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1. INTRODUCTION

1.1. Notation. If G is a set then card G denotes the cardinality of G. If G is a linearly
ordered set then G denotes the order type of G. A set G will be called non-trivial if
card G = 2; in the whole paper, all sets are assumed to be non-trivial and all types
of ordered, resp. linearly ordered sets are assumed to be types of non-trivial sets. The
identity of ordered sets will be denoted =, the isomorphism 2. A linearly ordered
set will be called a chain, a set in which every two distinct elements are incomparable
will be called an antichain. For the operations with ordered sets we shall use the
BIRKHOFF’s notation ([1] or [2]) so that G + H, G . H, G" denotes the cardinal
sum, product and power whereas G @ H, G o H, "G denotes corresponding ordinal
operations.

1.2. Lexicographic sum. Let H be an ordered set, let {G, | a € H} be a system of
ordered sets. Lexicographic sum Y. G, ([3]) is a set of all ordered pairs [a, x|, where
acH

a€ H, x € G,, ordered in the following way: [a;, x,]| < [o, x,] if and only if a; <
< dy, OT 0t = &y, X; < X,. It is well known that this operation is a generalization of
the Birkhoff’s ordinal sum, cardinal sum and ordinal product for, if we choose
H = {0,1]|0 < 1} as a two-point chain, then ) G, is isomorphic with G, @ G ; if

acH
we choose H = {0,1]0 | 1} as a two-point antichain then ) G, is isomorphic with
acH
G, + G, and if we choose G, = G for every « € H then ). G, is identical with H » G.

acH

1.3. Cardinal product. Let H be a set, let {G, | « € H} be a system of ordered sets.
Cardinal product H G, is a set of all functions f defined on H and such that f (oc) € G,

acH
for every a € H, ordered in the following way: f < g if and only if f(x) < g(«) for
every o € H. This operation is a generalization of the Birkhoff’s cardinal product

for, if we choose H = {0, 1} as two-point set, then [ | G, is isomorphic with G, . G,.
acH



For this reason, if H = {0, 1,..., n} is a finite set, we denote H G, conventionally
acH

Gy.G,...G, If G, = G for every a € H then [] G, is identical with G in the case
that H is ordered as an antichain. acH

1.4. Linear extension. Let a set of orders {§a ] aeH } be given on the set G. If we
assume these orders to be subsets of the cartesian square G* we can apply various
set-theoretical operations to them.Especially it is easy to see that the intersection

N <, = = is again an order on G. This order is defined in the following way:
acH
x < yex =,y for every ae H. If < is an order on G and if X is a linear order

on G such that £ € < (i.e. x,yeG, x < y = x < y) we say that < is a linear
extension of <. In [11] E. SZPILRAIN has proved that any order < on G has at
least one linear extension <. He has proved the stronger result: Let < be an order
on G and let x, y be elements of G such that x [[ y. Then there exist two linear exten-
sions X, <, of < such that x <, y, y X, x. From this it follows that the inter-
section of all linear extensions of < is <.

1.5. Dimension. Let G be a set, let < be an order on G. From the Szpilrajn’s
theorem it follows, on G there exist systems of linear orders intersection of which
is <. Such systems are called realizers of < and if {Z, |« € H} is a realizer of <
we say that the orders <, realize <. B. DusHNIK and E. W. MILLER ([4]) call the
dimension of the set G and denote dim G the smallest cardinality of the system of
linear orders on G, which realizes <. A linear extension of an ordered set G can be
also defined as a one-one isotone mapping of G into a chain H. From this there
follows that the dimension of G can be defined as the minimum of cardinalities of
systems {fz [ X E K} (where f,, is a one-one isotone mapping of G into a chain L, for
every x € K) such that x, ye G, x < y < f(x) < f(y) for every xe K. If every
chain L, has the same order type « and if there exists at least one system {f,, | » € K}
where f, is a one-one isotone mapping of G into L, with the property x, y € G,
x £ y<>f(x) £ fy) for every x € K, then the minimum of cardinalities of such
systems is called a-dimension of G and denoted o-dim G (H. Komm [7]). Let G be an
ordered set, L a chain of type «. In [9] there is proved that there exists a system
{f. I x € K} where f, is an isotone (not necessarily one-one isotone) mapping of G
into Lsuch that x, ye G, x £ y < f,(x) < f(y) for every x € K. The minimum or
cardinalities of such systems is called a-pseudodimension of G and denoted a-pdim G.
Properties of the characteristics dim G, a-dim G, a-pdim G are studied in [4], [5],

(61, [7]. [8]. [°], [10]-
2. WELL REALIZER AND PSEUDOREALIZER

2.1. Definition. Let G be an ordered set. We say that G satisfies the descending chain
condition if xq, Xy, ..., X,y ... € G, Xg = X; = ... 2 X, = ... implies the existence of

a positive integer n, such that x,, = Xpo+1 = ...
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2.2. Definition. Let G be an ordered set, let H be a well-ordered set. A one-one
isotone mapping ¢ of G into H is called a well extension of G.

2.3. Theorem. Let G be an ordered set. Then G has a well extension if and only
if G satisfies the descending chain condition.

