Czechoslovak Mathematical Journal

Ladislav Skua

System of layers of an ordered set

Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 1, 27-41

Persistent URL: http://dml.cz/dmlcz/100873

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SYSTEM OF LAYERS OF AN ORDERED SET

Ladislav Skula, Brno
(Received March 20, 1967)

INTRODUCTION

In this paper there is studied the system $\mathfrak{N}(G)$ of all subsets N of an ordered set G fulfilling the axioms: $(I \mathfrak{R})$ for $x, y \in N, x \neq y$ there does not exist $z \in G, z \leqq x$, $z \leqq y ;(\mathrm{II} \mathfrak{N}) N$ is maximal with respect to the property described in $(I \mathfrak{P})$. A set N with these properties is called a layer of the ordered set G.

We defined the ordering \leqq on the system $\mathfrak{N}(G)$ as follows: For $N_{1}, N_{2} \in \mathfrak{M}(G)$ we have $N_{1} \leqq N_{2}$ if and only if to any element $n_{2} \in N_{2}$ there exists at least one element $n_{1} \in N_{1}$ such that $n_{1} \geqq n_{2}$. A particular case of the system $\mathfrak{N}(G)$ is the ordered system of all decompositions on some set which can be identified with the ordered system of all equivalences on the same set. In [3] 2.7, it is shown that the ordered set $\mathscr{K}(Q)(\mathscr{R}(Q))$ of classes of compactifications (relative compactifications) of a noncompact space Q, is a particular case of a system $\mathfrak{N}(G)$, too.

In the first section there are introduced the basic algebraic concepts and the notation which will be used in the following. In Section 2, there are studied the properties of a system $\mathfrak{N}(G)$ ordered by means of the relation \leqq for an arbitrary ordered set G. In Section 3, there are studied these properties under a supposition that the set $G^{\prime}=$ $=(o) \oplus G$ is an upper, or lower semilattice. Here o denotes a symbol different from the elements of the set G and \oplus denotes Birkhoff ordinal sum. The Section 4 is devoted to the study of properties of an ordered system $\mathfrak{N}(G)$ under the assumption that G^{\prime} is a distributive lattice. In 4.7, there are introduced sufficient and necessary conditions for $\mathfrak{N}(G)$ to be distributive or modular lattice, under an assumption that G^{\prime} is a distributive lattice. I do not know a solution for the general case.

1. FUNDAMENTAL ALGEBRAIC CONCEPTS AND NOTATIONS

In the paper, there are used current concepts and theorems from the theory of ordered sets. Instead of the term "a partially ordered set" we shall use the term "an ordered set". For two ordered isomorphic sets X and Y we shall write $X \cong Y$.

A dually ordered set in respect to an ordered set X will be denoted by \breve{X}. An ordered set (X, \leqq) will be called down-directed if for $x, y \in X$ a $z \in X$ exists such that $z \leqq x$, $z \leqq y$.

Let $I \neq \emptyset$. The Cartesian product $X_{\iota}, \iota \in I$ will be denoted by $\mathfrak{P} X_{\iota}(\iota \in I)$. The symbol $\Pi X_{\iota}(\iota \in I)$ will denote the cardinal product of ordered sets $X_{\iota}, \iota \in I$.

Under a lower (upper) semi-lattice we understand an ordered set in which any pair of elements has an infimum (supremum). A complete lower (upper) semi-lattice is an ordered set in which any non-void subset has the infimum (supremum).

Let (S, \leqq) be a semi-lattice (lower or upper) with the least element o. An atom of the semi-lattice S is an element $a \in S$ such that $a \neq o$ and $o<b \leqq a$, implies $b=a$ for each $b \in S$.

A semi-lattice S will be termed atomic if for any element $s \in S, s \neq o$ there exists at least one atom a of the semi-lattice S such that $a \leqq s$.

A semi-lattice S will be called strongly atomic if for $s_{1}, s_{2} \in S, s_{1} \neq o \neq s_{2} \neq s_{1}$ there is $\emptyset \neq\left\{a \mid a \leqq s_{1}, a \in A\right\} \neq\left\{a \mid a \leqq s_{2}, a \in A\right\} \neq \emptyset$, where A is the set of all atoms of the semi-lattice S.

In this paper, G will stand for a non-empty set ordered by a relation $\leqq . x<y$ for $x, y \in G$ will denote that $x<y$ and $z=x$ or $z=y$ for $z \in G, x \leqq z \leqq y$. $\mathrm{A}(g), g \in G$, denotes the set $\{t \mid t \in G, t \leqq g\}$. In section 3 and $4, G^{\prime}=(o) \oplus G$ holds, where o is a symbol different from all elements of the set G and \oplus denotes Birkhoff's ordinal sum ([1]). Infima and suprema in G^{\prime} will be, as usual, denoted by $\wedge, \wedge, \vee, \vee$.

2. SYSTEM OF LAYERS $\mathfrak{T (G)}$ FOR AN ORDERED SET G

Definition 2.1. A set $M \subseteq G$ has the property (h) (in a set G) if for $x \in M, y \in M$, $x \neq y$ we have $\mathrm{A}(x) \cap \mathrm{A}(y)=\emptyset$.

Definition 2.2. $\mathfrak{N}(G)$ is the system of all subsets N of G fulfilling the following axioms:
(I $\mathfrak{N}) \quad N$ has the property (h).
$(\mathrm{II} \mathfrak{R}) N \cup(z)$ fails to have the property (h) for $z \in G-N$.
A subset N with the properties mentioned in the definition 2.2 is called a layer of the ordered set G.
2.1. Let $M \subseteq G$ have the property (h). Then, there exists at least one layer $N \in \mathfrak{N}(G)$ such that $M \subseteq N$.

Proof. Let us denote the system of all subsets $A \subseteq G$ possessing the property (h) and fulfilling the relation $A \supseteq M$ by \mathfrak{A}. If we order the system \mathfrak{A} by means of inclusion, it follows from Zorn's lemma that there exists a maximal element $N \in \mathfrak{A}$. We have $N \in \mathfrak{R}(G)$ and $M \subseteq N$.
2.2. $\emptyset \notin \mathfrak{R}(G), \mathfrak{R}(G) \neq \emptyset$.

Proof. From the axiom (II \mathfrak{N}) it follows that $\emptyset \notin \mathfrak{N}(G)$. From 2.1 we can get $\mathfrak{N}(G) \neq \emptyset$.
2.3. A set $M \subseteq G$ fulfils the axiom (II \mathfrak{N}) if and only if to every $g \in G$ there exist elements $m \in M$ and $g^{\prime} \in G$ such that $g^{\prime} \leqq g, g^{\prime} \leqq m$.

Proof. Let $M \cong G$. If the given condition is satisfied, then evidently M fulfils the axiom (II \mathfrak{R}). If the set M fulfils the axiom (II \mathfrak{N}) and $g \in G-M$, then from the axiom (II \mathfrak{R}) there follows the existence of an element $g^{\prime} \in G$ and $m \in M$ with the mentioned property. If $g \in M$, then we get the mentioned condition for $m=g^{\prime}=g$.

