Czechoslovak Mathematical Journal

Vítězslav Novák

On the well dimension of ordered sets

Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 1, 1-16

Persistent URL: http://dml.cz/dmlcz/100871

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL

ON THE WELL DIMENSION OF ORDERED SETS

Vítězslav Novák, Brnó

(Received December 1, 1966)

1. INTRODUCTION

1.1. Notation. If G is a set then card G denotes the cardinality of G. If G is a linearly ordered set then \bar{G} denotes the order type of G. A set G will be called non-trivial if card $G \geqq 2$; in the whole paper, all sets are assumed to be non-trivial and all types of ordered, resp. linearly ordered sets are assumed to be types of non-trivial sets. The identity of ordered sets will be denoted $=$, the isomorphism \cong. A linearly ordered set will be called a chain, a set in which every two distinct elements are incomparable will be called an antichain. For the operations with ordered sets we shall use the Birkhoff's notation ([1] or [2]) so that $G+H, G . H, G^{H}$ denotes the cardinal sum, product and power whereas $G \oplus H, G \circ H,{ }^{H} G$ denotes corresponding ordinal operations.
1.2. Lexicographic sum. Let H be an ordered set, let $\left\{G_{\alpha} \mid \alpha \in H\right\}$ be a system of ordered sets. Lexicographic sum $\sum_{\alpha \in H} G_{\alpha}([3])$ is a set of all ordered pairs $[\alpha, x]$, where $\alpha \in H, x \in G_{\alpha}$, ordered in the following way: $\left[\alpha_{1}, x_{1}\right] \leqq\left[\alpha_{2}, x_{2}\right]$ if and only if $\alpha_{1}<$ $<\alpha_{2}$, or $\alpha_{1}=\alpha_{2}, x_{1} \leqq x_{2}$. It is well known that this operation is a generalization of the Birkhoff's ordinal sum, cardinal sum and ordinal product for, if we choose $H=\{0,1 \mid 0<1\}$ as a two-point chain, then $\sum_{\alpha \in H} G_{\alpha}$ is isomorphic with $G_{0} \oplus G_{1}$; if we choose $H=\{0,1 \mid 0 \| 1\}$ as a two-point antichain then $\sum_{\alpha \in H} G_{\alpha}$ is isomorphic with $G_{0}+G_{1}$ and if we choose $G_{\alpha}=G$ for every $\alpha \in H$ then $\sum_{\alpha \in H} G_{\alpha}$ is identical with $H \circ G$.
1.3. Cardinal product. Let H be a set, let $\left\{G_{\alpha} \mid \alpha \in H\right\}$ be a system of ordered sets. Cardinal product $\prod_{\alpha \in H} G_{\alpha}$ is a set of all functions f defined on H and such that $f(\alpha) \in G_{\alpha}$, for every $\alpha \in H$, ordered in the following way: $f \leqq g$ if and only if $f(\alpha) \leqq g(\alpha)$ for every $\alpha \in H$. This operation is a generalization of the Birkhoff's cardinal product for, if we choose $H=\{0,1\}$ as two-point set, then $\prod_{\alpha \in \boldsymbol{H}} G_{\alpha}$ is isomorphic with $G_{0} . G_{1}$.

For this reason, if $H=\{0,1, \ldots, n\}$ is a finite set, we denote $\prod_{\alpha \in H} G_{\alpha}$ conventionally $G_{0} . G_{1} \ldots G_{n}$. If $G_{\alpha}=G$ for every $\alpha \in H$ then $\prod_{\alpha \in H} G_{\alpha}$ is identical with G^{H} in the case that H is ordered as an antichain.
1.4. Linear extension. Let a set of orders $\left\{\leqq_{\alpha} \mid \alpha \in H\right\}$ be given on the set G. If we assume these orders to be subsets of the cartesian square G^{2} we can apply various set-theoretical operations to them.Especially it is easy to see that the intersection $\bigcap_{\alpha \in H} \leqq{ }_{\alpha}=\leqq$ is again an order on G. This order is defined in the following way: $x \leqq y \Leftrightarrow x \leqq{ }_{\alpha} y$ for every $\alpha \in H$. If \leqq is an order on G and if \leqq is a linear order on G such that $\leqq \leqq \leqq($ i.e. $x, y \in G, x \leqq y \Rightarrow x \leqq y$) we say that \leqq is a linear extension of \leqq. In [11] E. Szpilrajn has proved that any order \leqq on G has at least one linear extension \leqq. He has proved the stronger result: Let \leqq be an order on G and let x, y be elements of G such that $x \| y$. Then there exist two linear extensions $\varliminf_{1}, \varliminf_{2}$ of \leqq such that $x \varliminf_{1} y, y \varliminf_{2} x$. From this it follows that the intersection of all linear extensions of \leqq is \leqq.
1.5. Dimension. Let G be a set, let \leqq be an order on G. From the Szpilrajn's theorem it follows, on G there exist systems of linear orders intersection of which is \leqq. Such systems are called realizers of \leqq and if $\left\{\leqq_{\alpha} \mid \alpha \in H\right\}$ is a realizer of \leqq we say that the orders \leqq_{α} realize \leqq. B. DUSHnik and E. W. Miller ([4]) call the dimension of the set G and denote $\operatorname{dim} G$ the smallest cardinality of the system of linear orders on G, which realizes \leqq. A linear extension of an ordered set G can be also defined as a one-one isotone mapping of G into a chain H. From this there follows that the dimension of G can be defined as the minimum of cardinalities of systems $\left\{f_{\varkappa} \mid x \in K\right\}$ (where f_{χ} is a one-one isotone mapping of G into a chain L_{χ} for every $x \in K$) such that $x, y \in G, x \leqq y \Leftrightarrow f_{\chi}(x) \leqq f_{\chi}(y)$ for every $x \in K$. If every chain L_{x} has the same order type α and if there exists at least one system $\left\{f_{x} \mid x \in K\right\}$ where f_{\varkappa} is a one-one isotone mapping of G into L_{\varkappa} with the property $x, y \in G$, $x \leqq y \Leftrightarrow f_{\chi}(x) \leqq f_{\chi}(y)$ for every $x \in K$, then the minimum of cardinalities of such systems is called α-dimension of G and denoted α-dim G (H. Komm [7]). Let G be an ordered set, L a chain of type α. In [9] there is proved that there exists a system $\left\{f_{x} \mid x \in K\right\}$ where f_{x} is an isotone (not necessarily one-one isotone) mapping of G into L such that $x, y \in G, x \leqq y \Leftrightarrow f_{\chi}(x) \leqq f_{\chi}(y)$ for every $x \in K$. The minimum or cardinalities of such systems is called α-pseudodimension of G and denoted α-pdim G. Properties of the characteristics $\operatorname{dim} G, \alpha$ - $\operatorname{dim} G, \alpha$-pdim G are studied in [4], [5], [6], [7], [8], [9], [10].

2. WELL REALIZER AND PSEUDOREALIZER

2.1. Definition. Let G be an ordered set. We say that G satisfies the descending chain condition if $x_{0}, x_{1}, \ldots, x_{n}, \ldots \in G, x_{0} \geqq x_{1} \geqq \ldots \geqq x_{n} \geqq \ldots$ implies the existence of a positive integer n_{0} such that $x_{n 0}=x_{n_{0}+1}=\ldots$
2.2. Definition. Let G be an ordered set, let H be a well-ordered set. A one-one isotone mapping φ of G into H is called a well extension of G.
2.3. Theorem. Let G be an ordered set. Then G has a well extension if and only if G satisfies the descending chain condition.

Proof. The necessity of this condition is clear. We shall prove its sufficiency. Hence let G - ordered by the relation $\leqq-$ satisfy the descending chain condition. Let G_{0} be the set of all minimal elements in G (the mentioned assumption guarantees the existence of minimal elements in G). Assume that we have defined all sets G_{α} for every ordinal number $\alpha<\alpha_{0}$. Then let $G_{\alpha_{0}}$ denote the set of all minimal elements in $G-\bigcup_{\alpha<\alpha_{0}} G_{\alpha}$ (if $G-\bigcup_{\alpha<\alpha_{0}} G_{\alpha}$ is non-empty then it satisfies the descending chain condition so that the existence of minimal elements in $G-\bigcup_{\alpha<\alpha 0} G_{\alpha}$ is guaranteed). Then there exists the smallest ordinal number β such that $G_{\beta}=\emptyset$ for, if card $G \leqq \aleph_{i}$, then clearly $G_{\omega_{i+1}}=\emptyset$. Then it holds: $G=\bigcup_{\alpha<\beta} G_{\alpha}$ where the sets G_{α} are mutually disjoint and every G_{α} is an antichain with respect to \leqq. Choose any well ordering of G_{α} for every $\alpha<\beta$ and put $H=\sum_{\alpha<\beta} G_{\alpha}$. H as a lexicographic sum of well-ordered sets over a well-ordered set is a well-ordered set. Define a mapping φ of G onto H in the following way: $x \in G, x \in G_{\alpha} \Rightarrow \varphi(x)=[\alpha, x] . \varphi$ is clearly a one-one mapping of G onto H. We shall show that φ is isotone. Let $x, y \in G, x \leqq y$. Then there exist ordinal numbers $\alpha_{1}<\beta, \alpha_{2}<\beta$ such that $x \in G_{\alpha_{1}}, y \in G_{\alpha_{2}}$. If it were $\alpha_{1}>\alpha_{2}$ then x would be a minimal element in $G-\bigcup_{\alpha<\alpha_{1}} G_{\alpha}$ and $y \in \bigcup_{\alpha<\alpha_{1}} G_{\alpha}$ so that $x>y$ or $x \| y$ and this is a contradiction. Therefore $\alpha_{1} \leqq \alpha_{2}$ and from this $\varphi(x)=\left[\alpha_{1}, x\right] \leqq\left[\alpha_{2}, y\right]=$ $=\varphi(y)$. Hence φ is a well extension of G.
2.4. Definition. Let G be an ordered set, let $\left\{L_{\chi} \mid x \in K\right\}$ be a system of well-ordered sets, let f_{\varkappa} be a one-one isotone mapping of G into L_{χ}. If $x, y \in G \Rightarrow x \leqq y$ if and only if $f_{\chi}(x) \leqq f_{\chi}(y)$ for every $\chi \in K$ then we say that $\left\{L_{\chi}, f_{\chi} \mid \chi \in K\right\}$ is a well realizer of the set G.
2.5. Theorem. An ordered set G has a well realizer if and only if G satisfies the descending chain condition.