Proof. The necessity of this condition is clear. We shall prove its sufficiency. Hence
let G — ordered by the relation < — satisfy the descending chain condition. Let G,
be the set of all minimal elements in G (the mentioned assumption guarantees the
existence of minimal elements in G). Assume that we have defined all sets G, for
every ordinal number « < o,. Then let G,, denote the set of all minimal elements
in G- UG, (if G- U G, is non-empty then it satisfies the descending chain

a<ag a<ao

condition so that the existence of minimal elements in G — |J G, is guaranteed).
a<ao

Then there exists the smallest ordinal number f such that G, = @ for, if card G = N,,
then clearly G = (. Then it holds: G = |J G, where the sets G, are mutually

a<p
disjoint and every G, is an antichain with respect to <. Choose any well ordering

of G, for every « < fand put H = Y G,. H as a lexicographic sum of well-ordered
a<p

sets over a well-ordered set is a well-ordered set. Define a mapping ¢ of G onto H
in the following way: x € G, x € G, = ¢(x) = [«, x]. ¢ is clearly a one-one mapping
of G onto H. We shall show that ¢ is isotone. Let x, y € G, x < y. Then there exist
ordinal numbers o; < B, a, < f such that x € G,,, y € G,,. If it were a; > a, then x
would be a minimal element in G — |J G, and y e J G, so that x > y or x || y and

a<ayp a<ay

@i+

this is a contradiction. Therefore o; < a, and from this ¢(x) = [o;, x] < [op, y] =
= ¢(y). Hence ¢ is a well extension of G.

2.4. Definition. Let G be an ordered set, let {L, | » € K} be a system of well-ordered
sets, let f,, be a one-one isotone mapping of G into L,. If x, ye G = x < yif and only
if f,(x) < f,(y) for every x € K then we say that {L,, f, | x € K} is a well realizer of
the set G.

2.5. Theorem. An ordered set G has a well realizer if and only if G satisfies the
descending chain condition.

Proof. The necessity of the mentioned condition follows from 2.3., for every f,
is a well extension of G. We shall prove its sufficiency. Hence let G satisfy the descend-
ing chain condition. If G does not contain any incomparable elements then G is
a well-ordered set so that {G, g} is a well realizer of G when g is an identical mapping
of G onto itself. In the opposite case it suffices to show that for any two incomparable
elements x,, x, € G there exist well-ordered sets L,, L, and one-one isotone mappings
f1, resp. f, of G into Ly, resp. L, such that fy(x;) < fi(x2), fa(x,) > fa(x,). Hence
let x;, X € G, x; || x,. Put G* = {x | xe G, x < x,}, G*> = G — G". Both G' and G?
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satisfy the descending chain condition, hence according to 2.3. there exist well-ordered
sets L, I? and one-one isotone mappings f1, resp. f2 of G! into L!, resp. of G? into I2.
Put L, = I! @ I? and f,(x) = f(x) for xe G' (i = 1,2). Then L, is clearly a well-
ordered set and f; is a one-one isotone mapping of G into L, such that f(x,) <
<f l(xz); analogously we can construct a well-ordered set L, and a one-one isotone
mapping f, of G into L, such that f,(x) > f5(x,).

2.6. Definition. Let G be an ordered set, let {L, | x € K} be a system of well-ordered
sets, let f, be a mapping of G into L,. If x, y e G = x < yif and only if f,(x) < f,(»)
for every » € K then we say that {L,, f, | % € K} is a well-pseudorealizer of the set G.

2.7. Theorem. Any ordered set G has a well pseudorealizer.

Proof. Let G be an ordered set. By K, denote the set of all ordered pairs [x, y]
where x, ye G, x < y, by K, the set of all ordered pairs [x, y] where x, y € G,
x || y. Put K = K; U K, and for every x € K let L, be a two-point chain, i.. L, =
= {0,110 < 1}. Define a mapping f, of G into L, for every x = [x, y] in the follow-
ing way: f,(t) = 0 if and only if ¢+ < x. It is easy to see that {L,, f, | x € K} is a well
pseudorealizer of G.

2.8. Theorem. Let G be an ordered set, let K be a set and L, a well-ordered set for
every x € K. Then the following statements are equivalent:
(A) G =G ¢ ]]L.
xeK

(B) For every x € K there exists a mapping f, of G into L, such that {L,, f, | ®E
€K} is a well pseudorealizer of G.

Proof. 1. Assume that (A) holds and let ¢ be an isomorphism of G onto G’ <
< [] L,. For every x € G and every x € K put ®(x, %) = [¢(x)] (x). Then ® is a map-

xeK
ping of the set G x K into the set |J L, with the property ®(x, %,) € L,,. ®(x, %) is
xeK

therefore a mapping of G into L,. Put ®(x, %o) = f,(x). We shall show that
{L,. f, | » € K} is a well pseudorealizer of G. Hence let x, y € G, x < y. Then ¢(x) <
< ¢(y) so that [o(x)] () < [@(y)] (%) for every x e K. From this it follows
D(x, %) < D(y, x) for every » € K and hence f,(x) < f,(») for every x € K. Suppose,
on the contrary, that f,(x) < f,(») for every x € K. Then ®(x, x) < ®(y, ) for every
xeK, ie. [o(x)] (%) £ [@(y)] (%) for every x € K so that ¢(x) < ¢(y). As ¢ is an
isomorphism, this implies x < y. {L,, f, [ x € K} is therefore a well pseudorealizer
of G and (B) holds.