Definition 2.3. For $N_{1} \in \mathfrak{P}(G), N_{2} \in \mathfrak{M}(G)$ we put $N_{1} \leqq N_{2}$, if for every $n_{2} \in N_{2}$ there exists at least one element $n_{1} \in N_{1}$ such that $\left.n_{1} \geqq n_{2} .{ }^{1}\right)$
2.4. The relation \leqq is an ordering.

Proof. Reflexivity and transitivity are evident. Let $N_{1} \leqq N_{2}, N_{2} \leqq N_{1}$ hold for $N_{1}, N_{2} \in \mathfrak{N}(G)$. For $n_{2} \in N_{2}$ there exists $n_{1} \in N_{1}$ such that $n_{1} \geqq n_{2}$. Furthermore, $n_{2}^{\prime} \in N_{2}$ exists such that $n_{1} \leqq n_{2}^{\prime}$. From the axiom ($\mathrm{I} \mathfrak{P}$) it then follows that $n_{2}=$ $=n_{1}=n_{2}^{\prime}$. Thus $N_{2} \subseteq N_{1}$. Similarly it turns out that $N_{1} \subseteq N_{2}$.
2.5. Let $N_{1}, N_{2} \in \mathfrak{N}(G), N_{1} \leqq N_{2}$. Then, for any $n_{2} \in N_{2}$ exactly one element $n_{1} \in N_{1}$ exists such that $n_{1} \geqq n_{2}$, and for any $n_{1}^{\prime} \in N_{1}$ at least one element $n_{2}^{\prime} \in N_{2}$ such that $n_{1}^{\prime} \geqq n_{2}^{\prime}$.

Proof. The first part of the assertion follows from the axiom ($\mathrm{I} \mathfrak{q}$). Let $n_{1}^{\prime} \in N_{1}$. By $2.3, n_{2}^{\prime} \in N_{2}$ and $g^{\prime} \in G$ exist such that $g^{\prime} \leqq n_{1}^{\prime}, g^{\prime} \leqq n_{2}^{\prime}$. Since $N_{1} \leqq N_{2}$, so $n_{1}^{*} \in N_{1}$ exists such that $n_{1}^{*} \geqq n_{2}^{\prime}$. From the axiom (I $\left.\mathfrak{N}\right)$ it follows at once that $n_{1}^{\prime}=n_{1}^{*}$; from this the assertion follows.
2.6. Let $N \in \mathfrak{N}(G), M \cong G$ have the property (h). Let for any element $n \in N$ at least one element $m \in M$ exist such that $n \leqq m$. Then $M \in \mathfrak{N}(G), M \leqq N$.

Proof. Let $g \in G$. By $2.3, g^{\prime} \in G$ and $n \in N$ exist such that $g \geqq g^{\prime}, n \geqq g^{\prime}$. According to the assumption there exists $m \in M, m \geqq n$. Consequently $m \geqq g^{\prime}, g \geqq g^{\prime}$ and by 2.3 we have $M \in \mathfrak{M}(G)$. Evidently $M \leqq N$.

Example 2.1. Let $P \neq \emptyset$. Let G be the set of all non-void subsets of the set P, ordered by means of inclusion. Then $\mathfrak{N}(G)$ represents the set of all decompositions on P ordered in such a way that the decomposition (P) is the least one.

[^0]Example 2.2. Let $P \neq \emptyset$ be a topological T_{1}-space (or more generally Čech's B-space). ${ }^{2}$) Let G be the set of all non-void closed sets of the space P ordered by means of inclusion. Then $\mathfrak{N}(G)$ is the set of all closed decompositions on the space P, ordered in such a manner that the decomposition (P) is the least one.

Example 2.3. The ordered set $\mathscr{K}(Q)(\mathscr{R}(Q))$ of classes of compactifications (relative compactifications) of a non-compact space Q and the set $\mathfrak{N}(\mathrm{I}(Q))$ are isomorphic, where $\mathrm{I}(Q)$ denotes the set of all proper filters on Q without a cluster point ([3], 2.7).
2.7. $\mathfrak{N}(G)$ possesses the least element if and only if G is a cardinal sum of sets with the largest elements.

The set N_{0} of all these largest elements is' then the least element in $\mathfrak{N}(G)$.
Proof. I. The above condition is equivalent to the condition that to any $g \in G$ there exists a maximal element $m \in G$ such that $m \geqq g$ and the set of all maximal elements of the set G has the property (h). This set of all maximal elements of the set G is then the set N_{0}.
II. Suppose that N_{0}^{\prime} is the least element in $\mathfrak{N}(G)$. For $g \in G$ there exists, by 2.1, $N_{g} \in \mathfrak{R}(G), g \in N_{g}$. Since $N_{0}^{\prime} \leqq N_{g}$, then $m \in N_{0}^{\prime}$ exists such that $m \geqq g$. If m is not maximal, then $m^{\prime} \in G$ exists such that $m^{\prime}>m$. According to $2.1 N_{m^{\prime}} \in \mathfrak{N}(G), m^{\prime} \in$ $\in N_{m^{\prime}}$. Since $N_{0}^{\prime} \leqq N_{m^{\prime}}$, then $m^{\prime \prime} \in N_{0}^{\prime}$ exists such that $m^{\prime \prime} \geqq m^{\prime}$. From this it follows that $m^{\prime \prime}>m ; m, m^{\prime \prime} \in N_{0}^{\prime}$, which is a contradiction. Consequently, m is maximal. For that reason, for any $g \in G$ there exists a maximal element $m \in G$ such that $g \leqq m$, $m \in N_{0}^{\prime}$. Hence, the above condition follows.
III. Suppose the above condition is satisfied. Then $N_{0} \in \mathfrak{R}(G)$. For $N \in \mathfrak{P}(\cdot G)$, $n \in N$ there exists $m \in N_{0}$ such that $n \leqq m$. Thus $N_{0} \leqq N$.

Thereby the assertion is proved.
2.8. $\mathfrak{N}(G)$ has the largest element exactly if for any element $g \in G$ a minimal element m on the set G exists such that $m \leqq g$.

The largest element of the system $\mathfrak{M}(G)$ is then the set of all minimal elements of the set G.

Proof. I. Suppose N_{0} is the largest element in $\mathfrak{N}(G)$. For $g \in G$ there exists by 2.1 $N_{g} \in \mathfrak{M}(G), g \in N_{g}$. Since $N_{g} \leqq N_{0}$, by 2.5 there exists at least one element $m \in N_{0}$ such that $g \geqq m$. If m is not minimal, then $m^{\prime} \in G, m^{\prime}<m$. According to 2.1, $N_{m^{\prime}} \in \mathfrak{N}(G), m^{\prime} \in N_{m^{\prime}}$. Since $N_{m^{\prime}} \leqq N_{0}$, by 2.5 there exists at least one element $m^{\prime \prime} \in N_{0}$ such that $m^{\prime} \geqq m^{\prime \prime}$. Then $m^{\prime \prime}<m ; m^{\prime \prime}, m \in N_{0}$ which is a contradiction. m is therefore a minimal element of the set G.

