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The homeomorphism q>0 will be called an J% homeomorphism3) and always 
denoted by a thick Greek letter. 

In [1] I defined the sequential envelope of a sequentially regular space (L, 2, X) 
to be a largest sequentially regular overspace S of Lsuch that Lis sequentially dense 
in S and each continuous function on Lean be continuously extended onto S. Now 
we shall generalize this definition. 

Definition. Let (L, 2, X) be an 3F 0 sequentially regular space. Let (S, 6 , o) be 
a convergence space. We say that S is an £F0 sequential envelope of the space L if 

1° Lis a sequentially dense subspace of S. 

2° Each continuous function / e #"0(L) can be extended to a continuous function 
fe #"(5) and the space S is #"0(5) sequentially regular, #"0(S) being the class of all 
fe &(S) such that / 1 Le J%(L). 

3° There is no convergence space (T, %, T) containing S as a proper subspace and 
fulfilling 1° and 2° with regard to Land T 

Now we shall proceed analogously as in [1] to show that each 2F0 sequentially 
regular space has an #"0 sequential envelope. The proofs will be shortened accord
ingly. 

Theorem 2. Let (L, 2, X) be an 3F0 sequentially regular space. Let cp0 be an £F0 

homeomorphism on Linto the convergence Euclidean space (F, (£, e) of the dimension 
card #*0. Let the space L be sequentially dense in a convergence overspace (S, ®, o). 
Then 2° holds true if and only if there is a homeomorphism h on S into e^cpjjj) 
such that h(x) — (p0(x), x e L. 

Proof. Let 2° hold. Since cp0(L) = {(fa(x))e E :fae ^0(L), xeL, del) and 
because there is a one-to-one correspondence on ^0(L) onto #"0(S) (a function g e 
e ^0(S) corresponds to / e J%(L) if g | L = / ) there is an 3F0 homeomorphism \j/0 

on S onto <A0(S) = {(ga(xj) e E : gae ^0(S), xeS, a el) such that t/y0(x) = (p0(x), 
xeL, ga being the corresponding continuous extension of/a, a el. Using the method 
of transfinite induction it is easy to prove that \j/0(S) c e™1 (p0(L). Consequently it 
suffices to put h = \j/0. 

Now, let h be a homeomorphism on S into e031 cp0(L) such that h(x) = (p0(x), 
xeL. Iffa, e ^0(L), then the function ph on S is a continuous extension of the func
tion/, . , p being a projection function: P((Za)) = -V, for each (za) e e™1 <p0(L). The /# 0 

sequential regularity of the space S remains to be proved. Evidently, it suffices to 
show that h(x) = (fjx)), xe S,ael, where fa e &'0 and fa corresponds to fa e ^0(L). 

Suppose (transfinite induction) that h(x) = (/a(x)), x e onL, for all rj < £, where 
0 < c; <J a)!. Let j be any point belonging to the set o^L — U c/'L. Then £ is isol-

3) If J ^ Q = Ĵ ~, then in [1] an J^ 0 homeomorphism is called a special homeomorphism. 
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Theorem 5. Let (Sl9 <5l9 <Jt) and (S2, S 2 , o2) be &0 sequential envelopes of an ^0 

sequentially regular space (L, 2, X). Then there is a homeomorphism h on St 

onto S2 such that h(x) — x, xeL. 

Proof. According to Theorem 3 there are homeomorphisms ht on St onto e^1 (p0(L) 
such that ht(x) = cp0(x), x e L, i = 1, 2, where cp0 denotes an 3P'0 homeomorphism 
on Lonto (p0(L). Consequently it suffices to put h = h2

1h1. 

Theorem 6. Let (L, 2, X) be an £F0 sequentially regular space. Let J% c $> x cz 
a ^(L). Let (S0, ®0, cr0) and (Sx, &u o^) be 3F0 and £F\ sequential envelopes of L. 
Then there is a continuous map m on St into S0 such that m(x) = x, x e L. 

Proof. Let &\ = {/a; a elt}, i = 0, 1, where I0 c: J1. Let cpt be an &{ homeo
morphism on L onto (pt(L) c Eh (Et, (£f, st) being the convergence Euclidean space 
of the dimension card It. By Theorem 3, there is a homeomorphism ht on St onto 
ef1 (Pi(L) such that ht(x) = q>t(x), x e L, i = 0, 1. It suffices to put m(x) = h0

 1n hx(x), 
x e Su where n denotes the projection map on e^1 (pi(L) onto £0

J <p0(L). 

I I . 

Let X be a point set and X the system of all subsets of X. Denote (X, 2, X) the 
convergence space, 2 being the usual convergence of sets. Let A be an algebra of 
sets on X (i.e. I e A ) and S(A) the a-algebra generated by A. Since both S(A) 
and XmA are convergence subspaces of X and both are the smallest closed sets in 
(X, 2, X) containing A as a subset, evidently [2] S(A) = /LWlA. Consequently, the 
algebra A is a sequentially dense subspace of the a-algebra S(A). Denote 0, or more 
precisely 0(A), the class of all probability measures defined on the algebra A. It is 
known [2] that 0 a #"(A). 

Lemma 1. Each algebra of sets is a 0 sequentially regular space. 

Proof. Let A0 be an element and {An} a sequence of elements of an algebra 
of sets A not converging to A0. Choose a point x0 e (A -s- Lim sup An) u (A -r 
~- Lim inf An). Then the characteristic function cA(x0), A e A, is a probability 
measure on A such that {cAn(x0)}n==1 does not converge to CAQ(X0). 

Lemma 2. Let B be a o-algebra of sets on X and {Bn} a sequence of elements 
Bn 6 B. Then {Bn} converges in B if and only if there exists lim P(B„) for each 
probability measure P on B. 

Proof. If LimB„ = Be B and P e 0(B), then 0(B) c ^(B) implies that 
lim P(B„) = P(#). Now suppose that {B„} does not converge4) in B. Since B is 

4) i.e. either Lim Bn does not belong to B or {Bn} does not converge at all. 
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