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ON THE WELL DIMENSION OF ORDERED SETS 

ViTEZSLAv NOVAK, Brno 

(Received December 1, 1966) 

L INTRODUCTION 

1.1. Notation. If 0 is a set then card G denotes the cardinahty of G. If G is a hnearly 
ordered set then G denotes the order type of G. A set G will be called non-trivial if 
card G ^ 2; in the whole paper, all sets are assumed to be non-trivial and all types 
of ordered, resp. linearly ordered sets are assumed to be types of non-trivial sets. The 
identity of ordered sets will be denoted = , the isomorphism ^ . A linearly ordered 
set will be called a chain, a set in which every two distinct elements are incomparable 
will be called an antichain. For the operations with ordered sets we shall use the 
BIRKHOFF'S notation ([1] or [2]) so that G + H, G . H, G^ denotes the cardinal 
sum, product and power whereas G @ H, G о H,^G denotes corresponding ordinal 
operations. 

1.2. Lexicographic sum. Let Я be an ordered set, let {G„ | a e Я} be a system of 
ordered sets. Lexicographic sum ^ G^ ([3]) is a set of all ordered pairs [a, x] , where 

аеН 

(xe H, xe G^, ordered in the following way: [a^, Xy\ ^ [a2, X2] if and only if a^ < 
< «2? or a^ = (X2, Xi ^ X2. It is well known that this operation is a generalization of 
the Birkhoff's ordinal sum, cardinal sum and ordinal product for, if we choose 
Я = {0, 1 I 0 < 1} as a two-point chain, then ^ G^ is isomorphic with GQ @ G^^; if 

аеН 
we choose Я = {0, 1 | 0 Ц 1} as a two-point antichain then ^ G^ is isomorphic with 

аеЯ 
Go + Gl and if we choose G^ = G for every a e Я then ^ G^ is identical with Я о G. 

1.3. Cardinal product. Let Я be a set, let {G^ | a e Я} be a system of ordered sets. 
Cardinal product f | Ĝ^ is a set of all functions / defined on Я and such that /(a) e G«, 

for every a e Я, ordered in the following way: f ^ g if and only i f / (a) ^ ^ (̂a) for 
every a e Я. This operation is a generalization of the Birkhoff's cardinal product 
for, if we choose Я = {0, 1} as two-point set, then Yl G^ is isomorphic with GQ . G^. 



For this reason, if H = {0, 1,..., n} is a finite set, we denote {"[ G„ conventionally 
аеЯ 

Go . Ol . . . G„. If G^ = G for every ae H then Y[ O« is identical with G^ in the case 
that H is ordered as an antichain. ""̂ ^ 

1.4. Linear extension. Let a set of orders {^^ | a e Я} be given on the set G. If we 
assume these orders to be subsets of the cartesian square G^ we can apply various 
set-theoretical operations to them.Especially it is easy to see that the intersection 
П ^oe = й is again an order on G. This order is defined in the following way: 

<xeH 

^ ^ yox ^a у for every a e Я. If ^ is an order on G and if ^ is a linear order 
on G such that S Ш ^ O-̂ - x, y e G, x ^ y => x ^ y) we say that ^ is a linear 
extension of S- In [11] E. SZPILRAJN has proved that any order ^ on G has at 
least one linear extension ^ . He has proved the stronger result: Let ^ be an order 
on G and let x, y be elements of G such that x || y. Then there exist two linear exten­
sions ^ 1 , ^ 2 C)f S such that X -^i y, y ^ 2 ^- From this it follows that the inter­
section of all hnear extensions of ^ is ^ . 

1.5. Dimension. Let G be a set, let ^ be an order on G. From the Szpilrajn's 
theorem it follows, on G there exist systems of linear orders intersection of which 
is ^ . Such systems are called realizers of ^ and if {^^ | a e Я} is a realizer of ^ 
we say that the orders ^ ^ realize S- B. DUSHNIK and E. W. MILLER ([4]) call the 
dimension of the set G and denote dim G the smallest cardinality of the system of 
linear orders on G, which realizes ^ . A linear extension of an ordered set G can be 
also defined as a one-one isotone mapping of G into a chain H. From this there 
follows that the dimension of G can be defined as the minimum of cardinalities of 
systems {f^ \x e K} (where /^ is a one-one isotone mapping of G into a chain L^ for 
every xeK) such that x, y e G, x ^ yofx{x) й/х{у) for every к e K. If every 
chain L^ has the same order type a and if there exists at least one system {/̂  | x G X} 
where f^ is a one-one isotone mapping of G into L^ with the property x, y e G, 
X S У *^fo<{x) s fx{y) for every x e K, then the minimum of cardinalities of such 
systems is called a-dimension of G and denoted a-dim G (H. Комм [7]). Let G be an 
ordered set, L a chain of type a. In [9] there is proved that there exists a system 
{f^\xe K} where /^ is an isotone (not necessarily one-one isotone) mapping of G 
into L such that x, y e G, x ^ y of^{x) ^ f^{y) for every xeK. The minimum or 
cardinalities of such systems is called oc-pseudodimension of G and denoted a-pdim G. 
Properties of the characteristics dim G, a-dim G, a-pdim G are studied in [4], [5], 
M. [7], M, [9], [10]. 

2. WELL REALIZER AND PSEUDOREALIZER 

2.1. Definition. Let G be an ordered set. We say that G satisfies the descending chain 
condition if XQ, X^, ..., x„,... e G, Xo ^ x^ ^ .. . ^ x„ ^ . . . implies the existence of 
a positive integer UQ such that x„o ~ n̂o + i "̂  ••• 



2.2. Definition. Let G be an ordered set, let Я be a well-ordered set. A one-one 
isotone mapping cp of G into H is called a well extension of G. 

2.3. Theorem. Let G be an ordered set. Then G has a well extension if and only 
if G satisfies the descending chain condition. 