[^1]II. Let us suppose that the above condition is fulfilled. Let us denote N_{0} the set of all minimal elements. Evidently, N_{0} fulfills the axioms (I \mathfrak{N}) and (II \mathfrak{N}); consequently $N_{0} \in \mathfrak{P}(G)$. Let $N \in \mathfrak{N}(G)$ and let $n_{0} \in N_{0}-N$. Since $\left(n_{0}\right) \cup N$ fails to have the property $(h), n \in N$ exists such that $n \geqq n_{0}$. Thus $N_{0} \geqq N$.

Thus, the assertion is proved.
Let $I \neq \emptyset$ and for $\iota \in I$ let $N_{\iota} \in \mathfrak{N}(G)$. Put $\mathfrak{F}\left(N_{\iota}, \iota \in I\right)=\left\{N \mid N \in \mathfrak{N}(G), N \geqq N_{\iota}\right.$ for each $\iota \in I\}$. Put $\mathrm{A}(s)=\bigcap \mathrm{A}(s(\imath))(\iota \in I)$ for $s \in \mathfrak{P} N_{\iota}(\iota \in I)$. Denote $\subseteq N_{\iota}(\iota \in \bar{I})=$ $=\left\{s \mid s \in \mathfrak{P} N_{\iota}(\iota \in I), \mathrm{A}(s) \neq \emptyset\right\}$.
2.9. Let $I \neq \emptyset, N_{\iota} \in \mathfrak{N}(G)$ for any element $\iota \in I$. Then $\mathfrak{F}\left(N_{\iota}, \iota \in I\right) \neq \emptyset$ if and only if for an arbitrary element $g \in G, s \in \mathbb{S}_{\iota} N(\iota \in I)$ and $g^{\prime} \in G$ exist such that $g^{\prime} \in A\left(s_{g}\right)$ and $g^{\prime} \leqq g$.

If $\mathfrak{F}\left(N_{\iota}, \iota \in I\right) \neq \emptyset$, then $\mathfrak{F}\left(N_{\iota}, \iota \in I\right) \cong \prod \mathfrak{M}(\mathrm{A}(s))\left(s \in \mathbb{S} N_{\iota}(\iota \in I)\right)$.
Proof. For the sake of simplicity let us denote $\mathfrak{S} N_{\iota}(\iota \in I)=\mathfrak{S}, \mathfrak{F}\left(N_{\iota}, \iota \in I\right)=\mathfrak{F}$, and in the case $\mathfrak{S} \neq \emptyset$ let us denote $\Pi \mathfrak{P}(\mathrm{A}(s))\left(s \in \mathbb{S} N_{\iota}(\iota \in I)\right)=\Pi$.
I. a) For $N \in \mathfrak{F}, n \in N$ there exists $s \in \mathbb{S}$ such that $n \in \mathbb{A}(s)$. Actually $n_{\iota} \in N_{\iota}$ exists for any $\iota \in I$ such that $n \leqq n_{\iota}$ (because $N \geqq N_{\iota}$). Putting $s(\iota)=n_{\iota}$, we have $s \in$ $\in \mathfrak{P} N_{\imath}(\iota \in I)$ and $n \in \mathrm{~A}(s)$, and consequently $s \in \mathbb{S}$.
b) For $s, s^{\prime} \in \mathbb{G}, s \neq s^{\prime}$ we have $\mathrm{A}(s) \cap \mathrm{A}\left(s^{\prime}\right)=\emptyset$. Actually $\iota_{0} \in I$ exists such that $s\left(\iota_{0}\right) \neq s^{\prime}\left(\iota_{0}\right)$ and if an element $x \in \mathrm{~A}(s) \cap \mathrm{A}\left(s^{\prime}\right)$ existed, then $x \leqq s\left(\iota_{0}\right), x \leqq s^{\prime}\left(\iota_{0}\right)$. This is a contradiction, because $s\left(\iota_{0}\right), s^{\prime}\left(\iota_{0}\right) \in N_{\iota_{0}}$.
II. Assume that for an arbitrary element $g \in G$ there exists $s_{g} \in \subseteq$ and $g^{\prime} \in G$ such that $g^{\prime} \in \mathrm{A}\left(s_{g}\right)$ and $g^{\prime} \leqq g$. Then $\mathfrak{\Im} \neq \emptyset$. Put $\varphi(f)=\bigcup f(s)(s \in \mathbb{S})$ for $f \in \Pi$. Then $\varphi(f) \cong G$.
a) Let $f \in \prod$ and let $x, y \in \varphi(f), x \neq y$. Then $s_{x}, s_{y} \in \subseteq$ exist such that $x \in f\left(s_{x}\right) \cong$ $\cong \mathrm{A}\left(s_{x}\right), y \in f\left(s_{y}\right) \subseteq \mathrm{A}\left(s_{y}\right)$. If $z \in G$ exists such that $z \leqq x, z \leqq y$, then according to I.b $s_{x}=s_{y}$. Then we have $z \in \mathrm{~A}\left(s_{x}\right)$ which is a contradiction because $f\left(s_{x}\right) \in \mathfrak{N}\left(\mathrm{A}\left(s_{x}\right)\right)$ and $x, y \in f\left(s_{x}\right)$. Thus a set $\varphi(f)$ fulfils the axiom (I $\left.\mathfrak{R}\right)$.
b) Let there be $f \in \prod$ and $g \in G$. According to the assumption, $s_{g} \in \mathbb{S}$ and $g^{\prime} \in G$ exist such that $g^{\prime} \in \mathrm{A}\left(s_{g}\right)$ and $g^{\prime} \leqq g$. Since $g^{\prime} \in \mathrm{A}\left(s_{g}\right)$ and $f\left(s_{g}\right) \in \mathfrak{P}\left(\mathrm{A}\left(s_{g}\right)\right)$, so by 2.3 there exist $g^{\prime \prime} \in \mathrm{A}\left(s_{g}\right)$ and $n \in f\left(s_{g}\right)$ such that $g^{\prime \prime} \leqq g^{\prime}, g^{\prime \prime} \leqq n$. We have $g^{\prime \prime} \in G$, $n \in \varphi(f), g^{\prime \prime} \leqq n, g^{\prime \prime} \leqq g$ and according to 2.3 the set $\varphi(f)$ fulfils the axiom (II \mathfrak{N}).
c) Let $f \in \prod$. From II.a and II.b it follows that $\varphi(f) \in \mathfrak{N}(G)$. Let $n \in \varphi(f)$. Then there exists $s_{n} \in \mathfrak{S}$ such that $n \in f\left(s_{n}\right)$. Since $f\left(s_{n}\right) \subseteq \mathrm{A}\left(s_{n}\right)$, then $n \leqq s_{n}(\iota)$ for any $\iota \in I$. Thus, $\varphi(f) \geqq N_{\iota}$ for any $\iota \in I$ and therefore $\varphi(f) \in \mathfrak{F}$.
d) Let $f, g \in \Pi, f \neq g$. Then $s_{0} \in \mathfrak{S}$ exists such that $f\left(s_{0}\right) \neq g\left(s_{0}\right)$. Since $f(s) \cong$ $\subseteq \mathrm{A}(s), g(s) \subseteq \mathrm{A}(s)$ for any $s \in \mathbb{S}$, it follows from I.b that $\varphi(f) \neq \varphi(g)$. Consequently φ is a one-to-one mapping of Π into the set \mathfrak{F}.
e) Let $N \in \mathfrak{F}, s \in \mathbb{G}$. Let us put $f(s)=N \cap \mathrm{~A}(s)$. The set $f(s)$ possesses evidently
the property (h) in $\mathrm{A}(s)$. For $g \in \mathrm{~A}(s)$ there exist by $2.3 g^{\prime} \in G$ and $n \in N$ such that $g^{\prime} \leqq g, g^{\prime} \leqq n$. We have $g^{\prime} \in \mathrm{A}(s)$ and by I.a and I.b we have also $n \in \mathrm{~A}(s) . f(s) \in$ $\in \mathfrak{P}(\mathrm{A}(s))$ follows from 2.3. Thus $f \in \prod$ and since $\varphi(f) \cong N$, we have $\varphi(f)=N$ as a consequence of I.a.
f) Let $f, g \in \Pi, f \leqq g$. Then for any element $s \in \subseteq$ we have $f(s) \leqq g(s)$; consequently $\varphi(f) \leqq \varphi(g)$.
g) Let $N, N^{\prime} \in \mathscr{F}, N \leqq N^{\prime}$. According to II.e, $N \cap \mathrm{~A}(s), N^{\prime} \cap \mathrm{A}(s) \in \mathfrak{M}(\mathrm{A}(s))$ for any element $s \in \mathbb{S}$. For $n^{\prime} \in N^{\prime} \cap \mathrm{A}(s),(s \in \mathbb{S}), n \in N$ exists such that $n^{\prime} \leqq n$. From I.a and I.b it follows that $n \in N \cap \mathrm{~A}(s)$. Thus, for $s \in \mathbb{S}$ we have $N \cap \mathrm{~A}(s) \leqq N^{\prime} \cap \mathrm{A}(s)$. It follows from II.e that $\varphi^{-1}(N) \leqq \varphi^{-1}\left(N^{\prime}\right)$.
φ is therefore an isomorphism between the sets Π and \mathfrak{F}.
III. Let $\mathfrak{F} \neq \emptyset, g \in G$. Then there exists $N \in \mathfrak{F}$. By 2.3 there exist $g^{\prime} \in G$ and $n \in N$ such that $g^{\prime} \leqq g, g^{\prime} \leqq n$. According to I.a $s_{g} \in \mathbb{S}$ exists such that $n \in \mathrm{~A}\left(s_{g}\right)$. Since we have $g^{\prime} \in \mathrm{A}\left(s_{g}\right)$, the mentioned condition is satisfied.