Proof. The necessity of the mentioned condition follows from 2.3., for every f_{x} is a well extension of G. We shall prove its sufficiency. Hence let G satisfy the descending chain condition. If G does not contain any incomparable elements then G is a well-ordered set so that $\{G, g\}$ is a well realizer of G when g is an identical mapping of G onto itself. In the opposite case it suffices to show that for any two incomparable elements $x_{1}, x_{2} \in G$ there exist well-ordered sets L_{1}, L_{2} and one-one isotone mappings f_{1}, resp. f_{2} of G into L_{1}, resp. L_{2} such that $f_{1}\left(x_{1}\right)<f_{1}\left(x_{2}\right), f_{2}\left(x_{1}\right)>f_{2}\left(x_{2}\right)$. Hence let $x_{1}, x_{2} \in G, x_{1} \| x_{2}$. Put $G^{1}=\left\{x \mid x \in G, x \leqq x_{1}\right\}, G^{2}=G-G^{1}$. Both G^{1} and G^{2}
satisfy the descending chain condition, hence according to 2.3 . there exist well-ordered sets L^{1}, L^{2} and one-one isotone mappings f^{1}, resp. f^{2} of G^{1} into L^{1}, resp. of G^{2} into L^{2}. Put $L_{1}=L^{1} \oplus L^{2}$ and $f_{1}(x)=f^{i}(x)$ for $x \in G^{i}(i=1,2)$. Then L_{1} is clearly a wellordered set and f_{1} is a one-one isotone mapping of G into L_{1} such that $f_{1}\left(x_{1}\right)<$ $<f_{1}\left(x_{2}\right)$; analogously we can construct a well-ordered set L_{2} and a one-one isotone mapping f_{2} of G into L_{2} such that $f_{2}\left(x_{1}\right)>f_{2}\left(x_{2}\right)$.
2.6. Definition. Let G be an ordered set, let $\left\{L_{x} \mid x \in K\right\}$ be a system of well-ordered sets, let f_{x} be a mapping of G into L_{x}. If $x, y \in G \Rightarrow x \leqq y$ if and only if $f_{x}(x) \leqq f_{x}(y)$ for every $x \in K$ then we say that $\left\{L_{\varkappa}, f_{\varkappa} \mid x \in K\right\}$ is a well-pseudorealizer of the set G.
2.7. Theorem. Any ordered set G has a well pseudorealizer.

Proof. Let G be an ordered set. By K_{1} denote the set of all ordered pairs $[x, y]$ where $x, y \in G, x<y$, by K_{2} the set of all ordered pairs $[x, y]$ where $x, y \in G$, $x \| y$. Put $K=K_{1} \cup K_{2}$ and for every $x \in K$ let L_{x} be a two-point chain, i.e. $L_{x}=$ $=\{0,1 \mid 0<1\}$. Define a mapping f_{\varkappa} of G into L_{χ} for every $x=[x, y]$ in the following way: $f_{x}(t)=0$ if and only if $t \leqq x$. It is easy to see that $\left\{L_{\chi}, f_{\chi} \mid x \in K\right\}$ is a well pseudorealizer of G.
2.8. Theorem. Let G be an ordered set, let K be a set and L_{x} a well-ordered set for every $x \in K$. Then the following statements are equivalent:
(A) $G \cong G^{\prime} \cong \prod_{x \in K} L_{x}$.
(B) For every $x \in K$ there exists a mapping f_{x} of G into L_{x} such that $\left\{L_{x}, f_{x} \mid x \in\right.$ $\in K\}$ is a well pseudorealizer of G.

Proof. 1. Assume that (A) holds and let φ be an isomorphism of G onto $G^{\prime} \cong$ $\subseteq \prod_{x \in K} L_{x}$. For every $x \in G$ and every $\varkappa \in K$ put $\Phi(x, x)=[\varphi(x)](x)$. Then Φ is a mapping of the set $G \times K$ into the set $\bigcup_{x \in K} L_{x}$ with the property $\Phi\left(x, x_{0}\right) \in L_{\varkappa_{0}} . \Phi\left(x, x_{0}\right)$ is therefore a mapping of G into $L_{x_{0}}$. Put $\Phi\left(x, x_{0}\right)=f_{x_{0}}(x)$. We shall show that $\left\{L_{x}, f_{x} \mid x \in K\right\}$ is a well pseudorealizer of G. Hence let $x, y \in G, x \leqq y$. Then $\varphi(x) \leqq$ $\leqq \varphi(y)$ so that $[\varphi(x)](x) \leqq[\varphi(y)](x)$ for every $x \in K$. From this it follows $\Phi(x, x) \leqq \Phi(y, x)$ for every $\chi \in K$ and hence $f_{\chi}(x) \leqq f_{\chi}(y)$ for every $x \in K$. Suppose, on the contrary, that $f_{\chi}(x) \leqq f_{\chi}(y)$ for every $x \in K$. Then $\Phi(x, x) \leqq \Phi(y, x)$ for every $x \in K$, i.e. $[\varphi(x)](x) \leqq[\varphi(y)](x)$ for every $x \in K$ so that $\varphi(x) \leqq \varphi(y)$. As φ is an isomorphism, this implies $x \leqq y .\left\{L_{x}, f_{x} \mid x \in K\right\}$ is therefore a well pseudorealizer of G and (B) holds.
2. Assume that (B) holds. Put $\Phi(x, x)=f_{x}(x)$ for every $x \in G$ and every $x \in K$. Then Φ is a mapping of the set $G \times K$ into the set $\bigcup_{x \in K} L_{x}$ with the property $\Phi\left(x_{0}, x\right) \in$ $\in L_{\chi}$. Form the cardinal product $\prod_{\chi \in K} L_{\varkappa}$ and put $\Phi\left(x_{0}, \chi\right)=\left[\varphi\left(x_{0}\right)\right](x)$. Then φ is
a mapping of G onto a certain subset $G^{\prime} \subseteq \prod_{x \in K} L_{x}$ and we shall show that φ is an isomorphism. Let $x, y \in G, x \leqq y$. As $\left\{L_{x}, f_{x} \mid x \in K\right\}$ is a well pseudorealizer of G, we have $f_{x}(x) \leqq f_{x}(y)$ for every $x \in K$ so that $\Phi(x, x) \leqq \Phi(y, x)$ for every $x \in K$. From this $[\varphi(x)](x) \leqq[\varphi(y)](x)$ for every $x \in K$ and therefore $\varphi(x) \leqq \varphi(y)$. Suppose, on the contrary, that $\varphi(x) \leqq \varphi(y)$. Then $[\varphi(x)](x) \leqq[\varphi(y)](x)$ for every $x \in K$ so that $\Phi(x, x) \leqq \Phi(y, x)$ for every $x \in K$ and hence $f_{x}(x) \leqq f_{x}(y)$ for every $x \in K$. As $\left\{L_{\chi}, f_{x} \mid x \in K\right\}$ is a well pseudorealizer of G, this implies $x \leqq y$. Finally it is easy to see that φ is a one-one mapping. φ is therefore an isomorphism and (A) holds.
2.9. Corollary. Let G be an ordered set, let K be a set. Then the following statements are equivalent:
(A) There exists a well-ordered set L such that $G \cong G^{\prime} \subseteq L^{K}$.
(B) For every $x \in K$ there exists a well ordered set L_{x} and a mapping f_{x} of G into L_{\varkappa} such that $\left\{L_{\varkappa}, f_{\varkappa} \mid x \in K\right\}$ is a well pseudorealizer of G.

Proof. 1. Assume that (A) is true. Then (B) holds, according to 2.8., if we put $L_{x}=L$ for every $x \in K$.
2. Let (B) be true. Then according to 2.8 . we have $G \cong G^{\prime} \cong \prod_{x \in K} L_{\chi}$. Let L be such a well-ordered set that $L_{\varkappa} \cong L_{\varkappa}^{\prime} \subseteq L$ for every $x \in K$. The set L can be constructed for instance in the following way: choose any well ordering of the set K and put $L=\sum_{x \in K} L_{x}$. Then $\prod_{x \in K} L_{x} \cong \prod_{x \in K} L_{x}^{\prime} \subseteq L^{K}$. If φ is an isomorphism of $\prod_{x \in K} L_{x}$ onto $\prod_{x \in K} L_{x}^{\prime}$ we have $G \cong G^{\prime} \cong \varphi\left(G^{\prime}\right)=G^{\prime \prime} \subseteq \prod_{x \in K} L_{x}^{\prime} \subseteq L^{K}$ so that $G \cong G^{\prime \prime} \subseteq L^{K}$ and (A) holds.
2.10. Theorem. Let G be an ordered set satisfying the descending chain condition, let K be a set. Then the following statements are equivalent:
(A) For every $x \in K$ there exists a well-ordered set S_{χ} such that $G \cong G^{\prime} \subseteq \prod_{x \in K} S_{x}$.
(B) For every $x \in K$ there exists a well-ordered set T_{x} and a one-one isotone mapping f_{\varkappa} of G into T_{\varkappa} such that $\left\{T_{\varkappa}, f_{\varkappa} \mid \varkappa \in K\right\}$ is a well realizer of G.