Proof. The necessity of this condition is clear. We shall prove its sufficiency. Hence 
let G — ordered by the relation ^ — satisfy the descending chain condition. Let GQ 
be the set of all minimal elements in G (the mentioned assumption guarantees the 
existence of minimal elements in G). Assume that we have defined all sets G^ for 
every ordinal number a < ao- Then let Ĝ ^ denote the set of all minimal elements 
in G — \J G^ (if G — [J G^ is non-empty then it satisfies the descending chain 

a<ao a<ao 
condition so that the existence of minimal elements in G ~ IJ G« is guaranteed). 

a<ao 
Then there exists the smallest ordinal number ß such that Gß = 0 for, if card G ^ K ,̂ 
then clearly G^.^^ = 0. Then it holds: G = (J G^ where the sets G^ are mutually 

disjoint and every G^ is an antichain with respect to ^ . Choose any well ordering 
of G^ for every a < ß and put Я = ^ Ĝ ĵ . Я as a lexicographic sum of well-ordered 

a<ß 

sets over a well-ordered set is a well-ordered set. Define a mapping cp of G onto Я 
in the following way: xe G, x e G^=> (p{x) = [a, x] . (p is clearly a one-one mapping 
of G onto Я. We shall show that cp is isotone. Let x, y e G, x ^ y. Then there exist 
ordinal numbers a^ < ß, a2 < ß such that x e G^^ y e G^^. If it were a^ > aj then x 
would be a minimal element in G ~ IJ G^a.nd y e \J G^ so that x > y or x \\ y and 

a<ai a<ai 

this is a contradiction. Therefore a^ ^ a2 and from this (p[x) = [«i, x] ^ [062, j ] = 
= (p{y). Hence (̂  is a well extension of G. 

2.4. Definition. Let G be an ordered set, let {L^ | % e X} be a system of well-ordered 
sets, let/^ be a one-one isotone mapping of G into L^.lf x, y e G => x ^ j ; if and only 
if/^(x) ^ fj,(y) for every x еК then we say that {L^,f^ | % e K } is a well realizer of 
the set G. 

2.5. Theorem. An ordered set G has a well realizer if and only if G satisfies the 
descending chain condition. 

Proof. The necessity of the mentioned condition follows from 2.3., for every /^ 
is a well extension of G. We shall prove its sufficiency. Hence let G satisfy the descend­
ing chain condition. If G does not contain any incomparable elements then G is 
a well-ordered set so that {G, g} is a. well realizer of G when g is an identical mapping 
of G onto itself. In the opposite case it suffices to show that for any two incomparable 
elements x^, X2 e G there exist well-ordered sets L^, L2 and one-one isotone mappings 
/ 1 , resp. /2 of G into L^, resp. L2 such that / i (x i ) < /i(x2), /2(^:1) > fii^i)- Hence 
let Xi, X2 e G, xi || X2. Put Ĝ  = {x | x e G, x ^ x j , G^ = G - G 4 Both Ĝ  and G^ 



satisfy the descending chain condition, hence according to 2.3. there exist well-ordered 
sets I}, I? and one-one isotone mappings/^, resp./^ of G^ into Ü, resp. of G^ into L^. 
Put L^=: Ü @ Û and/ i (x) = f{x) for x e G' {i = 1, 2). Then L^ is clearly a well-
ordered set a n d / i is a one-one isotone mapping of G into L^ such tha t / i (x i ) < 
< fii^z)'^ analogously we can construct a well-ordered set L2 and a one-one isotone 
mapping/2 of G into L2 such that/2(xi) > ^ (хг ) . 

2.6. Definition. Let G be an ordered set, let {L^ | x e K} be a system of well-ordered 
sets, let/^ be a mapping of G into L^.lf x, y e G => x ^ y if and only if/^(x) ^ f^(y) 
for every x e К then we say that {L^,fyc | x e X} is a well-pseudorealizer of the set G. 

2.7. Theorem. Any ordered set G has a well pseudorealizer. 

Proof. Let G be an ordered set. By K^ denote the set of all ordered pairs [x, j ] 
where x, y e G, x < y, by K2 the set of all ordered pairs [x, j ] where x, y e G, 
x 11 j ^ . Put к = K^KJ K2 and for every x e К Ы L^ be a two-point chain, i.e. L^ = 
= {0, 1 j 0 < 1}. Define a mapping/^, of G into L^ for every x = [x, y~\ in the follow­
ing way: /^(r) = 0 if and only if t ^ x. It is easy to see that {L^,f^ | x e K} is a well 
pseudoreahzer of G. 

2.8. Theorem. Let G be an ordered set, let К be a set and L^ a well-ordered set for 
every KEK. Then the following statements are equivalent: 

(A) G ^ G ' s I l J ^ . -
xeK 

( B ) For every xeК there exists a mapping f^ of G into L^ such that {L^,f^ \ x e 
e K\ is a well pseudorealizer of G. 

Proof. L Assume that (A) holds and let cp be an isomorphism of G onto G' g 
g I~[ L^. For every xeG and every xeK put Ф(х, x) = [^(x)] (x). Then Ф is a map-

xeK 
ping of the set G x К into the set \J L^ with the property Ф(х, XQ) e L^^. Ф(х, XQ) is 

xeK 

therefore a mapping of G into L^ .̂ Put Ф(х, Xo) = fxoi^)- We shall show that 
{L'x^fx I X e X} is a well pseudorealizer of G. Hence let x, у EG,X ^ y. Then (p{x) ^ 
^ (p{y) so that [ф(х)] (x) ^ [ф(}^)] (x) for every xeK. From this it follows 
Ф(х, x) ^ Ф(у, x) for every x e K and hence fj^x) ^ /^(з^) for every xeK. Suppose, 
on the contrary, thatfj(x) ^ f^{y) for every xeK. Then Ф(х, x) ^ Ф(};, x) for every 
xeK, i.e. [<?>(x)] (x) й [ф(у)] (^) for every x e iC so that (p{x) ^ (^(j;). As cp is an 
isomorphism, this implies x g y. {L^,f^ \хеК} is therefore a well pseudorealizer 
of G and (B) holds. 

