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Furthermore, no net M ranging in N[D] c P — U converges to x in 0; thereby, the 
necessity of the condition (5') stronger than (5) is proved. 

(5') If the assumptions of (5) are satisfied, then <N, x> e (€. 
Let <€ be a convergence structure satisfying the conditions (4) and (5). Let 0 = 

= <P, u> be the closure space determined by <€ (1.14). Let S be a 33-net converging 
to point x in P such that <S, x> $ <€. Then by condition (4) there exists a 33-subnet N 
of S such that <M, x> e <€ for no (generalized) 33-subnet M of N. Because N converges 
to x in 0, x e u N[D] and there exists a 33-net ND ranging in N[1>] with <ND, x> e <€ 
for every cofinal subset D of DN; but this is a contradiction with the condition (5). 

1.16. R e m a r k s . The condition (4) corresponds to the condition (c) in [3], 35 A.16. 
and to the Urysohn's axiom ^ 3 for sequential classes (see [2] or [8]). 

The condition of diagonalization ([3], 35 A. 14.) need not be necessary for <€ be the 
33-convergence class, because the net M from this condition need not be 33-net (and 
one need not have any generalized 33-subnet). 

Convergence of the nets Ma to x need not be trivial, for example if 33 = Sft or 
33 = U { ^ K „ | n e co0} or 33 = U { ^ « n | n e % } a n d if P is the disjoint sum of ordered 
topological spaces 7^* o v e r ^ o w r t n further point x whose local base consists of 
all sets residual in every Ka and containing x. 

If 33 = <9, the conditions (0), (4) — i.e. the axioms &l9 0l2 and J^3 — are sufficient 
in 1.15 ([2]). If 33 consists of countable elements only, sufficiency of (0), (4) can be 
easily proved. 

1.17. Theorem. A closure space determined by the ^-convergence relation <€ is 
topological if and only if the following condition is satisfied. 

(6) If <S, x> e <€ and <Sm, Sm> e <€ for each m e OS, then <K, x> e <€ for some 
33-net K ranging in \}\ESm | m e DS}. 

Proof. Let condition (6) be satisfied and let x e uuA. Then <N, x> e <€ for some 
33-net N ranging in uA and there exists a 33-net Nm ranging in A with <Nm, Nm> e <€ 
for each m e DN; hence <M, x> e <€ for some net M ranging in U{^Nm | m e DN} c 
cz A by (6) and x e uA. 

Let <P, M> be topological, <S, x> e <€ and <Sm, Sm} e <€ for each m e DS. Let us 
denote B = U{ESm | m e ®S}. Then x e uES c uuB = uB and hence <M, x> G <€ 
for some net M ranging in B. 

1.18. Theorem. The following conditions are sufficient and necessary for a class <€ 
to be the ^-convergence class of a topological 33-space: <€ is a ^-convergence struc
ture, 

<€ satisfies conditions (4), (5), (6) from 1.15 and 1.17. 

Proof. The necessity is a corollary of 1.15,1.14 and 1.17. Sufficiency: <€ is a 33-con-
vergence class by 1.15 and a determining 33-convergence relation for a topological 
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3.2. Example. Let a > fi and 33 be the same as in 1.9a. Let 0 be the product of 
spaces Ta, Tp, let \l\ = \0\ u (x) u (y), let 0 be a subspace of J , let U cz \l\ be a neigh
borhood of x (resp. of y) iff the projection of \0\ — U into a (resp. into f$) is bounded 
in a (resp. in /?). Then 2, is not separated and its 33-convergence class is single-valued. 

3.3. Notation and definition. I will denote the closed unit interval [0, 1] with its 
usual topology. 0<(0) will denote the collection of all continuous functions on the 
closure space 0 into \. 

A closure space 0 will be called 33-regular, if for each point x of 0 and for every 
33-net N ranging in \0\ which does not converge to x in 0 there exists a function 
fe0r(0) such that the netfo N does not converge tofx in I. 