2. Assume that (B) holds. Put ®(x, %) = f,(x) for every x e G and every x € K.
Then @ is a mapping of the set G x K into the set {J L, with the property ®(x,, x) €

neK
€L,. Form the cardinal product [] L, and put ®(x,, x) = [¢(x,)] (). Then ¢ is

xeK



a mapping of G onto a certain subset G’ < [| L, and we shall show that ¢ is an

xeK

isomorphism. Let x, ye G, x £ y. As {L,, f, | x € K} is a well pseudorealizer of G,
we have f,(x) < f,(y) for every x €K so that ®(x, x) < ®(y, %) for every x e K.
From this [¢(x)] (%) < [¢(y)] (%) for every xeK and therefore o(x) < o(y).
Suppose, on the contrary, that ¢(x) < @(y). Then [¢(x)] () = [¢(y)] (%) for every
x €K so that ®(x, x) < ®(y, x) for every x € K and hence f(x) < f,(») for every
xeK. As {L,, f, | x € K} is a well pseudorealizer of G, this implies x < y. Finally it
is easy to see that ¢ is a one-one mapping. ¢ is therefore an isomorphism and (A)
holds. ‘

2.9. Corollary. Let G be an ordered set, let K be a set. Then the following state-
ments are equivalent:

(A) There exists a well-ordered set Lsuch that G =~ G’ < IX.
(B) For every x € K there exists a well ordered set L, and a mapping f, of G
into L, such that {L,, f, | x € K} is a well pseudorealizer of G.

Proof. 1. Assume that (A) is true. Then (B) holds, according to 2.8., if we put
L, = Lfor every x € K.

2. Let (B) be true. Then according to 2.8. we have G = G’ < [] L,. Let Lbe such

" xeK
a well-ordered set that L, =~ L, = L for every x € K. The set L can be constructed
for instance in the following way: choose any well ordering of the set K and put
L=Y L, Then[] L, =[] L, X If ¢ is an isomorphism of [ L, onto [] L, we
xeK xeK xeK xeK xeK

G' = ¢(G') = G" 2 [] L, < If so that G =~ G” < L and (A) holds.

xeK

have G

I

2.10. Theorem. Let G be an ordered set satisfying the descending chain condition,
let K be a set. Then the following statements are equivalent:

(A) For every x € K there exists a well-ordered set S, such that G =~ G’ < [] S,.

zeK
(B) For every x €K there exists a well-ordered set T, and a one-one isotone

mapping f, of G into T, such that {T,, f, | » € K} is a well realizer of G.
Proof. 1. Assume that (A) holds. Let ¢ be an isomorphism of G onto G’ < [] S,

xek
Denote — similarly as in 2.8. — [@(x)] (%o) = g.,,(X)- Then g, is an isotone mapping
of G into S, for every € K. Put R, = g,(G) for every x€ K. Then R, < S, so
that R, is a well-ordered set and g, is an isotone mapping of G onto R, for every
x € K. Now for every x € K and every y e R, we have g, '(y) £ G so that g, '(y)
satisfies the descending chain condition. Hence according to 2.3. there exists a well-
ordered set T, and a one-one isotone mapping f;° of the set g, !(y) into T;. Put

T, = Y T;. T, as a lexicographic sum of well-ordered sets over a well-ordered set is
YeR,,
a well-ordered set. Define the mapping f, of G into T, in the following way: f,(x) =

5



= [g.{x), £ (0(X)]- It is easy to see that f, is a one-one mapping of G into T, for
every x € K. We shall show that {T,, f, | x € K} is a well realizer of G. Let x4, x, € G,
x; < x,. Then @(x;) < @(x,) so that [o(x)] () < [@(x2)] (x) for every x e K.
From this there follows that g,(x,) < g,(x,) for every x € K. Choose any x, € K.
IF (1) < Guo(X2) then [gu(x1), o2 (X0)] < [9(2)s Foten(x2)] in X T s0

YeR,.

that fxu(xl) < fxo(xz)' If gxo(xl) = gxo(xl) then x; € g;ol[gxg(xl)]’ X, € g;;:)l[gxo(xl)]
(=m0 [9(x2)]) 50 that £ \(x1) S £52 ,)(X2) = fomea(¥2) and hence [g,(x,),
T ()] S [9.(%2): fomoen(¥2)] 6. fr(x1) = frofx2). Therefore f(x,) < f(x2)
for every x € K. Suppose, on the contrary, that f,(x,) < f,(x,) for every x € K. Then
[9.0x0), £7en(x1)] = [9dx2), £} xn)(x2)] for every x € K and hence g,(x,) < g.(x,)
for every x € K. From this it follows that [¢(x,)] (%) < [@(x,)] (%) for every x € K,
ie. ¢(x,) £ ¢(x;). As ¢ is an isomorphism, this implies x, < x,. Hence {T,,, f, | x €
€ K} is really a well realizer of G and (B) holds.

2. Assume that (B) holds. Then {T,, f, | € K} is also a well pseudorealizer of G
and (A) holds according to 2.8. if we put S, = T, for every x € K.

2.11. Corollary. Let G be an ordered set satisfying the descending chain condition,
let K be a set. Then the following statements are equivalent:

(A) There exists a well-ordered set Lsuch that G =~ G' < L*.

