroup of G is a cardinal sum of a finite number of lex-subgroups. Therefore each convex l-subgroup of G is finitely generated.

References

[1] A. Bigard: Étude de certaines réalisations des groupes réticulés, C. R. Acad. Sci. Paris 262 (1966) 853-855.
[2] R. Byrd: Tulane Disertation 1966.
[3] P. Conrad: Some structure theorems for lattice-ordered groups. Trans. Amer. Math. Soc. 99 (1961) 1-29.
[4] P. Conrad: The lattice of all convex l-subgroups of a lattice-ordered group. Czech. Math. J. 15 (1965) 101-132.
[5] L. Fuchs: Partially ordered algebraic systems, Pergamon Press 1963.
[6] A. Lavis: Sur les quotients totalement ordonnés d'un group linearirement ordonné. Bull. Soc. Royal Sciences Liege, 32 (1963) 204-208.
[7] D. B. McAlister: On Multilattice groups II. Proc. Camb. Phil. Soc. 62 (1966) 149-164.
[8] F. Šik: Zur theorie der halbgeordneten Gruppen. Czech. Math. J. 6 (1956) 1-25.
[9] F. Šik: Über subdirecte summen geordneter Gruppen. Czech. Math. J. 10 (1960) 400-424.

[^3]
[^0]: ${ }^{1}$) This research was supported by a grant from the National Science Foundation.

[^1]: ${ }^{2}$) Lavis used the convex hull of $K=[\{g \in G: g \| 0\}]$, but for l-groups K is convex. Also it can be shown that $[N]$ is the join of all the minimal prime subgroups in the lattice of convex l-subgroups of G.

[^2]: ${ }^{3}$) Byrd [2] shows that for any l-group G the lattice of all filets is isomorphic to the lattice of all principal polars.

[^3]: Author's address: Tulane University, New Orleans, La., U.S.A.