2. Assume that (В) holds. Put ф(х, x) = /^(x) for every x e G and every x e K. 
Then Ф is a mapping of the set G x iC into the set (J L^ with the property Ф(хо, x) e 

xeK 
e L^. Form the cardinal product f | L^ and put Ф(хо, x) = [ф(^о)] (^)- Then ф is 

xeK 



a mapping of G onto a certain subset G' ^Yl^x and we shall show that cp is an 

isomorphism. Let x, 3; e G, x ^ j . As {L^,f^ | x e X } is a well pseudoreahzer of G, 
we have f^{x) ^ f^{y) for every xeK so that Ф(х, x) g Ф(у, %) for every xeK, 
From this [(pixj] (x) S [(р{у)} {^) for every xeK and therefore (?)(x) g (^(j;). 
Suppose, on the contrary, that (p(x) ^ (p{y). Then [<p(x)] (x) S [ф(у)] (^) for every 
xeK so that Ф(х, x) ^ Ф(у, x) for every xeK and hence /Дл:) ^ / J j ^ ) for every 
% e i^ . As {L^.fyc I % e X } is a well pseudoreahzer of G, this imphes x ^ y. Finally it 
is easy to see that <p is a one-one mapping, cp is therefore an isomorphism and (A) 
holds. 

2.9. Corollary. Let G he an ordered set, let К be a set. Then the following state­
ments are equivalent: 

(A) There exists a well-ordered set Lsuch that G ^ G' Q iF. 
( B ) For every xeK there exists a well ordered set L^ and a mapping /^ of G 

into L^ such that {L^,f^ \x еК) is a well pseudoreahzer of G. 

Proof. 1. Assume that (A) is true. Then (B) holds, according to 2.8., if we put 
L^ = Lfor every xeK. 

2. Let ( B ) be true. Then according to 2.8. we have G ^ G' ^YlL^- Let Lbe such 

a well-ordered set that L^ = L^ ^ Lfor every xeK. The set Lcan be constructed 
for instance in the following way: choose any well ordering of the set К and put 
L~Y^L^. Then П ^« = П Д« = ^- ^^ ̂  ^^ a^ isomorphism of J^ L^ onto \\ L'^ we 

xeK xeK xeK xeK xeK 
have G ^ G' ^ (p{G') = G" g П ^x E ^^ so that G ^ G" ш L^ and (A) holds. 

2.10. Theorem. Let G be an ordered set satisfying the descending chain condition^ 
let К be a set. Then the following statements are equivalent: 

(A) For every xeK there exists a well-ordered set <Ŝ  such that G = G' g f ] 5^. 
xeK 

( B ) For every xeK there exists a well-ordered set T^ and a one-one isotone 
mapping f^ of G into T^ such that {T^,f^ \xeK] is a well realizer of G. 

Proof. 1. Assume that (A) holds. Let cp be an isomorphism of G onto G' g f | S,^. 
хек 

Denote — similarly as in 2.8. — [(^(л:)] (XQ) == g^J^x). Then g^ is an isotone mapping 
of G into S J, for every xeK. Put R,, = g^{G) for every xeK. Then R,, g S^^ so 
that Rj^ is a well-ordered set and g^ is an isotone mapping of G onto R^ for every 
xeK. Now for every xeK and every y e R^ wo have g^^{y) Ш G so that g^^{y) 
satisfies the descending chain condition. Hence according to 2.3. there exists a well-
ordered set Ту and a one-one isotone mapping / ^ of the set g^^{y) into Ту, Put 
5̂< = Z '^y' ^>c as a lexicographic sum of well-ordered sets over a well-ordered set is 

a well-ordered set. Define the mapping/« of G into T^ in the following way:/^(x) = 



= l_9x{^)^fg^(x){^y\' ït is easy to see tha t /^ is a one-one mapping of G into T^ for 
every X E K. We shaü show that {T^,f^ | x G X} is a well realizer of G, Let x^, X2 e G, 
^1 S ^2' Then (p{xi) S (pi^i) so that [^(^:i)] (x) ^ [<?̂ (̂ 2)] (^) for every xeK. 
From this there follows that ^^(xi) ^ dxi^i) for every xeK. Choose any XQ eK. 
If ^ J ^ i ) < ^xo(^2) then L^xo(^i)'/;:„(xr)(^i)] < У.оЫ, fZ^^] in S T: SO 
t h a t / J x , ) < / J x 2 ) . If ^ J x i ) = 3JX2) then Xi e ЕГ;„'[ЕГJxj)], x^ e ^^„'[âf J x i ) ] 
( = ^;„'[0>.оЫ]) so that/;»_,,,)(x,) â/; : . , , ,)(^2) =/;:„(«)(х2) and henœ [ ^ J x i ) , 
C(x , ) (^ i ) ] ^ [0.0(^2),/;:(«)(X2)] i.e. / J x O ^ / 4 x 2 ) . Therefore / , (x . ) ^ / Д х ^ ) 
for every x e K. Suppose, on the contrary, that/^(xi) ^ fX^i) for every x e K. Then 
[ö'x(->ci),/^'l(;c,)(^i)] ^ [öfx(-^2),Л'1(Х2)(^2)] for every x e X and hence g^{xi) й Q^i^z) 
for every xeK. From this it follows that [^(^1)] (x) ^ [<p(-̂ 2)] (^) for every xeK, 
i.e. ç)(xi) ^ ф(х2). As (p is an isomorphism, this impHes x^ ^ X2. Hence {T^.f^ \ x e 
€ K} is really a well realizer of G and (В) holds. 

2. Assume that (B) holds. Then {T^,f^ \xeK] is also a well pseudorealizer of G 
and (A) holds according to 2.8. if we put S^ = T^ for every x e K. 

2.11. Corollary. Let G be an ordered set satisfying the descending chain condition, 
let К be a set. Then the following statements are equivalent: 

(A) There exists a well-ordered set Lsuch that G = G' ^ L^. 
( B ) For every x e К there exists a well-ordered set L^ and a one-one isotone 

mapping f^ of G into L^ such that {L^,f^ | x e K] is a well realizer of G. 
P r o o f can be made similarly as proof of 2.9, 

3. WELL DIMENSION 

3.1. Definition. Let G be an ordered set satisfying the descending chain condition. 
We put wdim G = min (cardio | {Ь^,Л | >!J e X } is a well realizer of G); this car­
dinality will be called a well dimension of G. 