(B) For every x €K there exists a well-ordered set L, and a one-one isotone

mapping f, of G into L, such that {L,, f, | x € K} is a well realizer of G.
Proof can be made similarly as proof of 2.9.

3. WELL DIMENSION

3.1. Definition. Let G be an ordered set satisfying the descending chain condition.
We put wdim G = min (card K | {L,, f,. | x € K} is a well realizer of G); this car-
dinality will be called a well dimension of G.

3.2. Theorem. Let G be an ordered set satisfying the descending chain condition,
let m > 0 be a cardinality. Then the following statements are equivalent:

(A) wdim G < m.

(B) - There exists a set K with card K = m and for every » € K a well-ordered
set L, such that G = G' < [ L,.

xeK

Proof follows from 2.10.

3.3. Theorem. Let G be an ordered set satisfying the descending chain condition,
let m > 0 be a cardinality. Then the following statements are equivalent:

(A) wdim G < m.



(B) There exists a set K with card K = m and a well-ordered set L such that
G~ G ¢ IX

Proof follows from 2.11.

3.4. Theorem. Let G be an ordered set satisfying the descending chain condition.
Then wdim G < card G; if G is finite and card G = 4 then even wdim G <
<[4 card G].

Proof. If G is finite then clearly wdim G = dim G so that according to [5]
wdim G = dim G < [4 card G] for card G = 4. If G is infinite then card G =
= card (G X G) and the assertion follows from the proof of 2.5.

3.5. Theorem. Let G be an ordered set satisfying the descending chain condition
and let card G < N,. Then wdim G = @, — dim G = @, ;-pdim G.

Proof. Clearly wdim G < w,,,-dim G. Assume that wdim G = m and let
{L..f.|# €K} be a well realizer of G of cardinality m. For every » € K put M, =
= f,{(G); then {M,, f, | x € K} is also a well realizer of G and card M,, < R, for every
% € K. From this M, < w,4, for every x € K so that {M,, f, | x€ K} is an @, -
realizer of G and hence w,,-dim G < m. Therefore w,,-dim G = m = wdim G.
Further w,, -pdim G < @, + -dim G = wdim G; on the other hand, if @, -pdim G =
= n, then according to [9] G = G’ < L* where Lis a chain of type w,+, K an anti-
chain of cardinality n. From this it follows, according to 3.3., wdim G = n so that
also wdim G = w,,-pdim G.

B. DusHNIK and E. W. MiLLEr ([4]) and also H. Komwm ([7]) have proved that to
every cardinal number m > 0 there exists an ordered set G such that dim G = m.
We shall prove an analogical theorem for the well dimension.

3.6. Theorem. For any cardinal number m > 0 there exists an ordered set G
satisfying the descending chain condition such that wdim G = m.

Proof.') Let M be a set with card M = m. Put a, = {x}, ¢, = M — {x} for any
x € M and denote G = {a,, ¢, | x e M} where G is ordered by the set inclusion. It is
clear that G satisfies the descending chain condition. In [4] there is proved dim G = m;
we shall prove that also wdim G = m. As dim G £ wdim G, for any ordered set G
satisfying the descending chain condition it is sufficient to prove wdim G < m. If
m < N, then card G < ¥, so that wdim G = dim G = m for wdim G = dim G for
any finite ordered set G. If m = X, then card G = m so that wdim G < m according
to 3.4. Therefore in both cases wdim G = m.

The fact that wdim G = dim G holds for any finite ordered set G leads us to the
question whether it may be posible that wdim G = dim G holds for any ordered set G

1y The proof is accomplished, in a quite similar way, as that of Theorem 4.1. in [4].



satisfying the descending chain condition. The following example shows that this is
not true.

3.7. Example. Let G be an infinite antichain. Then dim G < wdim G.

Proof. There is dim G = 2. Assume that wdim G = 2. Then there exists a well
realizer {L;, f;|i = 1,2} of the set G of cardinality 2. Hence there is necessarily
x, Y€ G, f1(x) < f1(y) = f2(x) > f2(y) i.e. the set £,(G) < L, is dual to f,(G) < L.
As G is infinite, f,(G) contains a chain of type w. From this it follows that f,(G) < L,
contains a chain of type w* which is a contradiction.

3.8. Lemma. Let H, G,(x e H) be ordered sets satisfying the descending chain

condition. Then Y G, satisfies the descending chain condition.
acH

Proof. Let [a;, x;] €Y. G, (i
acH
=...=[opx,]=...Then g = &y = ... = o, = ... and hence there exists a non-
negative integer n, such that o, = «, ,{ = ®,,4+, = ... From this it follows x, =
2 Xy Z s = X4k = ... and X, 1 € G, forevery k =0,1,2,... so that there
exists k; such that X, .y, = Xp 4,41 = Xy, +1,+2 = -.. Lherefore if we put n; +

+ ky = ng we have [0, X0 ] = [taos 15 Xnor 1] = [Fng+25 Xngt2] = - --

0,1,2,...) and assume that [a,, x| = [oy, x;] =

3.9. Corollary. Let G, H be ordered sets satisfying the descending chain condi-
tion. Then G @ H, G + H, G o H satisfy the descending chain condition.

3.10. Corollary. Let G be an ordered set satisfying the descending chain condition,
let H be a finite chain. Then ¥G satisfies the descending chain condition.