Thus the assertion is proved.
2.10. Let $I \neq \emptyset$. A set $\left\{N_{\iota}, \iota \in I\right\}, N_{\iota} \in \mathfrak{R}(G)$ has a supremum if and only if
(1) for an arbitrary element $g \in G$ there exist $s_{g} \in \mathbb{S}_{\iota}(\iota \in I)$ and $g^{\prime} \in G$ such that $g^{\prime} \in \mathrm{A}\left(s_{g}\right)$ and $g^{\prime} \leqq g$,
(2) for any element $s \in \mathbb{S}_{\iota}(\iota \in I)$ the set $\mathfrak{P}(\mathrm{A}(s))$ has the least element.

Then $\sup N_{\iota}(\iota \in I)=\bigcup M(s)\left(s \in \mathbb{S} N_{\iota}(\iota \in I)\right)$, where $M(s)$ is the least element of the set $\mathfrak{N}(\mathrm{A}(\mathrm{s}))$ which is equal to the set of all maximal elements of the set $\mathrm{A}(\mathrm{s})$.

Proof. I. Conditions (1) and (2) are equivalent to the statement saying that the set $\left\{N_{\iota}, \iota \in I\right\}$ has a supremum (by 2.9 and due to the fact that the cardinal product of ordered sets possesses the least element if and only if each of its factors has the least element).
II. Let there exist $\sup \left\{N_{\iota}, \iota \in I\right\}$. Then according to 2.9 the set $\prod \mathfrak{N}(\mathrm{A}(s))(s \in$ $\in \mathbb{S} N_{\iota}(\iota \in I)$) has the least element M. If φ is an isomorphism described in II, proof 2.9, then $\sup \left\{N_{\iota}, \iota \in I\right\}=\varphi(M)=\bigcup M(s)\left(s \in \mathfrak{S} N_{\iota}(\iota \in I)\right)$. The set $M(s)$ is the least element of the set $\mathfrak{P}(\mathrm{A}(s))$ and by 2.7 it is equal to the set of all maximal elements of the set $\mathrm{A}(s)$.

For $N_{1}, N_{2} \in \mathfrak{M}(G), N_{1} \gg N_{2}$ will denote that $N_{1} \succ N_{2}$ and, for $N \in \mathfrak{N}(G), N_{1} \geqq$ $\geqq N \geqq N_{2}$, we have either $N=N_{1}$ or $N=N_{2}$.
2.11. Let $N_{1} \in \mathfrak{N}(G)$. Then the following assertions are equivalnent:
(A) $N_{2} \in \mathfrak{N}(G)$ and $N_{1} \gg N_{2}$,
(B) $N_{2}=\left(N_{1}-\mathrm{A}\left(x_{0}\right)\right) \cup\left(x_{0}\right)$, where the element $x_{0} \in G-N_{1}$ has these properties:
(α) $\mathrm{A}\left(x_{0}\right) \cap N_{1} \in \mathfrak{M}\left(\mathrm{~A}\left(x_{0}\right)\right)$,
(β) $\mathrm{A}(x) \cap N_{1} \notin \mathfrak{P}(\mathrm{~A}(x))$ for $x \in G-N_{1}, x<x_{0}$.

Proof. I. Let $y \in G, N_{2}=\left(N_{1}-\mathrm{A}(y)\right) \cup(y), g \in G-N_{2}$. We shall show that in this case $N_{2} \cup(g)$ fails to have the property (h).

According to 2.3 there exist $g^{\prime} \in G$ and $n \in N$ such that $g \geqq g^{\prime}, n \geqq g^{\prime}$. If $n \notin \mathrm{~A}(y)$, then $(g) \cup N_{2}$ fails to have the property (h). If $n \in \mathrm{~A}(y)$ then $g^{\prime} \leqq y$; consequently $(g) \cup N_{2}$ also fails to have the property (h).
II. Let $N_{2} \in \mathfrak{N}(G), N_{1} \geqq N_{2}, y \in N_{2}$. Then $N=\left(N_{1}-\mathrm{A}(y)\right) \cup(y) \in \mathfrak{N}(G)$ and we have $N_{1} \geqq N \geqq N_{2}$.