3.2. Theorem. Let G be an ordered set satisfying the descending chain condition, 
let m > 0 be a cardinality. Then the following statements are equivalent: 

(A) wdim G S Ш' 
(в) There exists a set К with cardie = m and for every xeK a well-ordered 

set L^ such that G ^ G' g f j L^. 
xeK 

P r o o f follows from 2.10. 

3.3. Theorem. Let G be an ordered set satisfying the descending chain condition, 
let m > 0 be a cardinality. Then the following statements are equivalent: 

(A) wdim G S m. 



(в) There exists a set К with card К = m and a well-ordered set L such that 
G ^ G' ^ Jj. 

Proof follows from 2.11. 

3.4. Theorem. Let G be an ordered set satisfying the descending chain condition. 
Then wdim G ^ card G; // G is finite and card G ^ 4 then even wdim G S 
й [i card G]. 

Proof. If G is finite then clearly wdim G = dim G so that according to [5] 
wdim G = dim G й [i card G] for card G ^ 4. If G is infinite then card G = 
= card (G X G) and the assertion follows from the proof of 2.5. 

3.5. Theorem. Let G be an ordered set satisfying the descending chain condition 
and let card G g К .̂ Then wdim G = co^+i - dim G = ш^+i-pdim G. 

Proof. Clearly wdim G g co^+i-dim G. Assume that wdim G = m and let 
{L^,/^ I X e K} be a well realizer of G of cardinality m. For every % e X put M^ = 
= / ^ G ) ; then {M^,/^ | x e X} is also a well realizer of G and card M^ й К for every 
KEK. From this M^ < œ^+i for every x eК so that {М^,Л [ x e X } is an (W^+i-
reahzer of G and hence co^+rdim G ^ m. Therefore ш^+i-dim G = m = wdim G. 
Further co<j+ i-pdim G g CÜ +̂ i-dim G = wdim G; on the other hand, if co«+ rpdim G = 
= n, then according to [9] G ^ G' ^ iJ where Lis a chain of type co^+i, X an anti-
chain of cardinality n. From this it follows, according to 3.3., wdim G ^ n so that 
also wdim G = cOot+i-pdim G. 

B. DusHNiK and E. W. MILLER ([4]) and also H. Комм ([7]) have proved that to 
every cardinal number m > 0 there exists an ordered set G such that dim G = m. 
We shall prove an analogical theorem for the well dimension. 

3.6. Theorem. For any cardinal number m > 0 there exists an ordered set G 
satisfying the descending chain condition such that wdim G = m. 

Proof.^) Let M be a set with card M = m. Put a^ = {x}, c^ = M — {%} for any 
xe M and denote G = {a^, Cx\ xe M} where G is ordered by the set inclusion. It is 
clear that G satisfies the descending chain condition. In [4] there is proved dim G = m; 
we shall prove that also wdim G = m. As dim G ^ wdim G, for any ordered set G 
satisfying the descending chain condition it is sufficient to prove wdim G g m. If 
m < Ko then card G < KQ so that wdim G = dim G = m for wdim G = dim G for 
any finite ordered set G. If m ^ Ko then card G = m so that wdim G ^ m according 
to 3.4. Therefore in both cases wdim G = m. 

The fact that wdim G = dim G holds for any finite ordered set G leads us to the 
question whether it may be posible that wdim G = dim G holds for any ordered set G 

^) The proof is accomplished, in a quite similar way, as that of Theorem 4.1. in [4]. 



satisfying the descending chain condition. The following example shows that this is 
not true. 

3.7, Example. Let G be an infinite antichain. Then dim G < wdim G. 

Proof. There is dim G = 2. Assume that wdim 0 = 2. Then there exists a well 
realizer {L^,/,-1 i = 1, 2} of the set О of cardinality 2. Hence there is necessarily 
x,ye GJ^{x) < fi{y) =>f2{x) > f2{y) i.e. the set/2(0) g L2 is dual t o / i ( 0 ) g L^. 
As 0 is infinite,/1(0) contains a chain of type со. From this it follows that/2(0) g L2 
contains a chain of type со* which is a contradiction. 

ЗЖ Lemma. Let Я, ОДа e Я) be ordered sets satisfying the descending chain 
condition. Then ^ 0 ^ satisfies the descending chain condition. 

aell 

Proof. Let [aj, x^] e X ^a (̂  "̂  0, 1, 2, ...) and assume that [ao, XQ] ^ [a^, Xj] ^ 

^ . . . ^ [a„, x„] ^ .. . Then ao ^ ^i ^ . . . ^ a„ ^ . . . and hence there exists a non-
negative integer n^ such that (X„^ = oc„̂  + i = „̂̂  + 2 = ••• From this it follows x„̂  ^ 
^ ^«i + i ^ ••• è '̂«i+fc è ••• aïi^l -̂ m+zc^ <Ĵ a„, fc>i* every /c = 0, U 2, . . . so that there 
exists /ci such that x„^+k^ = x„̂ +/t̂  + i = Xni+/ci+2 = ••• Therefore if we put n^ + 
+ fci = По we have [a„^, x j = К о + ь n̂o + i] = K0+2. ^no+2] = ••• 

3.9. Corollary. Let 0, Я be ordered sets satisfying the descending chain condi­
tion. Then G@H,G + H,GoH satisfy the descending chain condition. 

3.10. Corollary. Let G be an ordered set satisfying the descending chain condition, 
let H be a finite chain. Then ^G satisfies the descending chain condition. 

Proof. If card H =^ n then ^O ^ Oj о O2 о. . . о 0„ where О,- ^ О (f = 1, 2 , . . . , n) 
so that the statement follows from 3.9. 