Proof. If card H = n then #G = G, 0 G0...0 G, where G; = G (i = 1,2, ..., n)
so that the statement follows from 3.9. :

3.11. Theorem. Let H, G,(a € H) be ordered sets satisfying the descending chain
condition. Then wdim Y, G, = sup {wdim H, wdim G,(« € H)}.?)
aeH
Proof. Denote sup {wdim H, wdim G,(« € H)} = m. Let K be a set with card K =
= m, let {L,, f, | » € K} be a well realizer of H, let {P}, g% | € K} be a well realizer
of G, for every « € H. We can assume L, = f,(H) for every x € K (in the other case
we shall consider the set f,(H) < L, instead of L,) and also P; = g}(G,) for every

x €K and every a € H. Put S,, = Y, P/*7'®)(y) for any twoelements %, ¢ € K. S,,,, as
yely

a lexicographic sum of well-ordered sets over a well-ordered set, is a well-ordered set

for any » € K, ¢ € K. Define the mapping h,, of ) G, into S, in the following way:

acH

2) See Theorem 1 in [8]. &



|
h([o x]) = [fu®), g%(x)]. Put further T, = S,,, r, = h,,. We shall show that
{T,,r,|xeK} is a well realizer of ) G,. Let [ay,x,]€Y. G, [0, x,] €Y. G,
acH acH acH
[ot3, 4] < [e2, x,]- Then either oy < oy, OF &y = a5, X; < X,. In the first case we
have f,(a;) < f/«;) for every x€K so that h,([oy, x,]) = [fi{oy), g5'(x,)] <
< [filo2), 923(x2)] = o[z, x2]) for any x € K, ¢ € K. In the second case there is
g5 (x1) £ ¢5'(x;) for every geK so that h,([ay, x,]) = [filoy), 95(x,)] <
< [filoa)s 951 (x2)] = hyf[orys X2 ]) = hp([0t2, x2]) for any x €K, ge K. We have
proved that even every h,, is an isotone mapping. Further it is clear that every h,, is
a one-one mapping because every f, and every g is a one-one mapping. Assume now

that [a;, x;]€ ) G,, [, x,] €Y, G, and that r([«;, x,]) < r[o, x,]) for every
acH aeH

x e K. Then h,,([ay, x,]) = [file), 92 (x1)] < [fil02), 92(x2)] = Mol [t2, x2]) for
every x € K. From this it follows f(«,) < f,(,) for every » e K which implies
a; < a, because {L,,f,|xeK} is a well realizer of H. If f(o;) < f, () for at
least one (and thus for every) x € K we have a; < a, and hence [a;, x,] < [a, X, ]
in )’ G,. In the opposite case f,(«,) = f,(a,) and therefore a; = o,. Therefore in this
acH
case g3'(x;) = g3'(x,) for every x e K. As {P}!, g% | x € K} is a well realizer of G,,
this implies x; < x, and hence [oy, x;] < [ay, x,] = [z, x,]. Thus {T,, r, | x € K}
is really a well realizer of ) G, so that wdim ) G, < m. On the other hand the set
acH acH

Y. G, contains subsets H’, Gy(« € H) isomorphic with H, G,(e € H) : H' = {[«, x,] |
acH

|eeH, x,€G, is any constantly chosen element}, G, = {[«,x]|x€G,, aeH is

constant}. From this it follows wdim H = wdim H' £ wdim E G,, wdim G, =

acH
= wdim G, £ wdim ). G, for every o € H so that sup {wdim H, wdim G,(x € H)} =
acH
=m < wdim ), G, and altogether wdim )’ G, = m = sup {wdim H, wdim G,(« €
acH aeH

e H)}.

3.12. Corollary. Let G, H be ordered sets satisfying the descending chain
condition. Then wdim (G @ H) = max {wdim G, wdim H}, wdim (G + H) =
= max {2, wdim G, wdim H}, wdim (G o H) = max {wdim G, wdim H}.

3.13. Corollary. Let G be an ordered set satisfying the descending chain condition,
let H be a finite chain. Then wdim ¥G = wdim G.
Proof. If H is a chain with card H = 2 then according to 3.12. wdim #G =

= wdim (G o G) = wdim G. Now the statement follows by induction.

3.14. Lemma. Let Gy, G,, ..., G, be ordered sets satisfying the descending chain
condition. Then G, . G, ... G, satisfies the descending chain condition.

Proof. Let [x}, x},...,x]€G,.G,...G, for i =0,1,2,... and let [x$, x5, ...



v X0 Z [x X5 s xp] 2 = [N XD, ., X" 2 .. Then X0 2 xl > .2
XLz Xy =, ,x2 = x> ... = x" > ... From this it
follows that for every i = 1,2, ..., n there exists a non-negative integer m; such that
xf=xptt = 0 Put mg = max {m,, m,, ..., m,}. Then [x7°, x5, ..., x™] =
= [t xmort Xmotl] =

3.15. Corollary. Let G be an ordered set satisfying the descending chain condition,
let H be a finite antichain. Then G" satisfies the descending chain condition.

3.16. Corollary. Let G be an ordered set satisfying the descending chain con-
dition, let H be a finite ordered set. Then G™ satisfies the descending chain condition.