A closure u (on an underlying set P) will be called 33-regular iff <P, u> is 33-regular. 

3.4. In 3.4 we will study a dependence of the definition in 3.3 and the definition (r) 
analogous to the definition of sequential regularity of convergence spaces in [8]. 

Definition (identical with the analogous definition in [8] for 33 = O). <P, ^ , u> 
will be called the 33-convergence space, if ^ is a determining 33-convergence relation 
for the closure space <P, u>. 

Definition (r). A 33-convergence space <P, ^ , u> will be called 33-regular, if for 
each point x e P and for every 33-net N ranging in P no subnet M of which satisfies 
<M, x> G ̂ , there exists a function fe J r<P , u> such that the net fo N does not 
converge tofx in I. 

Proposition. A ^-convergence space <P, %>, u> is ^-regular if and only if <P, u> 
is ^-regular and <£ satisfies the condition (5) from 1.15 without the word "gener
alized". 

Remark . If 33 contains countable sets only, then every determining 33-convergence 
relation satisfies the condition (5). 

P r o o f of the proposition. Let <P, u> be a 33-regular space and let ^ satisfies (5). 
Let N be a 33-net ranging in P such thatf o N converges tofx in I for eachfe #XP , u>. 
Then N converges to x in <P, u>, x e u N[D] for every cofinal subset D of DN, 
hence some subnet M of N satisfies <M, x> e ^ by (5). 

Let <P, %, u> be a 33-regular 33-convergence space. Obviously, <P, u> is 33-regular. 
Let N be a 33-net ranging in P such that for each cofinal subset D of DN there exists 
a net N^ ranging in N[D] with (ND, x> e (€. Then N converges to x in <P, u> by the 
condition (5') in 1.15, f o N converges to fx in I for each f e fFQ*, u>, hence there 
exists a subnet M of N such that <M, x> e ^ by (r). 
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3.10. Example. The regular space on which each continuous function is constant 
[10] is not 33-regular for any 33. 

(9-modification of the product 2Kl is a 0-regular non-regular closure space [8]. 

3.11. Proposition, (a) A closure u is ^-regular if and only if its ^-modification 
is ^-regular. 

(b) If 33 n 3$ is not empty, then the ^-modification of a ^-regular closure is 
33 n W-regular. 

(c) The ^-modification of a uniformizable closure is ^-regular. 

Proofs are easy and are omitted. 

3.12. Lemma. Let <P, u> be a ^-regular space. Then there exists the uniformiz
able modification u of u {i.e. the finest uniformizable closure coarser than u) and 
the following conditions are satisfied. 

(a) «F<P, u> = <F<P, u>, 
(b) xeuAif and only if, for each f e #"<P, u>, f[A\ = 0 implies fx = 0. 

Proof. Lemma is a corollary of the analogous theorem in [7] and of 3.6 for 
T0-spaces, in the other case we apply in addition quotient spaces and 3.6. 

3.13. Theorem. Let u be the uniformizable modification of u, let v be the 33-modi-
fication of u. 

(a) Ifu is ^-regular, then v is finer than u. 
(b) Ifu is a %$-closure, than v is coarser than u. 
(c) v = u if and only ifu is a ^-regular ^-closure. 

Proof, (a) Let x e vA; then some 33-net N ranging in A converges to x in <P, u>, 
for each fe J^<P, u> = Jzr<P, u> the net fo N converges to fx in I. Because u is 
33-regular, N converges to x in <P, u>; thus x e uA. 

(b) follows from definitions, (c) is a corollary of (a), (b), 3.He. 