Proof. 1. Assume that (A) holds. Let φ be an isomorphism of G onto $G^{\prime} \subseteq \prod_{x \in k} S_{x}$. Denote - similarly as in 2.8. $-[\varphi(x)]\left(\varkappa_{0}\right)=g_{x_{0}}(x)$. Then g_{x} is an isotone mapping of G into S_{χ} for every $x \in K$. Put $R_{\chi}=g_{\chi}(G)$ for every $x \in K$. Then $R_{x} \subseteq S_{\chi}$ so that R_{x} is a well-ordered set and g_{x} is an isotone mapping of G onto R_{x} for every $x \in K$. Now for every $x \in K$ and every $y \in R_{x}$ we have $g_{x}^{-1}(y) \subseteq G$ so that $g_{x}^{-1}(y)$ satisfies the descending chain condition. Hence according to 2.3. there exists a wellordered set T_{y}^{α} and a one-one isotone mapping f_{y}^{α} of the set $g_{x}^{-1}(y)$ into T_{y}^{x}. Put $T_{\varkappa}=\sum_{y \in R_{\varkappa}} T_{y}^{\varkappa} . T_{\varkappa}$ as a lexicographic sum of well-ordered sets over a well-ordered set is a well-ordered set. Define the mapping f_{x} of G into T_{x} in the following way: $f_{x}(x)=$
$=\left[g_{\chi}(x), f_{g_{\chi}(x)}^{\chi}(x)\right]$. It is easy to see that f_{x} is a one-one mapping of G into T_{x} for every $x \in K$. We shall show that $\left\{T_{x}, f_{x} \mid x \in K\right\}$ is a well realizer of G. Let $x_{1}, x_{2} \in G$, $x_{1} \leqq x_{2}$. Then $\varphi\left(x_{1}\right) \leqq \varphi\left(x_{2}\right)$ so that $\left[\varphi\left(x_{1}\right)\right](\varkappa) \leqq\left[\varphi\left(x_{2}\right)\right](\varkappa)$ for every $\chi \in K$. From this there follows that $g_{\chi}\left(x_{1}\right) \leqq g_{\chi}\left(x_{2}\right)$ for every $\chi \in K$. Choose any $\varkappa_{0} \in K$. If $g_{x_{0}}\left(x_{1}\right)<g_{x_{0}}\left(x_{2}\right)$ then $\left[g_{x_{0}}\left(x_{1}\right), f_{g_{x_{0}}\left(x_{1}\right)}^{x_{0}}\left(x_{1}\right)\right]<\left[g_{x_{0}}\left(x_{2}\right), f_{g_{x_{0}}\left(x_{2}\right)}^{x_{0}}\left(x_{2}\right)\right]$ in $\sum_{y \in R_{x}} T_{y}^{x}$ so that $f_{x_{0}}\left(x_{1}\right)<f_{x_{0}}\left(x_{2}\right)$. If $g_{x_{0}}\left(x_{1}\right)=g_{x_{0}}\left(x_{2}\right)$ then $x_{1} \in g_{x_{0}}^{-1}\left[g_{x_{0}}\left(x_{1}\right)\right], x_{2} \in g_{x_{0}}^{-1}\left[g_{x_{0}}\left(x_{1}\right)\right]$ $\left(=g_{x_{0}}^{-1}\left[g_{x_{0}}\left(x_{2}\right)\right]\right)$ so that $f_{g_{x_{0}}\left(x_{1}\right)}^{x_{0}}\left(x_{1}\right) \leqq f_{g_{x_{0}}\left(x_{1}\right)}^{x_{0}}\left(x_{2}\right)=f_{g_{x_{0}}\left(x_{2}\right)}^{\chi_{0}}\left(x_{2}\right)$ and hence $\left[g_{x_{0}}\left(x_{1}\right)\right.$, $\left.f_{g_{x_{0}}\left(x_{1}\right)}^{\chi_{0}}\left(x_{1}\right)\right] \leqq\left[g_{\chi_{0}}\left(x_{2}\right), f_{g_{x_{0}}\left(x_{2}\right)}^{\chi_{0}}\left(x_{2}\right)\right]$ i.e. $f_{\chi_{0}}\left(x_{1}\right) \leqq f_{\chi_{0}}\left(x_{2}\right)$. Therefore $f_{\chi}\left(x_{1}\right) \leqq f_{\chi}\left(x_{2}\right)$ for every $\varkappa \in K$. Suppose, on the contrary, that $f_{\chi}\left(x_{1}\right) \leqq f_{\chi}\left(x_{2}\right)$ for every $\chi \in K$. Then $\left[g_{\chi}\left(x_{1}\right), f_{g_{x}\left(x_{1}\right)}^{x}\left(x_{1}\right)\right] \leqq\left[g_{\chi}\left(x_{2}\right), f_{g_{x}\left(x_{2}\right)}^{x}\left(x_{2}\right)\right]$ for every $x \in K$ and hence $g_{\chi}\left(x_{1}\right) \leqq g_{\chi}\left(x_{2}\right)$ for every $x \in K$. From this it follows that $\left[\varphi\left(x_{1}\right)\right](\varkappa) \leqq\left[\varphi\left(x_{2}\right)\right](\varkappa)$ for every $\chi \in K$, i.e. $\varphi\left(x_{1}\right) \leqq \varphi\left(x_{2}\right)$. As φ is an isomorphism, this implies $x_{1} \leqq x_{2}$. Hence $\left\{T_{\chi}, f_{\varkappa} \mid x \in\right.$ $\in K\}$ is really a well realizer of G and (B) holds.
2. Assume that (B) holds. Then $\left\{T_{x}, f_{x} \mid x \in K\right\}$ is also a well pseudorealizer of G and (A) holds according to 2.8 . if we put $S_{x}=T_{x}$ for every $x \in K$.
2.11. Corollary. Let G be an ordered set satisfying the descending chain condition, let K be a set. Then the following statements are equivalent:
(A) There exists a well-ordered set L such that $G \cong G^{\prime} \cong L^{K}$.
(B) For every $x \in K$ there exists a well-ordered set L_{x} and a one-one isotone mapping f_{\varkappa} of G into L_{\varkappa} such that $\left\{L_{\varkappa}, f_{\varkappa} \mid \varkappa \in K\right\}$ is a well realizer of G.

Proof can be made similarly as proof of 2.9 .

3. WELL DIMENSION

3.1. Definition. Let G be an ordered set satisfying the descending chain condition. We put wdim $G=\min \left(\operatorname{card} K \mid\left\{L_{\varkappa}, f_{\varkappa} \mid \varkappa \in K\right\}\right.$ is a well realizer of $\left.G\right)$; this cardinality will be called a well dimension of G.
3.2. Theorem. Let G be an ordered set satisfying the descending chain condition, let $m>0$ be a cardinality. Then the following statements are equivalent:
(A) $\operatorname{wdim} G \leqq m$.
(B). There exists a set K with card $K=m$ and for every $\chi \in K$ a well-ordered set L_{x} such that $G \cong G^{\prime} \cong \prod_{x \in K} L_{x}$.

Proof follows from 2.10.
3.3. Theorem. Let G be an ordered set satisfying the descending chain condition, let $m>0$ be a cardinality. Then the following statements are equivalent:
(A) $\operatorname{wdim} G \leqq m$.
(B) There exists a set K with card $K=m$ and a well-ordered set L such that $G \cong G^{\prime} \cong L^{K}$.

Proof follows from 2.11.
3.4. Theorem. Let G be an ordered set satisfying the descending chain condition. Then wdim $G \leqq$ card G; if G is finite and card $G \geqq 4$ then even wdim $G \leqq$ $\leqq\left[\frac{1}{2} \operatorname{card} G\right]$.

Proof. If G is finite then clearly wdim $G=\operatorname{dim} G$ so that according to [5] wdim $G=\operatorname{dim} G \leqq\left[\frac{1}{2} \operatorname{card} G\right]$ for card $G \geqq 4$. If G is infinite then card $G=$ $=\operatorname{card}(G \times G)$ and the assertion follows from the proof of 2.5.
3.5. Theorem. Let G be an ordered set satisfying the descending chain condition and let card $G \leqq \aleph_{\alpha}$. Then $\operatorname{wdim} G=\omega_{\alpha+1}-\operatorname{dim} G=\omega_{\alpha+1}-$-pdim G.

Proof. Clearly wdim $G \leqq \omega_{\alpha+1}$ - $\operatorname{dim} G$. Assume that $\operatorname{wdim} G=m$ and let $\left\{L_{\chi}, f_{\varkappa} \mid x \in K\right\}$ be a well realizer of G of cardinality m. For every $\varkappa \in K$ put $M_{\varkappa}=$ $=f_{\chi}(G)$; then $\left\{M_{\varkappa}, f_{\chi} \mid \chi \in K\right\}$ is also a well realizer of G and card $M_{\varkappa} \leqq \aleph_{\alpha}$ for every $\chi \in K$. From this $\bar{M}_{\varkappa}<\omega_{\alpha+1}$ for every $\chi \in K$ so that $\left\{M_{\varkappa}, f_{\chi} \mid \chi \in K\right\}$ is an $\omega_{\alpha+1^{-}}$ realizer of G and hence $\omega_{\alpha+1}-\operatorname{dim} G \leqq m$. Therefore $\omega_{\alpha+1}-\operatorname{dim} G=m=\operatorname{wdim} G$. Further $\omega_{\alpha+1}-\operatorname{pdim} G \leqq \omega_{\alpha+1}-\operatorname{dim} G=\operatorname{wdim} G$; on the other hand, if $\omega_{\alpha+1}$-pdim $G=$ $=n$, then according to $[9] G \cong G^{\prime} \cong L^{K}$ where L is a chain of type $\omega_{\alpha+1}, K$ an antichain of cardinality n. From this it follows, according to 3.3., wdim $G \leqq n$ so that also $\operatorname{wdim} G=\omega_{\alpha+1}$-pdim G.
B. Dushnik and E. W. Miller ([4]) and also H. Komm ([7]) have proved that to every cardinal number $m>0$ there exists an ordered set G such that $\operatorname{dim} G=m$. We shall prove an analogical theorem for the well dimension.
3.6. Theorem. For any cardinal number $m>0$ there exists an ordered set G satisfying the descending chain condition such that wdim $G=m$.