Proof. Let H be the set H ordered as an antichain. Then G¥ < G¥. G¥ satisfies
the descending chain condition according to 3.15., hence G¥ also satisfies the descen-
ding chain condition.

3.17. Theorem. Let G, H be ordered sets satisfying the descending chain condition.
Then wdim (G . H) £ wdim G + wdim H.

Proof. Denote wdim G = m, wdim H = n. According to 3.2. there exists a set K,
with card K; = m and for every x € K a well-ordered set L, such that G =~ G’ <
< [ L, and similarly there exists a set K, with card K, = n and for every x e K,

xeK

a well-ordered set L, such that H =~ H' < [] L,. Assume that K,, K, are disjoint
xeK2
and put K = K, UK,. Then cardK =m +n and G.H= G .H < ([[L,).
xeKy

.(TTL,) =[] L. From this there follows according to 3.2. wdim (G.H) £ m +

xeKy xeK

+ n = wdim G + wdim H.

3.18. Note. The inequality < in 3.17 cannot be substituted by =. If, for example G,
H are finite non-trivial antichains it is wdim G = 2 = wdim H and as G . H is also
a finite non-trivial antichain we have wdim (G . H) =2 < wdim G + wdim H. On
the other hand, if G, H are non-trivial well-ordered sets, there is wdim G = 1 =
= wdim H and — as it will be shown in 3.22. — wdim (G . H) = 2 = wdim G +
+ wdim H. :

3.19. Corollary. Let G, G,, ..., G, be ordered sets satisfying the descending chain
condition. Then wdim (G, .G,...G,) < wdim G, + wdim G, + ... + wdim G,.

Proof follows from 3.17. by induction.

3.20. Corollary. Let G be an ordered set satisfying the descending chain condi-
tion, let H be a finite antichain. Then wdim G =< card H . wdim G.
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3.21. Corollary. Let G be an ordered set satisfying the descending chain condition,
let H be a finite ordered set. Then wdim G¥ < card H . wdim G.

Proof. If H is the set H ordered as an antichain then G¥ < G and hence wdim G¥ <
< wdim G? < card H . wdim G = card H . wdim G.

3.22. Theorem. Let G, G,, ..., G, be well-ordered sets. Then wdim (G, .G, ...
...G,) =n.

Proof. As wdim G; =1 for i =1,2,...,n we have wdim(G,.G,...G,) < n
according to 3.19. Assume wdim (G,.G,...G,) =m <n and let {L,, f; |k =
=12,.., m} be a well realizer of G, . G, ... G, of cardinality m. Choose for any
i=1,2,..., ntwo elements x;, y; € G; such that x; < y; and denote a; = [xy, x,, ...

o X ts Yis Xig 1o oo Xns €= [V1s Y25 oo Victs Xis Viv1s -+ Va]- Then a;€ G, .
.G,...G,,¢;€Gy.G,y...G, for i=1,2,...,n,a;<c; for i+*}j, a; || c;. Thus,
there exists at least one ko(l1 < ko < m) such that f, (¢;) < fi,(a;) and at the same
time f(c;) < fi(a;) where i % j. As a; <c¢; and a; <c¢; in G;.G,...G, we
obtain  f,(¢;) < fi(a:) < fro(€;) < fio(@;) < fio(€i), which is impossible. Hence
wdim (G, . G, ... G,) = n.

3.23. Corollary. Let L be a well-ordered set, let K be a finite antichain. Then
wdim IX = card K.

4. WELL PSEUDODIMENSION

4.1. Definition. Let G be an ordered set. We put wpdim G = min (card K | {L,, £, |
| x € K} is a well pseudorealizer of G); this cardinality will be called a well pseudo-
dimension of G.

4.2. Theorem. Let G be an ordered set,let m > 0 be a cardinality. Then the fol-
lowing statements are equivalent:

(A) wpdim G £ m.

(B) There exists a set K with card K = m and for every x € K a well-ordered
set L, such that G = G’ < [] L,.

xeK

Proof follows from 2.8.

4.3. Theorem. Let G be an ordered set,let m > 0 be a cardinality. Then the fol-
lowing statements are equivalent:

(A) wpdim G < m.

(B) There exists a set K with card K = m and a well-ordered set L such that
GG cIX

Proof follows from 2.9.
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4.4. Theorem. Let G be an ordered set. Then wpdim G < card G; if G is finite and
card G 2 4 then wpdim G < [ card G].

Proof. If G is finite then clearly wpdim G = wdim G = dim G so that wpdim G £
< [4 card G] for card G = 4, according to [5]. If G is infinite then card (G x G) =
= card G and the statement follows from the proof of 2.7.

4.5. Theorem. Let G be an ordered set and let card G £ N,. Then wpdim G
= w,,,; — pdim G.

Proof. We have clearly wpdim G < w,,; — pdim G. Assume that wpdim G = m
and let {L,, f, ] x €K} be a well pseudorealizer of G of cardinality m. Put M, =
= f,(G) for any % € K; then {M,, f, | x € K} is also a well pseudorealizer of G and
there is card M,, < N, so that M,, < w,, for every x e K. {M,, f,, [ x € K} is there-
fore an w,;; — pseudorealizer of G of cardinality m so that w,,,; — pdim G < m.
Hence w,+; — pdim G = m = wpdim G.