Actually, the set N fulfils, according to I, the axiom (II \mathfrak{M}). If $a, b \in N, a \neq b$ and $a \neq y \neq b$, then $a, b \in N_{1}$, and therefore $\mathrm{A}(a) \cap \mathrm{A}(b)=\emptyset$. If $a \in N$ and $a \neq y$, then $a \in N_{1}-\mathrm{A}(y)$ and there exists $a^{\prime} \in N_{2}$ such that $a^{\prime} \geqq a$. Evidently $a^{\prime} \neq y$ and consequently $\mathrm{A}\left(a^{\prime}\right) \cap \mathrm{A}(y)=\emptyset$; from this it follows that $\mathrm{A}(a) \cap \mathrm{A}(y)=\emptyset$. Thus the set N fulfils the axiom (I \mathfrak{R}). Hence, $N \in \mathfrak{R}(G)$. Evidently $N_{1} \geqq N \geqq N_{2}$.
III. Let $y \in G, \mathrm{~A}(y) \cap N_{1} \in \mathfrak{N}(\mathrm{~A}(y)), N_{2}=\left(N_{1}-\mathrm{A}(y)\right) \cup(y)$. Then $N_{2} \in \mathfrak{M}(G)$ and we have $N_{2} \leqq N_{1}$.

Inded, the set N_{2} fulfils, by I, the axiom (II \mathfrak{M}). If $a, b \in N_{2}, a \neq b$ and $a \neq y \neq b$, then $a, b \in N_{1}$; thus $\mathrm{A}(a) \cap \mathrm{A}(b)=\emptyset$. If $a \in N$ and $a \neq y$, then $a \in N_{1}-\mathrm{A}(y)$. If there exists $c \in \mathrm{~A}(a) \cap \mathrm{A}(y)$, then according to 2.3 there exist $d \in \mathrm{~A}(y)$ and $n \in$ $\in \mathrm{A}(y) \cap N_{1}$ such that $d \leqq c, d \leqq n\left(\mathrm{~A}(y) \cap N_{1} \in \mathfrak{P}(\mathrm{~A}(y))\right)$. Then $d \leqq a, d \leqq n$, $a, n \in N_{1}, a \neq n$ which is a contradiction. Consequently, N_{2} fulfils the axiom (I \mathfrak{N}); thus $N_{2} \in \mathfrak{R}(G)$. Evidently $N_{2} \leqq N_{1}$.
IV. Let $N_{2}=\left(N_{1}-\mathrm{A}(y)\right) \cup(y) \in \mathfrak{N}(G)$ where $y \in G$. We are going to show that then $\mathrm{A}(y) \cap N_{1} \in \mathfrak{M}(\mathrm{~A}(y))$.

The set $\mathrm{A}(y) \cap N_{1}$ has the property (h) in G; consequently it possesses the property (h) even in the set $\mathrm{A}(y)$. Thus the axiom $(\mathrm{I} \mathfrak{N})$ is valid. For $g \in G$ there exists, by 2.3, $g^{\prime} \in G$ and $n \in N_{1}$ such that $g^{\prime} \leqq g, g^{\prime} \leqq n$. If $g \in \mathrm{~A}(y)$ then $g^{\prime} \in \mathrm{A}(y)$ and, since $N_{2} \in \mathfrak{P}(G)$, we have $n \in \mathrm{~A}(y)$. Then $n \in \mathrm{~A}(y) \cap N_{1}$ and from 2.3 it follows that the set $\mathrm{A}(y) \cap N_{1} \in \mathfrak{M}(\mathrm{~A}(y))$.
V. Let (A) hold. According to II, $N_{2}=\left(N_{1}-\mathrm{A}\left(x_{0}\right)\right) \cup\left(x_{0}\right)$ where $x_{0} \in N_{2}-N_{1}$. According to IV, the element x_{0} fulfils the condition (α). If $x \leqq x_{0}, x \notin N_{1}$ and $\mathrm{A}(x) \cap$ $\cap N_{1} \in \mathfrak{N}(\mathrm{~A}(x))$, then by III, $N=\left(N_{1}-\mathrm{A}(x)\right) \cup(x) \in \mathfrak{N}(G)$ and we have $N \prec N_{1}$. Since, $N \geqq N_{2}$, then $N=N_{2}$, and consequently $x=x_{0}$. Thus (B) holds.
VI. Let (B) be valid. By III we have $N_{2} \in \mathfrak{N}(G)$ and $N_{2} \prec N_{1}$. Let $N \in \mathfrak{M}(G)$, $N_{2} \prec N \leqq N_{1}$. For $x \in N-\mathrm{A}\left(x_{0}\right)$ we have $x \in N_{1}$. Suppose $x \in N \cap \mathrm{~A}\left(x_{0}\right)$. Then $x<x_{0}$. According to II, $N^{\prime}=\left(N_{1}-\mathrm{A}(x)\right) \cup(x) \in \mathfrak{M}(G)$ and according to IV we have $\mathrm{A}(x) \cap N_{1} \in \mathfrak{N}(\mathrm{~A}(x))$. From the definition of the property $(\beta) x \in N_{1}$ follows. Thus $N \subset N_{1}$ and $N=N_{1}$ follows from the axiom (II \mathfrak{R}) which means that $N_{2} \ll N_{1}$. Hence, the assertion is proved.

Definition 2.4. $\mathrm{r}(G)=\sup \operatorname{card} N(N \in \mathfrak{M}(G))$.
2.12. (a) $1 \leqq \mathrm{r}(G) \leqq \operatorname{card} G$.
(b) The following assertions are equivalent:
(A) G is down-directed,
(B) $\mathrm{r}(G)=1$,
(C) $G \cong \overline{\mathfrak{N}(G)}$.

Proof. The assertion (a) follows from 2.2. Evidently the assertion (A) implies (B) and (C) follows from the asertion (B).

Suppose that $G \cong \overline{\mathfrak{N}(G)}$ and denote φ the corresponding isomorphism G on $\overline{\mathfrak{N (G)}}$. Let $a, b \in G, a \neq b$ and let $g \in G$. By 2.3, $n_{a} \in \varphi(a), g^{\prime} \in G$ exist such that $g^{\prime} \leqq n_{a}$, $g^{\prime} \leqq g$. According to $2.3, n_{b} \in \varphi(b), g^{\prime \prime} \in G$ exist such that $g^{\prime \prime} \leqq g^{\prime}, g^{\prime \prime} \leqq n_{b}$. Let us put $s_{g}(a)=n_{a}, s_{g}(b)=n_{b}$. Then $s_{g} \in \varphi(a) \times \varphi(b), g^{\prime \prime} \in \mathrm{A}\left(s_{g}\right), g^{\prime \prime} \leqq g$. According to 2.9, $N \in \mathfrak{M}(G)$ exists such that $N \geqq \varphi(a), N \geqq \varphi(b)$. Since φ is an isomorphism G on $\overline{\mathfrak{P}(G)}$, then $\varphi^{-1}(N) \in G, \varphi^{-1}(N) \leqq a, \varphi^{-1}(N) \leqq b$ are valid; consequently (A) holds.