Proof. ${ }^{1}$) Let M be a set with card $M=m$. Put $a_{x}=\{x\}, c_{x}=M-\{x\}$ for any $x \in M$ and denote $G=\left\{a_{x}, c_{x} \mid x \in M\right\}$ where G is ordered by the set inclusion. It is clear that G satisfies the descending chain condition. In [4] there is proved $\operatorname{dim} G=m$; we shall prove that also wdim $G=m$. As $\operatorname{dim} G \leqq \operatorname{wdim} G$, for any ordered set G satisfying the descending chain condition it is sufficient to prove wdim $G \leqq m$. If $m<\aleph_{0}$ then card $G<\aleph_{0}$ so that $\operatorname{wdim} G=\operatorname{dim} G=m$ for $w \operatorname{dim} G=\operatorname{dim} G$ for any finite ordered set G. If $m \geqq \aleph_{0}$ then card $G=m$ so that wdim $G \leqq m$ according to 3.4. Therefore in both cases wdim $G=m$.

The fact that wdim $G=\operatorname{dim} G$ holds for any finite ordered set G leads us to the question whether it may be posible that wdim $G=\operatorname{dim} G$ hoids for any ordered set G

[^0]satisfying the descending chain condition. The following example shows that this is not true.
3.7. Example. Let G be an infinite antichain. Then $\operatorname{dim} G<\operatorname{wdim} G$.

Proof. There is $\operatorname{dim} G=2$. Assume that wdim $G=2$. Then there exists a well realizer $\left\{L_{i}, f_{i} \mid i=1,2\right\}$ of the set G of cardinality 2 . Hence there is necessarily $x, y \in G, f_{1}(x)<f_{1}(y) \Rightarrow f_{2}(x)>f_{2}(y)$ i.e. the set $f_{2}(G) \subseteq L_{2}$ is dual to $f_{1}(G) \subseteq L_{1}$. As G is infinite, $f_{1}(G)$ contains a chain of type ω. From this it follows that $f_{2}(G) \subseteq L_{2}$ contains a chain of type ω^{*} which is a contradiction.
3.8. Lemma. Let $H, G_{\alpha}(\alpha \in H)$ be ordered sets satisfying the descending chain condition. Then $\sum_{\alpha \in H} G_{\alpha}$ satisfies the descending chain condition.

Proof. Let $\left[\alpha_{i}, x_{i}\right] \in \sum_{\alpha \in H} G_{\alpha}(i=0,1,2, \ldots)$ and assume that $\left[\alpha_{0}, x_{0}\right] \geqq\left[\alpha_{1}, x_{1}\right] \geqq$ $\geqq \ldots \geqq\left[\alpha_{n}, x_{n}\right] \geqq \ldots$ Then $\alpha_{0} \geqq \alpha_{1} \geqq \ldots \geqq \alpha_{n} \geqq \ldots$ and hence there exists a nonnegative integer n_{1} such that $\alpha_{n_{1}}=\alpha_{n_{1}+1}=\alpha_{n_{1}+2}=\ldots$ From this it follows $x_{n_{1}} \geqq$ $\geqq x_{n_{1}+1} \geqq \ldots \geqq x_{n_{1}+k} \geqq \ldots$ and $x_{n_{1}+k} \in G_{\alpha_{n_{1}}}$ for every $k=0,1,2, \ldots$ so that there exists k_{1} such that $x_{n_{1}+k_{1}}=x_{n_{1}+k_{1}+1}=x_{n_{1}+k_{1}+2}=\ldots$ Therefore if we put $n_{1}+$ $+k_{1}=n_{0}$ we have $\left[\alpha_{n_{0}}, x_{n_{0}}\right]=\left[\alpha_{n_{0}+1}, x_{n_{0}+1}\right]=\left[\alpha_{n_{0}+2}, x_{n_{0}+2}\right]=\ldots$
3.9. Corollary. Let G, H be ordered sets satisfying the descending chain condition. Then $G \oplus H, G+H, G \circ H$ satisfy the descending chain condition.
3.10. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite chain. Then ${ }^{H} G$ satisfies the descending chain condition.

Proof. If card $H=n$ then ${ }^{H} G \cong G_{1} \circ G_{2} \circ \ldots \circ G_{n}$ where $G_{i} \cong G(i=1,2, \ldots, n)$ so that the statement follows from 3.9.
3.11. Theorem. Let $H, G_{\alpha}(\alpha \in H)$ be ordered sets satisfying the descending chain condition. Then wdim $\sum_{\alpha \in H} G_{\alpha}=\sup \left\{\operatorname{wdim} H\right.$, wdim $\left.\left.G_{\alpha}(\alpha \in H)\right\} .{ }^{2}\right)$

Proof. Denote sup $\left\{\right.$ wdim H, wdim $\left.G_{\alpha}(\alpha \in H)\right\}=m$. Let K be a set with card $K=$ $=m$, let $\left\{L_{\chi}, f_{\chi} \mid x \in K\right\}$ be a well realizer of H, let $\left\{P_{\chi}^{\alpha}, g_{x}^{\alpha} \mid x \in K\right\}$ be a well realizer of G_{α} for every $\alpha \in H$. We can assume $L_{\kappa}=f_{\chi}(H)$ for every $\chi \in K$ (in the other case we shall consider the set $f_{\chi}(H) \subseteq L_{\chi}$ instead of $\left.L_{\alpha}\right)$ and also $P_{\chi}^{\alpha}=g_{\chi}^{\alpha}\left(G_{\alpha}\right)$ for every $x \in K$ and every $\alpha \in H$. Put $S_{\chi \varrho}=\sum_{y \in L_{\chi}} P_{\varrho}^{f_{\varkappa}-1(y)}(y)$ for any two elements $\chi, \varrho \in K . S_{\varkappa \varrho}$, as a lexicographic sum of well-ordered sets over a well-ordered set, is a well-ordered set for any $x \in K, \varrho \in K$. Define the mapping $h_{\varkappa \varrho}$ of $\sum_{\alpha \in \boldsymbol{H}} G_{\alpha}$ into $S_{\varkappa \varrho}$ in the following way:

[^1]$h_{\chi e}([\alpha, x])=\left[f_{\chi}(\alpha), g_{e}^{\alpha}(x)\right]$. Put further $T_{x}=S_{\chi x}, r_{x}=h_{\chi x}$. We shall show that $\left\{T_{\chi}, r_{x} \mid x \in K\right\}$ is a well realizer of $\sum_{\alpha \in H} G_{\alpha}$. Let $\left[\alpha_{1}, x_{1}\right] \in \sum_{\alpha \in H} G_{\alpha},\left[\alpha_{2}, x_{2}\right] \in \sum_{\alpha \in H} G_{\alpha}$, $\left[\alpha_{1}, x_{1}\right] \leqq\left[\alpha_{2}, x_{2}\right]$. Then either $\alpha_{1}<\alpha_{2}$, or $\alpha_{1}=\alpha_{2}, x_{1} \leqq x_{2}$. In the first case we have $f_{\chi}\left(\alpha_{1}\right)<f_{\chi}\left(\alpha_{2}\right)$ for every $\chi \in K$ so that $h_{\chi \varrho}\left(\left[\alpha_{1}, x_{1}\right]\right)=\left[f_{\chi}\left(\alpha_{1}\right), g_{e}^{\alpha_{1}}\left(x_{1}\right)\right]<$ $<\left[f_{x}\left(\alpha_{2}\right), g_{e}^{\alpha_{2}}\left(x_{2}\right)\right]=h_{\varkappa \varrho}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for any $x \in K, \varrho \in K$. In the second case there is $g_{\varrho}^{\alpha_{1}}\left(x_{1}\right) \leqq g_{\varrho}^{\alpha_{1}}\left(x_{2}\right)$ for every $\varrho \in K$ so that $h_{\chi_{\varrho}}\left(\left[\alpha_{1}, x_{1}\right]\right)=\left[f_{\chi}\left(\alpha_{1}\right), g_{\varrho}^{\alpha_{1}}\left(x_{1}\right)\right] \leqq$ $\leqq\left[f_{\chi}\left(\alpha_{1}\right), g_{\varrho}^{\alpha_{1}}\left(x_{2}\right)\right]=h_{\chi \varrho}\left(\left[\alpha_{1}, x_{2}\right]\right)=h_{\chi \varrho}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for any $x \in K, \varrho \in K$. We have proved that even every $h_{\chi \varrho}$ is an isotone mapping. Further it is clear that every $h_{\chi \varrho}$ is a one-one mapping because every f_{x} and every g_{d}^{α} is a one-one mapping. Assume now that $\left[\alpha_{1}, x_{1}\right] \in \sum_{\alpha \in H} G_{\alpha},\left[\alpha_{2}, x_{2}\right] \in \sum_{\alpha \in H} G_{\alpha}$ and that $r_{x}\left(\left[\alpha_{1}, x_{1}\right]\right) \leqq r_{x}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for every $x \in K$. Then $h_{x x}\left(\left[\alpha_{1}, x_{1}\right]\right)=\left[f_{\varkappa}\left(\alpha_{1}\right), g_{x}^{\alpha_{1}}\left(x_{1}\right)\right] \leqq\left[f_{x}\left(\alpha_{2}\right), g_{x}^{\alpha_{2}}\left(x_{2}\right)\right]=h_{x x}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for every $x \in K$. From this it follows $f_{\chi}\left(\alpha_{1}\right) \leqq f_{\chi}\left(\alpha_{2}\right)$ for every $x \in K$ which implies $\alpha_{1} \leqq \alpha_{2}$ because $\left\{L_{\chi}, f_{\varkappa} \mid \chi \in K\right\}$ is a well realizer of H. If $f_{\chi}\left(\alpha_{1}\right)<f_{\chi}\left(\alpha_{2}\right)$ for at least one (and thus for every) $x \in K$ we have $\alpha_{1}<\alpha_{2}$ and hence $\left[\alpha_{1}, x_{1}\right]<\left[\alpha_{2}, x_{2}\right]$ in $\sum_{\alpha \in H} G_{\alpha}$. In the opposite case $f_{\chi}\left(\alpha_{1}\right)=f_{\chi}\left(\alpha_{2}\right)$ and therefore $\alpha_{1}=\alpha_{2}$. Therefore in this case $g_{\varkappa}^{\alpha_{1}}\left(x_{1}\right) \leqq g_{\varkappa}^{\alpha_{1}}\left(x_{2}\right)$ for every $x \in K$. As $\left\{P_{\varkappa}^{\alpha_{1}}, g_{\varkappa}^{\alpha_{1}} \mid \chi \in K\right\}$ is a well realizer of $G_{\alpha_{1}}$ this implies $x_{1} \leqq x_{2}$ and hence $\left[\alpha_{1}, x_{1}\right] \leqq\left[\alpha_{1}, x_{2}\right]=\left[\alpha_{2}, x_{2}\right]$. Thus $\left\{T_{\varkappa}, r_{x} \mid x \in K\right\}$ is really a well realizer of $\sum_{\alpha \in H} G_{\alpha}$ so that wdim $\sum_{\alpha \in H} G_{\alpha} \leqq m$. On the other hand the set $\sum_{\alpha \in H} G_{\alpha}$ contains subsets $H^{\prime}, G_{\alpha}^{\prime}(\alpha \in H)$ isomorphic with $H, G_{\alpha}(\alpha \in H): H^{\prime}=\left\{\left[\alpha, x_{\alpha}\right] \mid\right.$ $\mid \alpha \in H, x_{\alpha} \in G_{\alpha}$ is any constantly chosen element $\}, G_{\alpha}^{\prime}=\left\{[\alpha, x] \mid x \in G_{\alpha}, \alpha \in H\right.$ is constant $\}$. From this it follows $w \operatorname{dim} H=\operatorname{wdim} H^{\prime} \leqq \operatorname{wdim} \sum_{\alpha \in H} G_{\alpha}$, wdim $G_{\alpha}=$ $=$ wdim $G_{\alpha}^{\prime} \leqq \operatorname{wdim} \sum_{\alpha \in H} G_{\alpha}$ for every $\alpha \in H$ so that $\sup \left\{\right.$ wdim H, wdim $\left.G_{\alpha}(\alpha \in H)\right\}=$ $=m \leqq \operatorname{wdim} \sum_{\alpha \in H} G_{\alpha}$ and altogether wdim $\sum_{\alpha \in H} G_{\alpha}=m=\sup \left\{\operatorname{wdim} H\right.$, wdim $G_{\alpha}(\alpha \in$ $\in H)\}$.
3.12. Corollary. Let G, H be ordered sets satisfying the descending chain condition. Then \quad wdim $(G \oplus H)=\max \{$ wdim G, wdim $H\}, \quad$ wdim $(G+H)=$ $=\max \{2, w \operatorname{dim} G, w \operatorname{dim} H\}, w \operatorname{dim}(G \circ H)=\max \{w \operatorname{dim} G, w \operatorname{dim} H\}$.
3.13. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite chain. Then $\operatorname{wdim}{ }^{H} G=\operatorname{wdim} G$.

Proof. If H is a chain with card $H=2$ then according to 3.12 . wdim ${ }^{H} G=$ $=\operatorname{wdim}(G \circ G)=\operatorname{wdim} G$. Now the statement follows by induction.
3.14. Lemma. Let $G_{1}, G_{2}, \ldots, G_{n}$ be ordered sets satisfying the descending chain condition. Then $G_{1}, G_{2} \ldots G_{n}$ satisfies the descending chain condition.

Proof. Let $\left[x_{1}^{i}, x_{2}^{i}, \ldots, x_{n}^{i}\right] \in G_{1} . G_{2} \ldots G_{n}$ for $i=0,1,2, \ldots$ and let $\left[x_{1}^{0}, x_{2}^{0}, \ldots\right.$
$\left.\ldots, x_{n}^{0}\right] \geqq\left[x_{1}^{1}, x_{2}^{1}, \ldots, x_{n}^{1}\right] \geqq \ldots \geqq\left[x_{1}^{m}, x_{2}^{m}, \ldots, x_{n}^{m}\right] \geqq \ldots$ Then $x_{1}^{0} \geqq x_{1}^{1} \geqq \ldots \geqq$ $\geqq x_{1}^{m} \geqq \ldots, x_{2}^{0} \geqq x_{2}^{1} \geqq \ldots \geqq x_{2}^{m} \geqq \ldots, \ldots, x_{n}^{0} \geqq x_{n}^{1} \geqq \ldots \geqq x_{n}^{m} \geqq \ldots$ From this it follows that for every $i=1,2, \ldots, n$ there exists a non-negative integer m_{i} such that $x_{i}^{m_{i}}=x_{i}^{m_{i}+1}=\ldots$ Put $m_{0}=\max \left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$. Then $\left[x_{1}^{m_{0}}, x_{2}^{m_{0}}, \ldots, x_{n}^{m_{0}}\right]=$ $=\left[x_{1}^{m_{0}+1}, x_{2}^{m_{0}+1}, \ldots, x_{n}^{m_{0}+1}\right]=\ldots$
3.15. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite antichain. Then G^{H} satisfies the descending chain condition.
3.16. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite ordered set. Then G^{H} satisfies the descending chain condition.

Proof. Let \bar{H} be the set H ordered as an antichain. Then $G^{H} \subseteq G^{H}$. G^{H} satisfies the descending chain condition according to 3.15., hence G^{H} also satisfies the descending chain condition.
3.17. Theorem. Let G, H be ordered sets satisfying the descending chain condition. Then $w \operatorname{dim}(G . H) \leqq \operatorname{wdim} G+w \operatorname{dim} H$.

Proof. Denote wdim $G=m$, wdim $H=n$. According to 3.2. there exists a set K_{1} with card $K_{1}=m$ and for every $\varkappa \in K_{1}$ a well-ordered set L_{\varkappa} such that $G \cong G^{\prime} \subseteq$ $\subseteq \prod_{\chi \in K_{1}} L_{\chi}$ and similarly there exists a set K_{2} with card $K_{2}=n$ and for every $\varkappa \in K_{2}$ a well-ordered set L_{χ} such that $H \cong H^{\prime} \cong \prod_{\chi \in K_{2}} L_{\chi}$. Assume that K_{1}, K_{2} are disjoint and put $K=K_{1} \cup K_{2}$. Then card $K=m+n$ and $G . H \cong G^{\prime} . H^{\prime} \cong\left(\prod_{x \in K_{1}} L_{x}\right)$. . $\left(\prod_{\chi \in K_{2}} L_{x}\right) \cong \prod_{\chi \in K} L_{\chi}$. From this there follows according to 3.2. wdim $(G . H) \leqq m+$ $+n=$ wdim $G+$ wdim H.
3.18. Note. The inequality \leqq in 3.17 cannot be substituted by $=$. If, for example G, H are finite non-trivial antichains it is wdim $G=2=\operatorname{wdim} H$ and as $G . H$ is also a finite non-trivial antichain we have $\operatorname{wdim}(G . H)=2<\operatorname{wdim} G+\operatorname{wdim} H$. On the other hand, if G, H are non-trivial well-ordered sets, there is wdim $G=1=$ $=\operatorname{wdim} H$ and - as it will be shown in 3.22. $-\operatorname{wdim}(G . H)=2=\operatorname{wdim} G+$ + wdim H.
3.19. Corollary. Let $G_{1}, G_{2}, \ldots, G_{n}$ be ordered sets satisfying the descending chain condition. Then $\operatorname{wdim}\left(G_{1} \cdot G_{2} \ldots G_{n}\right) \leqq \operatorname{wdim} G_{1}+\operatorname{wdim} G_{2}+\ldots+\operatorname{wdim} G_{n}$.

Proof follows from 3.17. by induction.
3.20. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite antichain. Then wdim $G \leqq$ card H. wdim G.
3.21. Corollary. Let G be an ordered set satisfying the descending chain condition, let H be a finite ordered set. Then wdim $G^{H} \leqq \operatorname{card} H$. wdim G.
Proof. If \bar{H} is the set H ordered as an antichain then $G^{H} \leqq G^{H}$ and hence wdim $G^{H} \leqq$ \leqq wdim $G^{\bar{H}} \leqq \operatorname{card} \bar{H}$. wdim $G=\operatorname{card} H$. wdim G.
3.22. Theorem. Let $G_{1}, G_{2}, \ldots, G_{n}$ be well-ordered sets. Then $\operatorname{wdim}\left(G_{1} . G_{2} \ldots\right.$ $\left.\ldots G_{n}\right)=n$.