3.14. Definition and proposition. Let 33 be a given class. Let us denote R(33) the 
class of all 33-regular 33-spaces, and P(33) the class of all uniformizable spaces whose 
closures are uniformizable modifications of 33-closures. Let us denote -< a relation 
such that D -< = E -< is the class of all closure spaces and <P l9 uX> -< <P2, u2> iff 
Px = P2 and ux is finer than u2. Then P(33) and R(33) are ( < , -<)-isomorphic; 
a mapping h which assigns the space <P, v> to each <P, u> e P(33) so that v is the 
33-modification of u, is (•<, ^-isomorphism of P(33) onto R(33) and h_1 assigns the 
space <P, u> to each <P, u> e R(9S) (by 3.13c, 3.He). 

3.15. Theorem. The following condition is necessary and sufficient for P(33) 
to be the class of all uniformizable spaces: Each closure space is a ^B-space. 
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Let C = oc or £ = a + 1. ac = f [ vcP is a homeomorphism of <^I?
J v \ v^P) onto 

<vcH, v | t£H>, because the 33-modification is a topological property. <P; from 4.12 is 
a homeomorphism of 0 onto <vcH, v | vcH>. Hence the mapping h^ — g~l

 0 cp^ is 
a homeomorphism of 0^ onto <vcP, v | vcP>. 

Thus Pa+1 = Pa is satisfied and 0a is a 33-envelope of 0 by 4.7. Hence also 
<vaP, v | vaP> is a 33-envelope of ^ , because the property "to be a 33-envelope of" 
is topological and the mapping ha \ P = q>~x o <p is identical. 

To prove 4.15 for non-70-space 0, we apply the preceding for the quotient spaces 
under a (where Da is P or Q or vaP and <x, y} e aiffxe u(y) or x = y e Da) generated 
by the canonical mapping. 

4.16. Theorem. Let 0 be a SB-regular space. Let us denote A0 the collection of all 
finite subsets of the set card !F(0). Let a c-cofinal subcollection A of A0 exist such 
that the product of directed sets <A, <=> x <co0, = > and some element of 33 are 
order-isomorphic. Then 0 is a uniformizable 33-space and the SB-envelope of 0 
coincides with the Cech-Stone compactification of 0. 

4.17. Corollary. Let 0 be a SB-regular space and either a = exp d0 or a = 
= card $F(0)\ let 33 => $Jla. Then 0 is a uniformizable 33-space and the SB-envelope 
of 0 coincides with the Cech-Stone compactification of 0. 

Proo f of 4A6. Let 0 = <P, w>, let us denote u the uniformizable modification' 
of u and <Q, w> a Cech-Stone compactification of <P, u>. First we prove that the 
cube <C, w> of 0 is a 33-space. Let us denote F0 the collection of all finite subsets 
of 3F(0). By the assumption there exists a d-cofinal subset F of F0 such that the 
product <F, cz > x <OJ0, = > and an element <E, a} of 33 are order-isomorphic 
and 0 £ F . For each G e F , n e co0, j e [0, 1] let us denote Uf

GJ = [0, 1] if fe 
e <F(0) - G, Uf

GJ = ] j - l/(n + 2), j + \\(n + 2) [f |[0, 1] iff belongs to G. 

Then the collection ^ = {n{Uf
Gtnzf \fe^~(0)} \ G e F, n e co0} is a local base at 

the point z = {zf\fe !F(0)} in the space <C, w>. We can easily verify that the directed 
sets <G, =)> and <F, c > x <O>0, ^ > and hence <G, =>> and <F, a} are order-
isomorphic, thus <C, w> is a 33-space by 1.2. 

Consequently, its subspace <f[2]> w | f [ 8 ] > (where f is the homeomorphism 
from the proof of 4A5), the space <Q, w> homeomorph with < f [2] , w | f [ Q ] and 
the subspace <P, u> of <Q, w> are 33-spaces. Therefore u = u by 3A3a and 0 = 
= <P, u} is a uniformizable 33-space. Hence the space <g, w> = <wP, w | wP> is 
a 33-envelope of 0 by 4.15. 

By 4A4 any 33-envelope of 0 is its Cech-Stone compactification. 
The corollary 4.17 follows from 4.16, because card (A x OJ0) = card $F(0) . K0 = 

= a. 
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