3. SYSTEM OF LAYERS $\mathfrak{N}(G)$ FOR A SEMI-LATTICE G^{\prime}

3.1. Let $G^{\prime}{ }^{3}$) be a lower semi-lattice. Then $\mathfrak{N}(G)$ is an upper semi-lattice. For $N_{1}, N_{2} \in \mathfrak{N}(G)$ we have $\sup \left(N_{1}, N_{2}\right)=\bigcup\left(n_{1} \wedge n_{2}\right)\left(n_{1} \in N_{1}, n_{2} \in N_{2}, n_{1} \wedge n_{2}>o\right)$.

Proof. Let $N_{1}, N_{2} \in \mathfrak{N}(G)$. According to $2.3, g^{\prime} \in G$ and $n_{1} \in N_{1}$ exist for an arbitrary element $g \in G$ such that $g^{\prime} \leqq g, g^{\prime} \leqq n_{1}$. By $2.3, g^{\prime \prime} \in G$ and $n_{2} \in N_{2}$ exist such that $g^{\prime \prime} \leqq g^{\prime}, g^{\prime \prime} \leqq n_{2}$. Let us put $s_{g}(1)=n_{1}, s_{g}(2)=n_{2}$. Then $s_{g} \in N_{1} \times N_{2}, g^{\prime \prime} \in$ $\in \mathrm{A}\left(s_{g}\right), g^{\prime \prime} \leqq g$.

Let $s \in N_{1} \times N_{2}, \mathrm{~A}(s) \neq \emptyset$. Then $s(1) \wedge s(2)$ is the largest element of the set $\mathrm{A}(s)$ and, according to 2.7, the set $(s(1) \wedge s(2))$ is the least element of the set $\mathfrak{N}(\mathrm{A}(s))$.

From 2.10 the mentioned assertion follows.
3.2. Let G^{\prime} be an atomic complete lower semi-lattice. Then $\mathfrak{N}(G)$ is a complete upper semi-lattice. For $I \neq \emptyset, N_{\iota} \in \mathfrak{N}(G)(\iota \in I)$ we have $\sup N_{\iota}(\iota \in I)=U\left(\bigwedge n_{\iota}(\iota \in\right.$ $\in I))\left(n_{\iota} \in N_{\iota}, \wedge_{\iota}(\iota \in I)>o\right)$.

Proof. Let $I \neq \emptyset, N_{\iota} \in \mathfrak{R}(G)$ for $\iota \in I$. Let $g \in G$. Then an atom $a \in G^{\prime}$ exists such that $a \leqq g$. Since a is a minimal element of the set G, then, by 2.3 , for any $\iota \in I$ there exists $n_{\iota} \in N_{\iota}$ such that $n_{\iota} \geqq a$. Let us put $s_{g}(\imath)=n_{\iota}$. Then $s_{g} \in \mathbb{S}_{\iota}(\iota \in I)$ and we have $a \in \mathrm{~A}\left(s_{g}\right), a \leqq g$.

Let $s \in \mathbb{S} N_{\iota}(\iota \in I), n_{\iota}=s(\iota)$ for $\iota \in I$. Then the element $n=\wedge n_{\iota}(\iota \in I)$ is the largest element of the set $\mathrm{A}(s)$. According to 2.7 and 2.10 we have $\sup N_{\iota}(\iota \in I)$ and $\sup N_{\iota}(\iota \in$ $\in I)=U\left(\wedge n_{\iota}(\iota \in I)\right)\left(n_{\iota} \in N_{\iota}, \wedge n_{\iota}(\iota \in I)>o\right)$.

[^2]Remark. The assumption on atomicity cannot be omitted in the assumptions of the assertion 3.2. If, namely, $\mathfrak{P}(G)$ is a complete upper semi-lattice, then it possesses the largest element and from 2.8 it follows that G^{\prime} is atomic.

Definition 3.1. Let $M \cong G$. Let us put $a \varrho b$ for $a, b \in M$ if there exist an integer n and $x_{i} \in M, z_{i} \in G$ for $1 \leqq i \leqq n$ such that $z_{i} \leqq x_{i}, z_{i} \leqq x_{i+1}$, where $x_{1}=a$, $x_{n+1}=b$. The relation ϱ is an equivalence. The decomposition on the set M corresponding to this equivalence will be called the ϱ-decomposition on the set M. If G is an upper semi-lattice and card $M<\aleph_{0}$, the set $\varrho(M)$ will stand for the set $\bigcup\{\bigvee m(m \in R)\}(R \in \mathscr{R})$, where \mathscr{R} stands for the system of all classes of the ϱ-decomposition on M. (For $M=\emptyset$ we have $\varrho(\emptyset)=\emptyset)$. For an integer n we define recurrently $\varrho_{n}(M)=\varrho\left(\varrho_{n-1}(M)\right)$, where $\varrho_{0}(M)=M$.
3.3. Let G be an upper semi-lattice; $N_{1}, N_{2} \in \mathfrak{N}(G)$, card $N_{1}+\operatorname{card} N_{2}<\aleph_{0}$. Then there exists a non-negative integer l such that $\varrho_{l}\left(N_{1} \cup N_{2}\right)=\inf \left(N_{1}, N_{2}\right)$.
Proof. Put $M=N_{1} \cup N_{2}$. In the case that the set $\varrho_{k}(M)$ fails to have the property (h) for a nonnegative integer k, then we have card $\varrho_{k}(M)>\operatorname{card} \varrho_{k+1}(M)$. Hence, from this it follows that a nonnegative integer l exists such that $\varrho_{l}(M)$ has the property (h). From 2.6 it follows that $\varrho_{l}(M) \in \mathfrak{R}(G), \varrho_{l}(M) \leqq N_{1}, \varrho_{l}(M) \leqq N_{2}$.

Let $N \in \mathfrak{N}(G), N \leqq N_{1}, N \leqq N_{2}, r \in \varrho_{l}(M)$. Let us put for a nonnegative integer n, $\varrho_{n}(M) \cap \mathrm{A}(r)=M_{n}$. For any $x \in M_{n}(n$ nonnegative integer), $y \in N$ exists such that $x \leqq y$. For, if this were not the case, then the least nonnegative integer m existed such that this assertion would fails to hold. Since $N \leqq N_{1}, N \leqq N_{2}$, we have $m>0$. Let $x \in M_{m}$. Then $x=\bigvee t\left(t \in T_{x}\right)$ where T_{x} is a class of the ϱ-decomposition of the set $\varrho_{m-1}(M)$ which is also a class of the ϱ-decomposition of the set M_{m-1}. According to the assumption, for any $t \in T_{x}$, there exists, notwithstanding, $y_{t} \in N$ such that $y_{t} \geqq t$. Evidently for $t, t^{\prime} \in T_{x}$ we have $y_{t}=y_{t^{\prime}}$. Thus, $y_{t} \geqq x$ for any $t \in T_{x}$ which is a contradiction.