Proof. As wdim $G_{i}=1$ for $i=1,2, \ldots, n$ we have $\operatorname{wdim}\left(G_{1}, G_{2} \ldots G_{n}\right) \leqq n$ according to 3.19 . Assume $\operatorname{wdim}\left(G_{1}, G_{2} \ldots G_{n}\right)=m<n$ and let $\left\{L_{k}, f_{k} \mid k=\right.$ $=1,2, \ldots, m\}$ be a well realizer of $G_{1} . G_{2} \ldots G_{n}$ of cardinality m. Choose for any $i=1,2, \ldots, n$ two elements $x_{i}, y_{i} \in G_{i}$ such that $x_{i}<y_{i}$ and denote $a_{i}=\left[x_{1}, x_{2}, \ldots\right.$ $\left.\ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right], \quad c_{i}=\left[y_{1}, y_{2}, \ldots, y_{i-1}, x_{i}, y_{i+1}, \ldots, y_{n}\right]$. Then $a_{i} \in G_{1}$. $. G_{2} \ldots G_{n}, c_{i} \in G_{1} . G_{2} \ldots G_{n}$ for $i=1,2, \ldots, n, a_{i}<c_{j}$ for $i \neq j, a_{i} \| c_{i}$. Thus, there exists at least one $k_{0}\left(1 \leqq k_{0} \leqq m\right)$ such that $f_{k_{0}}\left(c_{i}\right)<f_{k_{0}}\left(a_{i}\right)$ and at the same time $f_{k_{0}}\left(c_{j}\right)<f_{k_{0}}\left(a_{j}\right)$ where $i \neq j$. As $a_{i}<c_{j}$ and $a_{j}<c_{i}$ in $G_{1} . G_{2} \ldots G_{n}$ we obtain $f_{k_{0}}\left(c_{i}\right)<f_{k_{0}}\left(a_{i}\right)<f_{k_{0}}\left(c_{j}\right)<f_{k_{0}}\left(a_{j}\right)<f_{k_{0}}\left(c_{i}\right)$, which is impossible. Hence $\operatorname{wdim}\left(G_{1} \cdot G_{2} \ldots G_{n}\right)=n$.
3.23. Corollary. Let L be a well-ordered set, let K be a finite antichain. Then wdim $L^{K}=\operatorname{card} K$.

4. WELL PSEUDODIMENSION

4.1. Definition. Let G be an ordered set. We put wpdim $G=\min \left(\operatorname{card} K \mid\left\{L_{\chi}, f_{\varkappa} \mid\right.\right.$ $\mid x \in K\}$ is a well pseudorealizer of G); this cardinality will be called a well pseudodimension of G.
4.2. Theorem. Let G be an ordered set, let $m>0$ be a cardinality. Then the following statements are equivalent:
(A) wpdim $G \leqq m$.
(B) There exists a set K with card $K=m$ and for every $x \in K$ a well-ordered set L_{χ} such that $G \cong G^{\prime} \cong \prod_{\chi \in K} L_{\chi}$.

Proof follows from 2.8.
4.3. Theorem. Let G be an ordered set, let $m>0$ be a cardinality. Then the following statements are equivalent:
(A) wpdim $G \leqq m$.
(B) There exists a set K with card $K=m$ and a well-ordered set L such that $G \cong G^{\prime} \cong L^{K}$.

Proof follows from 2.9.
4.4. Theorem. Let G be an ordered set. Then wpdim $G \leqq \operatorname{card} G$; if G is finite and card $G \geqq 4$ then wpdim $G \leqq\left[\frac{1}{2}\right.$ card $\left.G\right]$.

Proof. If G is finite then clearly wpdim $G=\operatorname{wdim} G=\operatorname{dim} G$ so that wpdim $G \leqq$ $\leqq\left[\frac{1}{2}\right.$ card $\left.G\right]$ for card $G \geqq 4$, according to [5]. If G is infinite then $\operatorname{card}(G \times G)=$ $=$ card G and the statement follows from the proof of 2.7.
4.5. Theorem. Let G be an ordered set and let card $G \leqq \aleph_{\alpha}$. Then wpdim $G=$ $=\omega_{\alpha+1}-\operatorname{pdim} G$.

Proof. We have clearly wpdim $G \leqq \omega_{\alpha+1}-\operatorname{pdim} G$. Assume that wpdim $G=m$ and let $\left\{L_{\varkappa}, f_{\varkappa} \mid \chi \in K\right\}$ be a well pseudorealizer of G of cardinality m. Put $M_{\varkappa}=$ $=f_{\chi}(G)$ for any $x \in K$; then $\left\{M_{\varkappa}, f_{\varkappa} \mid x \in K\right\}$ is also a well pseudorealizer of G and there is card $M_{\varkappa} \leqq \aleph_{\alpha}$ so that $\bar{M}_{\varkappa}<\omega_{\alpha+1}$ for every $\varkappa \in K .\left\{M_{\varkappa}, f_{\varkappa} \mid \chi \in K\right\}$ is therefore an $\omega_{\alpha+1}$ - pseudorealizer of G of cardinality m so that $\omega_{\alpha+1}-\operatorname{pdim} G \leqq m$. Hence $\omega_{\alpha+1}-\operatorname{pdim} G=m=$ wpdim G.
4.6. Theorem. Let G be an ordered set satisfying the descending chain condition. Then wpdim $G=$ wdim G.

Proof. We have clearly wpdim $G \leqq$ wdim G. Assume that wpdim $G=m$. Then according to 4.2 . there exists a set K with card $K=m$ and for every $\varkappa \in K$ a well-ordered set L_{\varkappa} such that $G \cong G^{\prime} \cong \prod_{\chi \in K} L_{\chi}$. From this it follows according to 3.2. wdim $G \leqq m$ and hence wdim $G=m=$ wpdim G.

From 4.6. and 3.6. we obtain immediately
4.7. Theorem. For any cardinal number $m>0$ there exists an ordered set G such that wpdim $G=m$.
4.8. Theorem. Let H be an ordered set satisfying the descending chain condition, let $\left\{G_{\alpha} \mid \alpha \in H\right\}$ be a system of ordered sets. Then $\operatorname{wpdim} \sum_{\alpha \in H} G_{\alpha}=\sup \{\operatorname{wdim} H$, $\left.\operatorname{wpdim} G_{\alpha}(\alpha \in H)\right\}$.

Proof. Put $\sup \left\{\operatorname{wdim} H\right.$, wpdim $\left.G_{\alpha}(\alpha \in H)\right\}=m$. Then there exists a well realizer $\left\{L_{\chi}, f_{\chi} \mid x \in K\right\}$ of the set H of cardinality m; further let $\left\{P_{\chi}^{\alpha}, g_{x}^{\alpha} \mid x \in K\right\}$ be a well pseudorealizer of the set G_{α} of cardinality m for every $\alpha \in H$. Now define the well-ordered sets $S_{\chi \varrho}$ and mappings $h_{\chi \varrho}$ of the set $\sum_{\alpha \in H} G_{\alpha}$ into $S_{\chi \varrho}$ for every $\chi \in K$, $\varrho \in K$, in the same way as in the proof of 3.11. and put $T_{\varkappa}=S_{\varkappa \varkappa}, r_{\varkappa}=h_{\varkappa \varkappa}$. We shall show that $\left\{T_{\varkappa}, r_{\varkappa} \mid \chi \in K\right\}$ is a well pseudorealizer of $\sum_{\alpha \in H} G_{\alpha}$. Let $\left[\alpha_{1}, x_{1}\right] \in \sum_{\alpha \in H} G_{\alpha}$, $\left[\alpha_{2}, x_{2}\right] \in \sum_{\alpha \in H} G_{\alpha},\left[\alpha_{1}, x_{1}\right] \leqq\left[\alpha_{2}, x_{2}\right]$. Then either $\alpha_{1}<\alpha_{2}$ or $\alpha_{1}=\alpha_{2}, x_{1} \leqq x_{2}$. In the first case there is $f_{\chi}\left(\alpha_{1}\right)<f_{\chi}\left(\alpha_{2}\right)$ for every $\chi \in K,\left\{L_{\chi}, f_{\varkappa} \mid \varkappa \in K\right\}$ being a well
realizer of H. Hence $\left[f_{\chi}\left(\alpha_{1}\right), g_{e}^{\alpha_{1}}\left(x_{1}\right)\right]<\left[f_{\chi}\left(\alpha_{2}\right), g_{\varrho}^{2 \alpha}\left(x_{2}\right)\right]$ for any $\chi \in K$, $\varrho \in K$, i.e. $h_{\alpha_{\varrho}}\left(\left[\alpha_{1}, x_{1}\right]\right)<h_{\alpha_{\varrho}}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for any $x \in K, \varrho \in K$. In the second case there is $g_{\varrho}^{\alpha_{1}}\left(x_{1}\right) \leqq$ $\leqq g_{\varrho}^{\alpha_{1}}\left(x_{2}\right)$ for every $\varrho \in K$ so that $h_{\chi_{\varrho}}\left(\left[\alpha_{1}, x_{1}\right]\right)=\left[f_{\varkappa}\left(\alpha_{1}\right), g_{\varrho}^{\alpha_{1}}\left(x_{1}\right)\right] \leqq\left[f_{\psi}\left(\alpha_{1}\right), g_{e}^{\alpha_{1}}\left(x_{2}\right)\right]=$ $=h_{x_{\varrho}}\left(\left[\alpha_{1}, x_{2}\right]\right)=h_{\varkappa_{\varrho}}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for every $x \in K, \varrho \in K$. We have proved that even every $h_{\alpha_{\varrho}}$ is isotone. Now assume that $r_{x}\left(\left[\alpha_{1}, x_{1}\right]\right)=h_{x x}\left(\left[\alpha_{1}, x_{1}\right]\right)=\left[f_{x}\left(\alpha_{1}\right)\right.$, $\left.g_{x}^{\alpha_{1}}\left(x_{1}\right)\right] \leqq\left[f_{\chi}\left(\alpha_{2}\right), g_{x}^{\alpha_{2}}\left(x_{2}\right)\right]=h_{\chi x}\left(\left[\alpha_{2}, x_{2}\right]\right)=r_{\chi}\left(\left[\alpha_{2}, x_{2}\right]\right)$ for every $x \in K$. Then $f_{\chi}\left(\alpha_{1}\right) \leqq f_{\chi}\left(\alpha_{2}\right)$ for every $\chi \in K$ and hence $\alpha_{1} \leqq \alpha_{2}$. If $f_{\chi}\left(\alpha_{1}\right)<f_{\chi}\left(\alpha_{2}\right)$ for at least one $x \in K$ we have $\alpha_{1}<\alpha_{2}$ and therefore $\left[\alpha_{1}, x_{1}\right]<\left[\alpha_{2}, x_{2}\right]$ in $\sum_{\alpha \in H} G_{\alpha}$. In the opposite case there is $f_{\chi}\left(\alpha_{1}\right)=f_{\chi}\left(\alpha_{2}\right)$ for every $\chi \in K$ so that $\alpha_{1}=\alpha_{2}$ and hence $g_{\chi}^{\alpha_{1}}\left(x_{1}\right) \leqq g_{\alpha}^{\alpha_{1}}\left(x_{2}\right)$ for every $\chi \in K$. This implies $x_{1} \leqq x_{2}$ in $G_{\alpha_{1}}=G_{\alpha_{2}}$ so that again $\left[\alpha_{1}, x_{1}\right] \leqq\left[\alpha_{1}, x_{2}\right]=\left[\alpha_{2}, x_{2}\right]$ in $\sum_{\alpha \in H} G_{\alpha}$. Hence $\left\{T_{x}, r_{\chi} \mid \chi \in K\right\}$ is really a well pseudorealizer of $\sum_{\alpha \in H} G_{\alpha}$ so that wpdim $\sum_{\alpha \in H} G_{\alpha} \leqq m$. Analogously like in 3.11. we can easily prove that wpdim $\sum_{\alpha \in H} G_{\alpha} \geqq m$ so that wpdim $\sum_{\alpha \in H} G_{\alpha}=m=\sup \{$ wdim H,
wpdim $\left.G_{\alpha}(\alpha \in H)\right\}$. $\left.\operatorname{wpdim} G_{\alpha}(\alpha \in H)\right\}$.
4.9. Corollary. Let G, H be ordered sets. Then $\operatorname{wpdim}(G \oplus H)=\max \{$ wpdim G, wpdim $H\}$, wpdim $(G+H)=\max \{2$, wpdim G, wpdim $H\}$.
4.10. Theorem. Let H be a set, let G_{α} be an ordered set for every $\alpha \in H$. Then wpdim $\prod_{\alpha \in H} G_{\alpha} \leqq \sum_{\alpha \in H}$ wpdim G_{α}.