3.11. Theorem. Let Я, Gj^aeH) be ordered sets satisfying the descending chain 
condition. Then wdim YJG^ = sup {wdim Я, wdim G Ja e Я)}.^) 

aeli 

Proof. Denote sup {wdim Я, wdim G Ja e Я)} = m. Let X be a set with card К == 
= m, let {L^,f^ I % e X} be a well realizer of Я, let {P^, д1\кеК} Ы SL well realizer 
of Од for every ae H. We can assume L^ = Л(Я) for every xeK (in the other case 
we shall consider the set fjH) g L^ instead of L^) and also P^ = gl{G^ for every 
X G X and every ae H. Put S^̂  = ^ Р '̂̂ '̂ ^^Хз )̂ ^^^ ^^У ̂ ^^ elements x, Q e K. 5^^, as 

a lexicographic sum of well-ordered sets over a well-ordered set, is a well-ordered set 
for any X e K, Q e K. Define the mapping fe^^ of ^ O^ into S^^ in the following way: 

^) See Theorem 1 in [8]. 



КоЦо^^ ^]) = Ш « ) ' 9l{x)l Put further Г, = S,„ г, = h,,. We shall show that 
(T^, r^ ] X G X } is a well realizer of ^ G^. Let [a^, x j G ^ G ,̂ [a2, X2] e ^ G ,̂ 

аеЯ аеЯ аеЯ 

Ißu ^1] = [̂ 25 •'̂ 'i]- Then either a^ < a2, or â  = a2, x^ g X2. In the first case we 
have /^(ai) < Л(а2) for every % G X so that M [ a i , x j ) = [Mcci), дЦх^)] < 
< [.fxi^ijy 9Т(^2У} = ^̂ xe([ô 2? ̂ 2]) f̂ ^ ^^y ^ е К , Q E к. In the second case there is 
ô'^'(^i) ^ О'^'Ы for every ^ e К so that / г J [ a i , x j ) = [/^(a^), ^^^(x^)] ^ 
й [/«(«i), о'^'С^г)] = / î j [ a i , X2]) = М [ ^ 2 , ^2]) for any xeiC, ^ e X . We have 
proved that even every h^^ is an isotone mapping. Further it is clear that every h,^^ is 
a one-one mapping because every/j^ and every g°^ is a one-one mapping. Assume now 
that [ai, Xi] G X <̂ a, [«2. ^2] e E ^a and that r^([ai, x j ) ^ r^([a2, X2]) for every 

aeli аеИ 

кеК. Then M [ ^ i - ^ i ] ) = [^(^1), .C(^i) ] ^ [ / . Ы . 6'::'(^2)] = M[o^2, ^2]) for 
every кеК. From this it follows fX^ij й fxi^i) for every кеК which implies 
«1 ^ 0̂2 because {L^,f^ \хеК} is a well realizer of Я. If/^(a^) < fjo^^ for at 
least one (and thus for every) % G К we have â  < a2 and hence [a^, x j < [a2, X2] 
in ^ G«. In the opposite case/^(ai) = fJ^0L2) and therefore â  = аз- Therefore in this 

аеЯ 

case é^^'(xi) ^ ö'^'(x2) for every xeK. As {P^\ gl' | >i; GiC} is a well realizer of Ĝ ^ 
this implies x^ ^ X2 and hence [a^, Xi] ^ [a^, X2] = [«2, X2]. Thus {Г^, r^ | x G X } 
is really a well realizer of ^ G^ so that wdim Y^G^^ m. On the other hand the set 

аеЯ аеЯ 
^ GQJ contains subsets Я ' , G^(a G Я) isomorphic with Я, G ôc G Я) : И' = {[a, x j | 

aetl 

I a G Я , x^E G^ is any constantly chosen element}, Ĝ  = {[a, x] | x G G ,̂ a G Я is 
constant}. From this it follows wdim Я = wdim И' ^ wdim ^ G ,̂ wdim Ĝ  = 

аеЯ 

== wdim Ĝ  ^ wdim ^ Ĝ ,̂ for every a G Я so that sup {wdim Я, wdim G^(a G Я)} = 

= m ^ wdim ^ G^ and altogether wdim Y^^a^ ^ "= sup {wdim Я, wdim G^(a G 
аеЯ аеЯ 

ей)} . 
3.12. Corollary. Let G, Я be ordered sets satisfying the descending chain 

condition. Then wdim (G ф Я) = max {wdim G, wdim H], wdim (G + Я )̂ = 
= max {2, wdim G, wdim Я}, wdim (G о Я) = max {wdim G, wdim Я}. 

3.13. Corollary. Let G be an ordered set satisfying the descending chain condition, 
let H he a finite chain. Then wdim ^G = wdim G. 

Proof. If Я is a chain with card Я = 2 then according to 3.12. wdim ^G == 
= wdim (G о G) = wdim G. Now the statement follows by induction. 

3.14. Lemma. Let G^, G2,. . . , G„ be ordered sets satisfying the descending chain 
condition. Then G^ . G2 .. . G„ satisfies the descending chain condition. 

Proof. Let [xi ,x^, . . . , X ^ ] G G I G^.-.G^ for f = 0, 1,2,. . . and let [x?, x^ , . . . 
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..., 4] è [^Ь 4 . ••- xl] ^ . . . ^ [xT, x"̂ ', .••, < ] ^ .. . Then x? è xj è . . . ^ 
^ x7 ^ ..., x^ ^ X2 è . . . è x^ ^ ..., . . . ,x^ ^ x„' ^ . . . ^ x;," ^ . . . From this it 
follows that for every i = 1, 2, ..., n there exists a non-negative integer m,- such that 
^m ^ ^m + i ^ рц^ ^^ ^ j ^ ^ ^ 1^^^ m2, ..., m„}. Then [ x 7 , x ^ , ..., x ^ ] = 
— LXj , X2 , . . . , X„ J __ . . . 

3.15. Corollary. Let G be an ordered set satisfying the descending chain condition, 
let H be a finite antichain. Then G^^ satisfies the descending chain condition. 

3.16. Corollary. Let G be an ordered set satisfying the descending chain con­
dition, let H be a finite ordered set. Then G^ satisfies the descending chain condition. 

Proof. Let Я be the set Я ordered as an antichain. Then G^ g G^. G^ satisfies 
the descending chain condition according to 3.15., hence G'^ also satisfies the descen­
ding chain condition. 