4.6. Theorem. Let G be an ordered set satisfying the descending chain condition.
Then wpdim G = wdim G.

Proof. We have clearly wpdim G < wdim G. Assume that wpdim G = m.
Then according to 4.2. there exists a set K with card K = m and for every x € K
a well-ordered set L, such that G =@ G' & H L,. From this it follows according to

xeK

3.2. wdim G < m and hence wdim G = m = wpdim G.
From 4.6. and 3.6. we obtain immediately

4.7. Theorem. For any cardinal number m > 0 there exists an ordered set G
such that wpdim G = m.

4.8. Theorem. Let H be an ordered set satisfying the descending chain condition,
let {G,| e H} be a system of ordered sets. Then wpdim ). G, = sup {wdim H,

acH

wpdim G,(o € H)}.

Proof. Put sup {wdim H, wpdim G,(o € H)} = m. Then there exists a well
realizer {L,, f, | % € K} of the set H of cardinality m; further let {P}, g | x € K} be

a well pseudorealizer of the set G, of cardinality m for every « € H. Now define the
well-ordered sets S,, and mappings h,, of the set Z G, into S,, for every x e K,
acH
0 € K, in the same way as in the proof of 3.11. and put T, = S,,, r,, = h,,,. We shall
show that {T,, r,|»eK} is a well pseudorealizer of Y. G,. Let [ay, x;]€ ). G,,
acH acH
[og, x3] €Y Gy [y, x4 <[22, X, ]. Then either ay < o, or oy = a5, X; £ X,. In
acH

the first case there is f,(o;) < fi(o,) for every x € K, {L,, f, | x € K} being a well
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realizer of H. Hence [f2,), g%(x,)] < [f2)s 92*(x,)] for any x €K, g€K, i.e.
he[s %1]) < hyf [, X2]) for any x € K, ¢ € K. In the second case there is g%'(x;) <
g7 (x2) orevery 0 €K s0 that ([, ,1) — [,(22). 5(x1)] = [l (o)) ~
= hef[21, %2]) = hof[22, x,]) for every x € K, o € K. We have proved that even
every h,, is isotone. Now assume that r([a;, x,]) = h. ([0, x,]) = [fios)s
92 (x)] = [flea), 932(x2)] = hol[25 X2]) = r[#25 X,]) for every xeK. Then
fde) £ fioz) forevery xe K and hence a; < a,. If f,(a,) < fida,) for at least

one xe€K we have o; <a, and therefore [ay, x,]| < [az, x,] in Y G,. In the
acH
opposite case there is f,(o;) = f,(a;) for every x € K so that a, = a, and hence

9% (x4) < g3'(x,) for every x € K. This implies x, < x, in G,, = G,, so that again
[ %1 ] £ [o45 x5] = [o2, x,] in Y G,. Hence {T,, r,|xeK} is really a well
acH

pseudorealizer of )’ G, so that wpdim ¥, G, < m. Analogously like in 3.11. we can

acH acH
easily prove that wpdim )’ G, = m so that wpdim ) G, = m = sup {wdim H,
wpdim G,(« € H)}. ocll ocH

4.9. Corollary. Let G, H be ordered sets. Then wpdim (G @ H) = max {wpdim G,
wpdim H}, wpdim (G + H) = max {2, wpdim G, wpdim H}.

4.10. Theorem. Let H be a set, let G, be an ordered set for every a € H. Then
wpdim [[ G, £ ) wpdim G,.
acH aeH
Proof. Denote wpdim G, = m, for every a € H. According to 4.2. there exists
a set K, with card K, = m, and for every »x € K, a well-ordered set L, such that
G, = G, =[] L,. Assume that the sets K, are disjoint and put K = {J K,. Then

xeK o acH

card K = Y m, = ) wpdim G, and [] G, 2 [[ G, = [[ ([[L.,) =[] L.. From this
acH aecH acH acH acH x€Ke xeK
it follows wpdim [| G, < card K = ) wpdim G, according to 4.2.
acH aeH

4.11. Note. The relation £ also here cannot be substituted by =. This follows from
4.6. and 3.18.

4.12. Corollary. Let G be an ordered set, let H be an antichain. Then wpdim G¥ <
< card H. wpdim G.

4.13. Corollary. Let G, H be ordered sets. Then wpdim G¥ < card H . wpdim G.
Proof. Similarly as in 3.21.

4.14. Theorem. Let H be a set, let G, be a well-ordered set for every c.€ H. Then
wpdim [] G, = card H.

acH
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Proof. According to 4.10. we have wpdim [ | G, < card H. Assume wpdim [] G, =

acH aeH
=m < card H and let {L,, f, | x € K} be a well pseudorealizer of the set [] G, of
acH

cardinality m. Choose for any « € H two elements x, € G,, ¥, € G, such that x, < Y,

and for every o, € H denote — similarly as in 3.22. — @, ¥, the elements ofH G,
acH

defined in the following way:

_ x, for a %o N Ve for o
9ao(®) = <y, for a=a, Vo) = <x, for o= a,

It is easy to see that ¢, < ,, for a; + a, and @y, || ¥s in [] G,. This implies that
aeH

there exists at least one element x, € K such that f,,(Va,) < fuo(@s,) and fro(Va,) <
< fro@uy) Where @y * 5. As @, < Y, and @,, < Y, We have f, (V) < fuo@a) =
= fulWa) < Fuol @) = FroWa)s i€ FuoWar) < fuo(¥ay) Which is impossible. Hence
wpdim [] G, = card H.
aeH
4.15. Corollary. Let L be a well-ordered set, let K be an antichain. Then wpdim L=
= card K.