Proof. Denote wpdim $G_{\alpha}=m_{\alpha}$ for every $\alpha \in H$. According to 4.2. there exists a set K_{α} with card $K_{\alpha}=m_{\alpha}$ and for every $\chi \in K_{\alpha}$ a well-ordered set L_{χ} such that $G_{\alpha} \cong G_{\alpha}^{\prime} \subseteq \prod_{\chi \in K_{\alpha}} L_{\alpha}$. Assume that the sets K_{α} are disjoint and put $K=\bigcup_{\alpha \in H} K_{\alpha}$. Then $\operatorname{card} K=\sum_{\alpha \in H}^{\alpha \in K_{\alpha}} m_{\alpha}=\sum_{\alpha \in H}$ wpdim G_{α} and $\prod_{\alpha \in H} G_{\alpha} \cong \prod_{\alpha \in H} G_{\alpha}^{\prime} \cong \prod_{\alpha \in H}\left(\prod_{\chi \in K_{\alpha}} L_{\alpha}\right) \cong \prod_{\chi \in K} L_{\chi}$. . From this it follows wpdim $\prod_{\alpha \in H} G_{\alpha} \leqq \operatorname{card} K=\sum_{\alpha \in H}$ wpdim G_{α} according to 4.2.
4.11. Note. The relation \leqq also here cannot be substituted by $=$. This follows from 4.6. and 3.18.
4.12. Corollary. Let G be an ordered set, let H be an antichain. Then wpdim $G^{H} \leqq$ $\leqq \operatorname{card} H$. wpdim G.
4.13. Corollary. Let G, H be ordered sets. Then wpdim $G^{H} \leqq$ card H. wpdim G. Proof. Similarly as in 3.21.
4.14. Theorem. Let H be a set, let G_{α} be a well-ordered set for every $c \in H$. Then wpdim $\prod_{\alpha \in H} G_{\alpha}=\operatorname{card} H$.

Proof. According to 4.10. we have wpdim $\prod_{\alpha \in H} G_{\alpha} \leqq \operatorname{card} H$. Assume wpdim $\prod_{\alpha \in H} G_{\alpha}=$ $=m<\operatorname{card} H$ and let $\left\{L_{\varkappa}, f_{\varkappa} \mid \chi \in K\right\}$ be a well pseudorealizer of the set $\prod_{\alpha \in H} G_{\alpha}$ of cardinality m. Choose for any $\alpha \in H$ two elements $x_{\alpha} \in G_{\alpha}, y_{\alpha} \in G_{\alpha}$ such that $x_{\alpha}<y_{\alpha}$ and for every $\alpha_{0} \in H$ denote - similarly as in 3.22. - $\varphi_{\alpha_{0}}, \psi_{\alpha_{0}}$ the elements of $\prod_{\alpha \in H} G_{\alpha}$ defined in the following way:

$$
\varphi_{\alpha_{0}}(\alpha)=\left\langle\begin{array}{lll}
x_{\alpha} & \text { for } & \alpha \neq \alpha_{0} \\
y_{x} & \text { for } & \alpha=\alpha_{0}
\end{array} \quad \psi_{\alpha_{0}}(\alpha)=\left\langle\begin{array}{lll}
y_{\alpha} & \text { for } & \alpha \neq \alpha_{0} \\
x_{\alpha} & \text { for } & \alpha=\alpha_{0}
\end{array}\right.\right.
$$

It is easy to see that $\varphi_{\alpha_{1}}<\psi_{\alpha_{2}}$ for $\alpha_{1} \neq \alpha_{2}$ and $\varphi_{\alpha_{0}} \| \psi_{\alpha_{0}}$ in $\prod_{\alpha \in H} G_{\alpha}$. This implies that there exists at least one element $\varkappa_{0} \in K$ such that $f_{\chi_{0}}\left(\psi_{\alpha_{1}}\right)<f_{x_{0}}\left(\varphi_{\alpha_{1}}\right)$ and $f_{x_{0}}\left(\psi_{\alpha_{2}}\right)<$ $<f_{\chi_{0}}\left(\varphi_{\alpha_{2}}\right)$ where $\alpha_{1} \neq \alpha_{2}$. As $\varphi_{\alpha_{1}}<\psi_{\alpha_{2}}$ and $\varphi_{\alpha_{2}}<\psi_{\alpha_{1}}$ we have $f_{\chi_{0}}\left(\psi_{\alpha_{1}}\right)<f_{\chi_{0}}\left(\varphi_{\alpha_{1}}\right) \leqq$ $\leqq f_{\chi_{0}}\left(\psi_{\alpha_{2}}\right)<f_{\chi_{0}}\left(\varphi_{\alpha_{2}}\right) \leqq f_{\chi_{0}}\left(\psi_{\alpha_{1}}\right)$, i.e. $f_{\chi_{0}}\left(\psi_{\alpha_{1}}\right)<f_{\chi_{0}}\left(\psi_{\alpha_{1}}\right)$ which is impossible. Hence wpdim $\prod_{\alpha \in H} G_{\alpha}=\operatorname{card} H$.
4.15. Corollary. Let L be a well-ordered set, let K be an antichain. Then wpdim $L^{K}=$ $=\operatorname{card} K$.

5. EXAMPLES

5.1. Let G be the set of all real numbers with the natural ordering. Then wpdim $G=\aleph_{0}$.

Proof. According to [9] there is $\mathbf{2}-\operatorname{pdim} G=\operatorname{sep} G=\aleph_{0} .{ }^{3}$) From this there follows wpdim $G \leqq \mathbf{2}-\operatorname{pdim} G=\aleph_{0}$. Assume that $\operatorname{wpdim} G<\aleph_{0}$, i.e. wpdim $G=$ $=m$ where m is a finite number. Then according to 4.3. $G \cong G^{\prime} \cong L^{K}$ where L is a suitable well-ordered set and K is an antichain with card $K=m$. According to 3.15. the set L^{K} satisfies the descending chain condition and this is a contradiction because G contains an infinite descending chain.
5.2. Let G be the set of all rational numbers with the natural ordering. Then wpdim $G=\aleph_{0}$.

Proof. As $G \cong H$ implies wpdim $G \leqq$ wpdim H for any ordered sets $G, H, 5.1$. implies wpdim $G \leqq \aleph_{0}$. The converse inequality can be proved in the same way as in 5.1. because G again contains an infinite descending chain.
5.3. Let G be a chain of type ω_{α}^{*}. Then wpdim $G=\aleph_{\alpha}$.

Proof. According to 4.4. we have wpdim $G \leqq \aleph_{\alpha}$. Assume wpdim $G=m<$ ふ $_{\alpha}$.