Thus, $x_{0} \in N$ exists such that $x_{0} \geqq r$. Consequently $N \leqq \varrho_{l}(M)$ from which $\varrho_{l}(M)=$ $=\inf \left(N_{1}, N_{2}\right)$ follows.
3.4. Let $M_{1}, M_{2} \subseteq G$ have the property (h) in G and let T be a class of the ϱ-decomposition of the set $M_{1} \cup M_{2}$. Then card $T \leqq \mathrm{r}(G)+1$.

Proof. Let $t_{0} \in T$. For $t \in T$ there exists an integer $n>0$ such that we have $t_{i} \in T$, $x_{i} \in G$ for $1 \leqq i \leqq n$ and $x_{i} \leqq t_{i-1}, x_{i} \leqq t_{i}$, where $t_{n}=t$. Let us denote $\mathrm{d}(t)$ such a least integer n for $t \neq t_{0}$, and for $t=t_{0}$ let us put $\mathrm{d}(t)=0$.

Let $t \in T-\left(t_{0}\right)$. Then the set $\left\{t^{\prime} \mid t^{\prime} \in T, \mathrm{~d}\left(t^{\prime}\right)=\mathrm{d}(t)-1, g \in G\right.$ exists such that $\left.g \leqq t^{\prime}, g \leqq t\right\}$ is nonempty. Let us choose some element $\mathrm{a}(t)$ from this set. The set $\{g \mid g \in G, g \leqq \mathrm{a}(t), g \leqq t\}$ is nonempty and let us choose some element $\mathrm{b}(t)\left(=\mathrm{b}_{a}(t)\right)$ from this set and put $B=\mathrm{b}^{1}\left(T-\left(t_{0}\right)\right)\left(=\left\{\mathrm{b}(x) \mid x \in T-\left(t_{0}\right)\right\}\right)$.

Put $\varphi\left(t_{1}, t_{2}\right)=1$ for $t_{1}, t_{2} \in M_{1} \cup M_{2}$ if $t_{1}, t_{2} \in M_{1}$ or $t_{1}, t_{2} \in M_{2}, \varphi\left(t_{1}, t_{2}\right)=-1$ in the opposite case.

Since the sets M_{1}, M_{2} have the property (h) in G we have $\{y \mid y \geqq \mathrm{~b}(t)\} \cap T=$ $=\{\mathrm{a}(t), t\}$ for $t \in T-\left(t_{0}\right)$, and $\varphi(\mathrm{a}(t), t)=-1$. Hence, it follows that for $\mathrm{a}(t) \neq t_{0}$ we have $\varphi(a[\mathrm{a}(t)], t)=1$; consequently $\mathrm{b}[\mathrm{a}(t)] \neq \mathrm{b}(t)$, because $\mathrm{a}[\mathrm{a}(t)] \neq t$. Thus, \mathbf{b} is a one-to-one mapping of the set $T-\left(t_{0}\right)$ on B.

If there existed different elements $t_{1}, t_{2} \in T-\left(t_{0}\right)$ and $g \in G$ such that $g \leqq \mathrm{~b}\left(t_{1}\right)$, $g \leqq \mathrm{~b}\left(t_{2}\right)$, then we should have $g \leqq t_{1}, g \leqq t_{2}, g \leqq \mathrm{a}\left(t_{1}\right), g \leqq \mathrm{a}\left(t_{2}\right)$ from whence $\varphi\left(t_{1}, t_{2}\right)=-1$. Since $\varphi\left(\mathrm{a}\left(t_{1}\right), t_{1}\right)=\varphi\left(\mathrm{a}\left(t_{2}\right), t_{2}\right)=-1$, we have $\varphi\left(\mathrm{a}\left(t_{2}\right), t_{1}\right)=$ $=\varphi\left(\mathrm{a}\left(t_{1}\right), t_{2}\right)=1$; from this $t_{1}=\mathrm{a}\left(t_{2}\right), t_{2}=\mathrm{a}\left(t_{1}\right)$ follows. Thus $t_{1}=\mathrm{a}\left[a\left(t_{1}\right)\right]$ which is a contradiction. Thus, the set B has the property (h) and consequently card $B \leqq \mathrm{r}(G)$; from this, furthermore, the inequality card $T \leqq \mathrm{r}(G)+1$ follows.

4. SYSTEM OF LAYERS $\mathfrak{P}(G)$ FOR A DISTRIBUTIVE LATTICE G^{\prime}

In this Section $G^{\prime 3}$) is a distributive lattice.
4.1. Let $N \in \mathfrak{R}(G), a, b \in N$. Then for $c \leqq a \vee b, c \in N$ we have either $c=a$ or $c=b$.

Proof. If $a \neq c \neq b$, then $a \wedge c=b \wedge c=o$. Thus $c=c \wedge(a \vee b)=$ $=(c \wedge a) \vee(c \wedge b)=o$, which is a contradiction.
4.2. Let $N_{1} \in \mathfrak{M}(G)$. Then, the following assertions are equivalent:
(A) $N_{2} \in \mathfrak{N}(G), N_{2} \ll N_{1}$,
(B) $N_{2}=\left(N_{1}-\{a, b\}\right) \cup(a \vee b)$ where $a, b \in N_{1}, a \neq b$ or $N_{2}=\left(N_{1}-(c)\right) \cup$ $\cup(d)$ where $d \in G, d \gg c, c \in N_{1}$ and $(c) \in \mathfrak{N}(\mathrm{A}(d))$.
Proof. I. Let (B) be valid. If $N_{2}=\left(N_{1}-(c)\right) \cup(d)$, where $d \in G, d \gg c, c \in N_{1}$, $(c) \in \mathfrak{P}(\mathrm{A}(d))$, then $\mathrm{A}(d) \cap N_{1}=(c)$ and for $x \in G-N_{1}, x<d$ we have $\mathrm{A}(x) \cap$ $\cap N_{1}=\emptyset$. According to 2.2 we have $\mathrm{A}(x) \cap N_{1} \notin \mathfrak{N}(\mathrm{~A}(x))$ and from $2.11 N_{2} \in \mathfrak{N}(G)$, $N_{2} \ll N_{1}$ follows.