3.17. Theorem. Let G, Я be ordered sets satisfying the descending chain condition. 
Then wdim (G . Я) ^ wdim G + wdim Я. 

Proof. Denote wdim G = m, wdim H = п. According to 3.2. there exists a set Ki 
with cardial = m and for every xeK^ a well-ordered set L^ such that G = G' ^ 
g f j L^ and similarly there exists a set K2 with card K2 = n and for every x e K2 

xeKi 

a well-ordered set L^ such that H ^ H' ^Yl^x- Assume that Ki,K2 are disjoint 

and put К = K^U K2. Then card К = m + n and G , H ^ G\ W ^ (Y[L^) . 
xeKi 

• ( П ^^) = П ^x- From this there follows according to 3.2. wdim (G . H) ^ m + 
хеКг хеК 

+ п == wdim G + wdim Я. 

3.18. Note. The inequality ^ in 3.17 cannot be substituted by = . If, for example G, 
Я are finite non-trivial antichains it is wdim G = 2 = wdim Я and as G . Я is also 
a finite non-trivial antichain we have wdim (G. Я) = 2 < wdim G + wdim Я. On 
the other hand, if G, Я are non-trivial well-ordered sets, there is wdim G = 1 = 
= wdim Я and — as it will be shown in 3.22. — wdim (G . Я) = 2 = wdim G + 
4- wdim Я. 

3.19. Corollary. Let G^, G2,. . . , G„ be ordered sets satisfying the descending chain 
condition. Then wdim (G^ . G2 .. . G„) ^ wdim G^ -f- wdim G2 + .. . + wdim G„. 

P roo f follows from 3.17. by induction. 

3.20. Corollary. Let G be an ordered set satisfying the descending chain condi­
tion, let H be a finite antichain. Then wdim G ^ card H . wdim G. 
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3.21. Corollary. Let G be an ordered set satisfying the descending chain condition, 
let H be a finite ordered set. Then wdim G^ ^ card H . wdim G. 

Pr о о f. If Я is the set H ordered as an antichain then G^ g G^ and hence wdim G^ ^ 
S wdim G" S card H . wdim G = card H . wdim G. 

3.22. Theorem. Let G^, G2, ..., G„ be well-ordered sets. Then wdim (G^ . G2 ... 
. . . G„) = n. 

Proof. As wdim G,- = 1 for i = 1,2, ..., n we have wdim (Gj . G2 ... G„) ^ n 
according to 3.19. Assume wdim(Gi . G2 .. . G„) = m < n and let {Lj^fj, | /c = 
= 1, 2, ..., m} be a well realizer of G^ . G2 ... G„ of cardinality m. Choose for any 
/ = 1,2, ...,n two elements x ,̂ ŷ  e Ĝ  such that Xi < yi and denote a^ = [x^, X2, ... 
• • • .^ r - i . J n ^ / + b - - - . ^ J . ^ / = [У1,>2, •.., y^-b ^ p J i + i , . . - , y„]- Then a^eG^. 
. G2 ... G„, Ci e Gl . G2 .. . G„ for / =- 1,2, ...,n, a^ < Cj for i Ф j , â  || c^. Thus, 
there exists at least one /co(l ^ ^0 = ^ ) such that/̂ ^^^(с^) < fuj^a^ and at the same 
time Ao(cj) <fko{^j) where / Ф j . As â  < Cj and â - < ĉ  in G^ . G2 ... G„ we 
obtain / J c f ) < / J a i ) < / J c , . ) <Ло(а^.) < / J c i ) , which is impossible. Hence 
wdim (Gl . G2. . . G„) - п. 

3.23. Corollary. Let L be a well-ordered set, let К be a finite antichain. Then 
wdim If = card K. 

4. WELL PSEUDODIMENSION 

4.1. Definition. Let G be an ordered set. We put wpdim G = min (card К | {L^,f^ \ 
I X e X } is a well pseudorealizer of G); this cardinality will be called a well pseudo-
dimension of G. 

4.2. Theorem. Let G be an ordered set, let m > 0 be a cardinality. Then the fol­
lowing statements are equivalent: 

(A) wpdim G ^ m. 
(B) There exists a set К with card К = m and for every XEK a well-ordered 

set Lj, such that G ^ G' ^Y\ ^x-
xeK 

Proof follows from 2.8. 

4.3. Theorem. Let G be an ordered set, let m > 0 be a cardinality. Then the fol­
lowing statements are equivalent: 

(A) wpdim G S m. 
(B) There exists a set К with card К = m and a well-ordered set L such that 

G ^G' Ш L^-

Proo f follows from 2.9. 
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4.4. Theorem. Let G be an ordered set. Then wpdim G ^ card G; if G is finite and 
card G ^ 4 then wpdim G ^ [^ card G]. 

Proof. If G is finite then clearly wpdim G = wdim G = dim G so that wpdim G ^ 
^ [} card G] for card G ^ 4, according to [5]. If G is infinite then card (G x G) = 
= card G and the statement follows from the proof of 2.7. 

4.5. Theorem. Let G be an ordered set and let card G ^ K̂ .̂ T/ze/i wpdim G = 

= ^a+i " Pdim G. 

Proof. We have clearly wpdim G g co^+i — pdim G. Assume that wpdim G = m 
and let {L^,f^ \XEK} be a well pseudoreahzer of G of cardinality m. Put M^ = 
= /^(G) for any xe K; then {M^,/^ \xe K} is also a well pseudoreahzer of G and 
there is card M^ ^ K^ so that M^ < œ^+i for every XEK. {M^,f^ \xeK] is there­
fore an co^+i " pseudoreahzer of G of cardinality m so that (JOOL+I ~~ pdim G ^ m. 
Hence 60̂ 4-1 — pdim G = m = wpdim G. 