[^2]Then according to 4.2 . there exists a set K with card $K=m$ and for every $\chi \in K$ a well-ordered set L_{α} such that $G \cong G^{\prime} \cong \prod_{x \in K} L_{\chi}$. Thus $G^{\prime}=\left\{\varphi_{0}, \varphi_{1}, \ldots, \varphi_{\lambda}, \ldots \mid \varphi_{0}>\right.$ $\left.>\varphi_{1}>\ldots>\varphi_{\lambda}>\ldots, \lambda<\omega_{\alpha}, \varphi_{\lambda} \in \prod_{\chi \in K} L_{\chi}\right\}$. This implies $\varphi_{0}(\varkappa) \geqq \varphi_{1}(x) \geqq \ldots \geqq$ $\geqq \varphi_{\lambda}(x) \geqq \ldots$ for $\lambda<\omega_{\alpha}$ and $x \in K$. Denote $W_{x}=\left\{\lambda \mid \lambda \in W\left(\omega_{\alpha}\right), \varphi_{\lambda}(x)>\varphi_{\lambda+1}(x)\right\}$ for any $x \in K$.

Then it holds: every W_{χ} is a finite set and for every $\lambda \in W\left(\omega_{\alpha}\right)$ there exists a χ such that $\lambda \in W_{\chi}$. This implies $W\left(\omega_{\alpha}\right)=\bigcup_{x \in K} W_{\chi}$. But card $\bigcup_{x \in K} W_{x} \leqq \sum_{x \in K} \operatorname{card} W_{x}$; the last cardinal number is finite if $m<\aleph_{0}$; if $m \geqq \aleph_{0}$ then $\sum_{\chi \in K}$ card $W_{\varkappa} \leqq \sum_{x \in K} \aleph_{0}=m . \aleph_{0}=$ $=m$; at the same time card $W\left(\omega_{\alpha}\right)=\aleph_{\alpha}>m$ and this is a contradiction. Hence $\operatorname{wpdim} G=\aleph_{\alpha}$.
5.4. Let G be an antichain such that $\aleph_{0} \leqq \operatorname{card} G \leqq 2^{\aleph_{0}}$. Then wdim $G=\aleph_{0}$.

Proof. In [10] there is proved: If G is an antichain with $\operatorname{card} G=\aleph_{\alpha}$ then 2 - pdim $\mathrm{G}=m$ where m is the smallest cardinal number such that $2^{m} \geqq \aleph_{\alpha}$. Hence if G is an antichain of cardinality $2^{\aleph_{0}}$ then $\mathbf{2 - p d i m} G=\aleph_{0}$ so that wdim $G=$ $=$ wpdim $G \leqq \aleph_{0}$. Thus it is sufficient to prove that if G is an antichain with card $G=$ $=\aleph_{0}$ then $\operatorname{wdim} G \geqq \aleph_{0}$. Suppose $\operatorname{wdim} G=m<\aleph_{0}$. Then there exists a well realizer $\left\{L_{i}, f_{i} \mid i=1, \ldots, m\right\}$ of the set G of cardinality m. Write all elements of the set G in the form of a sequence: $G=\left\{x_{0}, x_{1}, \ldots, x_{n}, \ldots\right\}$. Now, f_{1} is a one-one mapping of G into L_{1} and L_{1} is a well-ordered set; thus, the set $f_{1}(G)$ is well-ordered, so that $f_{1}(G)=\left\{l_{0}^{1}, l_{1}^{1}, \ldots, l_{\lambda}^{1}, \ldots \mid \lambda<\alpha\left(\alpha<\omega_{1}\right), l_{0}^{1}<l_{1}^{1}<\ldots<l_{\lambda}^{1}<\ldots\right\}$. Now for every $\lambda<\omega_{0}$ there exists a non-negative integer n_{λ} such that $f_{1}^{-1}\left(l_{\lambda}^{1}\right)=x_{n_{\lambda}}$; simultaneously for $\lambda_{1} \neq \lambda_{2}$ there is $n_{\lambda_{1}} \neq n_{\lambda_{2}}$. In the sequence $\left\{n_{\lambda}\right\}_{\lambda<\omega_{0}}$ there exists an increasing subsequence $\left\{n_{\lambda_{k}}\right\}_{k<\omega_{0}}$. Write more briefly $n_{k}^{1}=n_{\lambda_{k}}$ and denote $G^{1}=$ $=\left\{x_{n^{1} k}\right\}_{k<\omega_{0}}$. Then there holds $n_{k_{1}}^{1}<n_{k_{2}}^{1}$ and $f_{1}\left(x_{n^{1} k_{1}}\right)<f_{1}\left(x_{n^{1_{k}}}\right)$ for $k_{1}<k_{2}$. Now, $f_{2}\left(G^{1}\right) \subseteq L_{2}$ and L_{2} is well-ordered so that $f_{2}\left(G^{1}\right)=\left\{l_{0}^{2}, l_{1}^{2}, \ldots, l_{\lambda}^{2}, \ldots \mid \lambda<\right.$ $\left.<\beta\left(\beta<\omega_{1}\right), l_{0}^{2}<l_{1}^{2}<\ldots<l_{\lambda}^{2}<\ldots\right\}$. For every $\lambda<\omega_{0}$ there exists again a nonnegative integer k_{λ} such that $f_{2}^{-1}\left(l_{\hat{\lambda}}^{2}\right)=x_{n^{1}{ }_{k},}$, where $k_{\lambda_{1}} \neq k_{\lambda_{2}}$ for $\lambda_{1} \neq \lambda_{2}$.

In the sequence $\left\{k_{\lambda}\right\}_{\lambda<\omega_{0}}$ there exists an increasing subsequence $\left\{k_{\lambda_{i}}\right\}_{i<\omega_{0}}$. Write again n_{i}^{2} instead of $n_{k \lambda_{i}}^{1}$. If we denote $G^{2}=\left\{x_{n_{k}^{2}}\right\}_{k<\omega_{0}}$, there will hold $n_{k_{1}}^{2}<n_{k_{2}}^{2}$ and $f_{1}\left(x_{n^{2} k_{1}}\right)<f_{1}\left(x_{n^{2} k_{2}}\right), f_{2}\left(x_{n^{2} k_{1}}\right)<f_{2}\left(x_{n^{2} k_{2}}\right)$ for $k_{1}<k_{2}$. When repeating this proceeding m-times we get on to a set $G^{m} \subseteq G, G^{m}=\left\{x_{n^{m_{k}}}\right\}_{k<\omega_{0}}$, where for $k_{1}<k_{2}$ there holds $n_{k_{1}}^{m}<n_{k_{2}}^{m}$ and $f_{i}\left(x_{n^{m_{k 1}}}\right)<f_{i}\left(x_{n^{m_{k 2}}}\right)$ for all $i=1, \ldots, m$ which implies $x_{n^{m_{k 1}}}<x_{n^{m}{ }_{k 2}}$ in G, because $\left\{L_{i}, f_{i} \mid i=1, \ldots, m\right\}$ is a well realizer of G and this is a contradiction. Thus, wdim $G \geqq \aleph_{0}$.
5.5. Let G be the set of all pairs $[x, y]$ where x, y are real numbers ordered in the following way: $\left[x_{1}, y_{1}\right]<\left[x_{2}, y_{2}\right] \Leftrightarrow x_{1}=x_{2}$ and $y_{1}<y_{2}$. Then wpdim $G=\aleph_{0}$. Proof. It is easy to see that $G \cong \sum_{\alpha \in H} G_{\alpha}$ where H is an antichain with card $H=2^{\aleph_{0}}$
and each G_{α} is a chain with $\bar{G}_{\alpha}=\lambda .{ }^{4}$) We have therefore wdim $H=\aleph_{0}$ according to 5.4 and $\operatorname{wpdim} G_{\alpha}=\aleph_{0}$ for every $\alpha \in H$ according to 5.1. Then wpdim $G=$ $=\operatorname{wpdim} \sum_{\alpha \in H}=\sup \left\{\operatorname{wdim} H\right.$, wpdim $\left.G_{\alpha}(\alpha \in H)\right\}=\aleph_{0}$ according to 4.8.
5.6. Problem. Let G be an antichain with card $G=\aleph_{\alpha}$. Determine wdim G.

References

[1] G. Birkhoff: Lattice Theory. New York 1948.
[2] G. Birkhoff: Generalized Arithmetic. Duke Math. Journ. 9 (1942), 283-302.
[3] M. M. Day: Arithmetic of Ordered Systems. Trans. Amer. Math. Soc. 58 (1945), 1-43.
[4] B. Dushnik - E. W. Miller: Partially Ordered Sets. Am. Journ. Math. 63 (1941), 600-610.
[5] T. Hiraguchi: On the Dimension of Partially Ordered Sets. Sci. Rep. of the Kanazawa Univ. I (1951), 77-94.
[6] T. Hiraguchi: A note on a Mr. Komm's Theorems. Sci. Rep. of the Kanazawa Univ. 2 (1953), 1--3.
[7] H. Komm: On the Dimension of Partially Ordered Sets. Am. Journ. Math. 70 (1948), 507 to 520.
[8] V. Novák: O dimensi lexikografického součtu částečně uspořádaných množin. Čas. pěst. mat. 86 (1961), 385-391.
[9] V. Novák: On the Pseudodimension of Ordered Sets. Czech. Math. Journ. 13 (1963), 587 to 598.
[10] V. Novák: On the ω_{ν}-dimension and ω_{ν}-pseudodimension of ordered sets. Ztschr. f. math. Logik und Grundlagen d. Math. 10 (1964), 43-48.
[11] E. Szpilrajn: Sur l'extension de l'ordre partiel. Fund. Math. 16 (1930), 386-389.
Author's address: Janáčkovo nám. 2a, Brno, ČSSR (Universita J. E. Purkyně).

[^3]
[^0]: ${ }^{1}$) The proof is accomplished, in a quite similar way, as that of Theorem 4.1. in [4].

[^1]: ${ }^{2}$) See Theorem 1 in [8].

[^2]: ${ }^{3}$) Sep G denotes the separability of G i.e. the minimal cardinality of a subset $H \subseteq G$ which is dense in G.

[^3]: ${ }^{4}$) λ denotes the order type of the set of all real numbers with the natural ordering.