5. EXAMPLES

5.1. Let G be the set of all real numbers with the natural ordering. Then
wpdim G = N,.

Proof. According to [9] there is 2 — pdim G = sep G = N,.*) From this there
follows wpdim G < 2 — pdim G = N,. Assume that wpdim G < N, i.e. wpdim G =
= m where m is a finite number. Then according to 4.3. G = G’ < IX where Lis
a suitable well-ordered set and K is an antichain with card K = m. According to
3.15. the set IX satisfies the descending chain condition and this is a contradiction
because G contains an infinite descending chain. '

5.2. Let G be the set of all rational numbers with the natural ordering. Then
wpdim G = N,.

Prqof. As G = H implies wpdim G < wpdim H for any ordered sets G, H, 5.1.
implies wpdim G = N,. The converse inequality can be proved in the same way as
in 5.1. because G again contains an infinite descending chain.

5.3. Let G be a chain of type o). Then wpdim G = N,.

Proof. According to 4.4. we have wpdim G £ N,. Assume wpdim G = m < N,.

3) Sep G denotes the separability of G i.e. the minimal cardinality of a subset H S ‘G which is
dense in G.
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Then according to 4.2. there exists a set K with card K = m and for every x e K
a well-ordered set L, such that G = G’ S [ L,. Thus G’ = {¢q, @1, ..., ¢z, ... | 9o >

xeK

>0 >...> 0> ..., A<, @,€[]L,}. This implies py(x) = @,(x) = ... =

xeK
= ¢,(x) = ... for 1 < w, and x € K. Denote W, = {A| e W(w,), ¢,(x) > @, (%)}
for any x € K.
Then it holds: every W, is a finite set and for every A € W(wa) there exists a % such
that A€ W,. This implies W(w,) = U W,. But card U W, <Y card W,; the last

xeK xeK xeK
cardinal number is finite if m < Ny;if m = Xy then ) card W, < Y Np = m. R, =
xeK ek

= m; at the same time card W(coa) = N, > m and this is a contradiction. Hence
wpdim G = N,.

5.4. Let G be an antichain such that ¥, < card G £ 2%. Then wdim G = N,,.

Proof. In [10] there is proved: If G is an antichain with card G = ¥, then
2 — pdim G = m where m is the smallest cardinal number such that 2" = N,.
Hence if G is an antichain of cardinality 2%° then 2 — pdim G = N, so that wdim G =
= wpdim G = X,. Thus it is sufficient to prove that if G is an antichain with card G =
= N, then wdim G = N,. Suppose wdim G = m < N,. Then there exists a well
realizer {L;, f;| i = 1,..., m} of the set G of cardinality m. Write all elements of the
set G in the form of a sequence: G = {xo,xl, ey X } Now, f; is a one-one
mapping of G into L, and L, is a well-ordered set; thus, the set f,(G) is well-ordered,
so that fi(G) = {I5, I},...., I}, ... | A< ofx < wy), Iy <Ilf <...<I} <..}. Now
for every 1 < w, there exists a non-negative integer n, such that f7'(l}) = x,,;
simultaneously for A; # 1, there is n;, # n,,. In the sequence {n,},.,,, there exists
an increasing subsequence {n;, }i<q,- Write more briefly n; = n,_and denote G' =
= {Xy1, }k<w,- Then there holds n;, < n, and fi(x,,) < fi(Xu,) for k, < k,.
Now, f,(G') € L, and L, is well-ordered so that f,(G') = {I§, I},...., [;,...| A <
<BB<w), g <1} <..<I;<..} Forevery 2 < w, there exists again a non-
negative integer k; such that f3 '(I3) = X1, where k;, =+ k;, for A; & ,.

In the sequence {k,}, ., there exists an increasing subsequence {k;,} i<, Write
again n? instead of nj,,. If we denote G* = {x,2, }x<q,» there will hold n;, < n;, and
Fi(%) < fi(Xuz ) fo(%2,,) < f2(Xp2,,) for ky < k,. When repeating this proceeding
m-times we get on to a set G™ S G, G™ = {Xpm, Jx<wy Where for k; < k, there holds
np < np and fX,m,) < fi(Xum,) for all i = 1,...,m which implies X,m,_ < X,m,
in G, because {L,, f; | i =1,..., m}is a well realizer of G and this is a contradiction.
Thus, wdim G = N,.

5.5. Let G be the set of all pairs [x, y]| where x, y are real numbers ordered in the
following way: [xy, y,] < [x5, y2] <> x; = x, and y, < y,. Then wpdim G = N,,.

Proof. It is easy to see that G = )" G, where H is an antichain with card H = 2%°
acH
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and each G, is a chain with G, = 1.*) We have therefore wdim H = ¥, according
to 5.4 and wpdim G, = ¥, for every a e H according to 5.1. Then wpdim G =
= wpdim ¥, = sup {wdim H, wpdim G,(« € H)} = ¥, according to 4.8.

acH

5.6. Problem. Let G be an antichain with card G = N,. Determine wdim G.
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