4.6. Theorem. Let G be an ordered set satisfying the descending chain condition. 
Then wpdim G = wdim G. 

Proof. We have clearly wpdim G ^ wdim G. Assume that wpdim G = m. 
Then according to 4.2. there exists a set К with card К = m and for every xeK 
a well-ordered set L^ such that G ^ G' g f ] L^. From this it follows according to 

xeK 

3.2. wdim G ^ m and hence wdim G = m = wpdim G. 
From 4.6. and 3.6. we obtain immediately 

4.7. Theorem. For any cardinal number m > 0 there exists an ordered set G 
such that wpdim G = m. 

4.8. Theorem. Let H be an ordered set satisfying the descending chain condition, 
let {G« I a e f/} be a system of ordered sets. Then wpdim J^ G^ = sup {wdim Я, 

аеН 

wpdim G^(aeH)}. 

Proof. Put sup {wdim Я, wpdim G<3ç(a 6 Я)} = m. Then there exists a well 
realizer {L^,f^ \x еК} of the set H of cardinality m; further let {P^, gl\xEK} be 
a well pseudoreahzer of the set G^ of cardinality m for every ae H. Now define the 
well-ordered sets Ŝ ,̂ and mappings h.^^ of the set ^ G^ into S^^ for every xeK, 

аеН 

Q G к, in the same way as in the proof of 3.11. and put T̂  = S^^, r^ = h^^. We shall 
show that [T^,r^\xeK] is a well pseudoreahzer of X! ̂ a- ^^^ [ô i? ̂ i ] ̂  Z ^«^ 

[a2, X2] S X ^a? [o îj ̂ 1] ^ [<̂ 25 ^2]* Then either a^ < a2 or a^ = a2, x^ ^ X2* In 

the first case there is /^(a^) < fj^cc-^ for every x e X , {L^,f^ \xeK] being a well 
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realizer of H. Hence [Ua{), дЦх,)] < [/^a^), 
dfi^i)] for any xeK, QEK, i.e. 

Ke{[<^u ^i]) < KQ{[^2^ ^2]) for any X e iC, ̂  G К. In the second case there is gl'{xt) й 
й ^^ ; (x2 ) fo reve ry^Gi^so tha tU[a„x , ] ) == Ша.УдЦх,)] g Ш^^УдЦх^)]-
= ^«ö([^b^2]) = ^̂ хе([̂ 2» л:2]) for every хеК, деК. We have proved that even 
every h^^ is isotone. Now assume that гДос^, x j ) == /z^^([ai, x j ) = [/Да^), 
^x4^i)] ^ [ Л Ы ^ б^^Ч^г)] = M [ a 2 , X2]) = гД[а2, X2]) for every x e K. Then 
/^(ai) ^/, ,(a2) for every xeK and hence a^ ^ a2. If/x(ai) </;,(a2) for at least 
one xeK -WQ have a^ < a2 and therefore [a^, x j < [a2, X2] in ^ ^a- ^^ ^^^ 

aeli 

opposite case there is /^(oci) = fX'^i) for every xeK so that a^ == a2 and hence 
gl\x^ S 97(^2) for every xeK. This implies x^ ^ X2 in Ĝ ^ = G«̂  ^^ that again 
[ai, Xi] ^ [ai, X2] = [0C2, X2] in ^ G .̂ Hence {T^, r^ | >i; G K} is really a well 

аеН 
pseudoreahzer of ^ G« so that wpdim Y,Ga й m. Analogously hke in 3.11. we can 

аеН аеН 

easily prove that wpdim ^jGa^ ^ so that wpdim YjG^, = m = sup (wdim Я, 
wpdim G^(a e Я)}. ^"^ '̂ ^̂  

4.9. Corollary. Let G, H be ordered sets. Then wpdim {G @ H) = max (wpdim G, 
wpdim H}, wpdim (G + Я) = max {2, wpdim G, wpdim Я}. 

4.10. Theorem. Let H be a set, let G^ be an ordered set for every ae H. Then 
wpdim П ^a = S wpdim G«. 

аеЯ аеЯ 

Proof. Denote wpdim G^ = m^ for every ae H. According to 4.2. there exists 
a set K^ with cardiC^ = m« and for every xeK^ 3, well-ordered set L^ such that 
G^ ^ G!, Q Yl ^x- Assume that the sets K^ are disjoint and put К = \J K^. Then 

cardüC = X "Î. = E wpdim G, and П G. ^ П Ĝ  g П ( П ^ . ) = П ^ . - From this 
аеЯ аеЯ аеН аеН аеН неКос хеК 

it follows wpdim J]^ G^ ^ card К = Yj wpdim G^ according to 4.2, 
аеЯ аеЯ 

4.11. Note. The relation S also here cannot be substituted by = . This follows from 
4.6. and 3.18. 

4.12. Corollary. Let G be an ordered set, let H be an antichain. Then wpdim G^ ^ 
^ card H, wpdim G. 

4.13. Corollary. Let G, H be ordered sets. Then wpdim G" ^ card H . wpdim G, 

Proof. Similarly as in 3.21. 

4.14. Theorem. Let H be a set, let G^ be a well-ordered set for every ae H. Then 
wpdim П ^a "= ^^^^ ^• 
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Proof. According to 4.10. we have wpdim J][ ^a = ^^^^ ^' Assume wpdim П ^« "̂  
аеН аеЯ 

= m < card H and let {L^,f^ | % e X } be a well pseudorealizer of the set f j G^ of 

cardinality m. Choose for any ae H two elements x„ e G^, y^ e G^ such that x^ < y« 
and for every ŒQG H denote — similarly as in 3.22. — (Pao^ Ф^о the elements of П ^a 

аеН 
defined in the following way: 

. x /x^ for a Ф Обо , / Ч /Уа for a Ф «0 
'P^oi^^^Ky^ for « = «0 ^ - ( ^ ^ ^ = 4 for a = ao 

It is easy to see that cp^^ < ф^^ for a^ Ф (X2 and cp^^ \\ ф^о '^^ П ^<x- This implies that 
(xeH 

there exists at least one element X^EK such that /xo(^ai) < Ao(^ai) ^̂ "'̂  fxoi^cci) ^ 
< /J^^a^) where a^ Ф аз- As cp^^ < ф^^ and cp̂ ^ < ф^, we have/J i / r^J < LX^ad й 
й f M J < и м ^ ЫФад^ У'^- и{Фа) < /ЛФаг) ^ Ы с Ь is impOSSiblc . НСПСС 

Wpdim Yl Ga ==" card H. 
аеН 

4.15. Corollary. Let L be a well-ordered set, let К bean antichain. Then wpdim lJF = 
— card K. 

5. EXAMPLES 

5.1. Let G be the set of all real numbers with the natural ordering. Then 
wpdim G = KQ. 

Proof. According to [9] there is 2 — pdim G = sep G = KQ.^) From this there 
follows wpdim G < 2 -- pdim G = KQ. Assume that wpdim G < KQ, i.e. wpdim G = 
= m where m is a finite number. Then according to 4.3. G ^ G' ^ JJ where Lis 
a suitable well-ordered set and К is an antichain with card К = m. According to 
3.15. the set ll satisfies the descending chain condition and this is a contradiction 
because G contains an infinite descending chain. 

5.2. Let G be the set of all rational numbers with the natural ordering. Then 
wpdim G = KQ. 

Proof. As G g Я implies wpdim G g wpdim H for any ordered sets G, Я, 5.1. 
imphes wpdim G ^ KQ. The converse inequality can be proved in the same way as 
in 5.1. because G again contains an infinite descending chain. 

5.3. Let G be a chain of type ш*. Then wpdim G = K̂ .̂ 

Proof. According to 4.4. we have wpdim G S '^a- Assume wpdim G = m < К .̂ 

^) Sep G denotes the separability of G i.e. the minimal cardinality of a subset Я E G which is 
dense in G. 
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Then according to 4.2. there exists a set К with card К = m and for every x G К 
a well-ordered set L„ such that G ~ G' ^Yl^x- Thus G' = {^Q, (^J, ..., Ç>̂ , . . . | <̂ O > 

xeK 

> (Pi > ... > (p^> .... Я < сОд, (̂ ; e f j L j . This implies cpo{x) ^ <Pi(3<) à .. . ^ 

^ <Ря(̂ ) ^ ... for Я < сОд and кеК. Denote Ж^ = (Я | Я G W{œ^, Фя(^) > ^я+1(>^)} 
for any же К. 

Then it holds: every Ж^ is a finite set and for every X e W{oy^ there exists a % such 
that X E W^. This imphes W{a)^) = U Fp;. But card \J W^^Y. ^^^^ ^^'^ the last 

H'aK xeK xeK 

cardinal number is finite if m < KQ; if m ^ KQ then ^ card W^ ^Y^o = '^ -^o = 
xeK xeK 

= m; at the same time card W{(o^ = K^ > m and this is a contradiction. Hence 
wpdim G = Kcj. 

5.4. Let G be an antichain such that KQ ^ card G ^ 2^°. Г/геп wdim G = KQ. 

Proof. In [10] there is proved: If G is an antichain with card G = b^^ then 
2 — pdim G == m where m is the smallest cardinal number such that 2'" ^ K„. 
Hence if G is an antichain of cardinality 2^° then 2 — pdim G = KQ SO that wdim G = 
= wpdim G ^ KQ. Thus it is sufficient to prove that if G is an antichain with card G = 
= Ko then wdim G ^ KQ. Suppose wdim G = m < KQ. Then there exists a well 
reahzer {L^,/^ | i = 1, ..., m} of the set G of cardinahty m. Write all elements of the 
set G in the form of a sequence: G == (xo, x^, . . . , x„ , . . .} . Now, /^ is a one-one 
mapping of G into L^ and Lj is a well-ordered set; thus, the set/i(G) is well-ordered, 
so that / i(G) = {/J, / J , . . . , l\,... I Я < a(a < со^), IQ < !{ < . . . < /1 < . . . } . Now 
for every X < COQ there exists a non-negative integer n^ such that /i"^(/l) = x„^; 
simultaneously for Я̂  Ф X2 there is n^i + ^яг- I^ the sequence {пх}х<соо there exists 
an increasing subsequence {«Як}/с<соо- Write more briefly nl = n^^ and denote G^ = 
= KiJfc<«o- Then there holds n,\ < < and / i ( x „ i j < / i ( x „ i J for ^^ < k^. 
Now, /2(<^^) E L2 and L2 is well-ordered so that /2(G^) = {/̂ , / i , . . . , /;^,... | Я < 
< jö(^ < œ^, il < il < ... < if < ...}. For every Я < COQ there exists again a non-
negative integer /ĉ  such t h a t / J ^(/я) = x„i^^, where /ĉ ^ Ф /ĉ ^ for Я̂  Ф Я2. 

In the sequence {/ся}я<а>о there exists an increasing subsequence {kx}i<o,o' Write 
again n^ instead of п^яг If we denote G^ = {х„2^}^<^о, there will hold n^^ < nl^ and 
/ i(^n\.) < fi{^n\)J2{^n2u) < fii^n^J for /ci < /C2- When repeating this proceeding 
m-times we get on to a set G"" ^ G, G"^ =^ {^n^k]k<coo^ where for /ĉ  < ^2 there holds 
n̂ ^ < n"^^ and /i(x„^^j < Я ^ « 0 foi" all i = 1, ..., m which implies x„̂ ^̂  < x„„.̂ .̂  
in G, because {Ь^,/^ | i = 1, . . . , m} is a well realizer of G and this is a contradiction. 
Thus, wdim G ^ KQ. 

5.5. Let G be the set of all pairs [x, j ] where x, y are rea/ numbers ordered in the 
following way: [xj, j j < [^2, У2] <^ x^ = X2 and y^ < У2> Then wpdim G = KQ. 

Proof. It is easy to see that G '^Yu^'x where Я is an antichain with card E = 2^° 
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and each G^ is a chain with G« = л.̂ ) We have therefore wdim Я = Ко according 
to 5.4 and wpdim G^ == Ко for every cce H according to 5.1. Then wpdim G = 
= wpdim Y, = sup {wdim Я, wpdim G (̂a G H)} = Ko according to 4.8. 

аеЯ 

5.6. Problem. Let G be an antichain with card G = К«. Determine wdim G. 
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