Let us suppose that $N_{2}=\left(N_{1}-\{a, b\}\right) \cup\left(x_{0}\right)$ where $a, b \in N_{1}, a \neq b, x_{0}=$ $=a \vee b$. Since $a \neq b$, we have $x_{0} \in G-N_{1}$. According to 4.1, $\mathrm{A}\left(x_{0}\right) \cap N_{1}=$ $=\{a, b\}$. If there exists $c \in \mathrm{~A}\left(x_{0}\right)$ such that the set $\{a, b, c\}$ has the property (h) in the set $\mathrm{A}\left(x_{0}\right)$, then it has the property (h) in the set G as well, and by $2.1, N \in \mathfrak{N}(G)$, $N \supseteq\{a, b, c\}$ exists. According to 4.1 we have $c=a$ or $c=b$. Thus, $\mathrm{A}\left(x_{0}\right) \cap N_{1} \in$ $\in \mathfrak{P}\left(\mathrm{A}\left(x_{0}\right)\right)$.

Let $x \in G-N_{1}, x<x_{0}$. Then we have $\mathrm{A}(x) \cap N_{1} \cong \mathrm{~A}\left(x_{0}\right) \cap N_{1}=\{a, b\}$. Having $\mathrm{A}(x) \cap N_{1}=\emptyset$, then, by 2.2, $\mathrm{A}(x) \cap N_{1} \notin \mathfrak{P}(\mathrm{~A}(x))$. If $\mathrm{A}(x) \cap N_{1}=\{a, b\}$, then $x_{0}=a \vee b \leqq x$ which is a contradiction with the supposition. If $\mathrm{A}(x) \cap N_{1}=$ $=(a)$, then $x=x_{0} \wedge x=(a \vee b) \wedge x=(a \wedge x) \vee(b \wedge x)=a \vee(b \wedge x)$. In the case of validity of $b \wedge x=o$ we would have $x=a \in N_{1}$, which is a contradiction with the assumption. Consequently $b \wedge x>o$. As $a \wedge b=o$, the set $\{a, b \wedge x\} \cong$
$\subseteq \mathrm{A}(x)$ is two-element and has the property (h) in $\mathrm{A}(x)$. Thus, $(a) \notin \mathfrak{N}(\mathrm{A}(x))$. If $\mathrm{A}(x) \cap N_{1}=(b)$, then it can be shown, in the same way, that $(b) \notin \mathfrak{P}(\mathrm{A}(x))$. Consequently $\mathrm{A}(x) \cap N_{1} \notin \mathfrak{N}(\mathrm{~A}(x))$.
The assertion (A) follows from 2.11.
II. Let (A) hold. By $2.11 x_{0} \in G-N_{1}$ exists such that $N_{2}=\left(N_{1}-\mathrm{A}\left(x_{0}\right)\right) \cup\left(x_{0}\right)$. If $\mathrm{A}\left(x_{0}\right) \cap N_{1} \supseteq\{a, b\}$, where $a \neq b$, then according to I we have $N=\left(N_{1}-\right.$ $-\{a, b\}) \cup(a \vee b) \in \mathfrak{M}(G), N \ll N_{1}$. Since $a \vee b \leqq x_{0}$, then $N \geqq N_{2}$. Thus $N_{2}=N$.

If $\mathrm{A}\left(x_{0}\right) \cap N_{1}=(c)$, then by $2.11(c) \in \mathfrak{N}\left(\mathrm{A}\left(x_{0}\right)\right)$. For $x \in G, c<x<x_{0}$ we have according to $2.11,(c)=\mathrm{A}(x) \cap N_{1} \notin \mathfrak{N}(\mathrm{~A}(x))$; thus $y \in \mathrm{~A}(x)$ exists such that $y \wedge c=$ $=o$. As $y \in \mathrm{~A}\left(x_{0}\right)$ is valid, too, $(c) \notin \mathfrak{P}\left(\mathrm{A}\left(x_{0}\right)\right)$ which is a contradiction. Thus $x_{0} \gg c$.

Since $N_{2} \leqq N_{1}$, we have, according to $2.5, \mathrm{~A}\left(x_{0}\right) \cap N_{1}=\emptyset$, consequently (B) holds.
4.3. For $1 \leqq i \leqq 4$ let be $N_{i} \in \mathfrak{M}(G)$, $\sup \left(N_{2}, N_{3}\right)=N_{1}$, $\inf \left(N_{2}, N_{3}\right)=N_{4}$, $N_{1} \gg N_{2}$. Then $N_{3} \gg N_{4}$.

Proof. I. Let $N_{2}=\left(N_{1}-\{a, b\}\right) \cup(c)$ where $a, b \in N_{1}, a \neq b, c=a \vee b$. Since $N_{1} \geqq N_{3}, d, e \in N_{3}$ exist such that $d \geqq a, e \geqq b$. If $d=e$, then $c \leqq d$, and consequently, $N_{2} \geqq N_{3}$, which is impossible. Thus $d \neq e$.

Let us put $N=\left(N_{3}-\{d, e\}\right) \cup(d \vee e)$. According to 4.2 we have $N \in \mathfrak{R}(G)$. $N \ll N_{3}$. We have $c \wedge(d \vee e)=(c \wedge d) \vee(c \wedge e) \geqq a \vee b=c$, thus $c \leqq d \vee e$, From this it follows that $N \leqq N_{2}$.
II. Let $N_{2}=\left(N_{1}-(c)\right) \cup(d)$, where $d \in G, d \gg c, c \in N_{1}$ and $(c) \in \mathfrak{M}(\mathrm{A}(d))$. Since $N_{3} \leqq N_{1}, e \in N_{3}$ exists such that $e \geqq c$. If $f \in \mathrm{~A}(d \vee e) f \wedge e=o$ exists, we have from $f \vee d \leqq d \vee e, f \vee d=(f \vee d) \wedge(d \vee e)=(f \wedge d) \vee d \vee(f \wedge e) \vee$ $\vee(d \wedge e)=d$; thus $f \leqq d$. Since $(c) \in \mathfrak{R}(\mathrm{A}(d))$, there exists, according to $2.3, g^{\prime} \in$ $\in \mathrm{A}(d), g^{\prime} \neq o$ such that $g^{\prime} \leqq c, g^{\prime} \leqq f$. Then $g^{\prime} \leqq e$ as well, which is a contradiction to $f \wedge e=o$. Consequently $(e) \in \mathfrak{R}(\mathrm{A}(d \vee e))$.

Let $x \in G, e \leqq x \leqq d \vee e$. Then $c \leqq d \wedge e \leqq d \wedge x \leqq d \wedge(d \vee e)=d$. As $d \gg c$, we have either $c=d \wedge x$ or $d=d \wedge x$. If $c=d \wedge x$, then $e=c \vee e=$ $=(d \wedge x) \vee e=(e \vee d) \wedge(e \vee x)=(e \vee d) \wedge x=x$. If $d=d \wedge x$, we have $x \geqq d$; thus $x \geqq d \vee e$, from whence $x=d \vee e$ follows. If $e=d \vee e$, then $d \leqq e$ and consequently $N_{2} \geqq N_{3}$. Then $\sup \left(N_{2}, N_{3}\right)=N_{2} \neq N_{1}$ which is a contradiction. Thus $e<d \vee e$, and consequently $e \ll d \vee e$.

According to 4.2, $N=\left(N_{3}-(e)\right) \cup(e \vee d) \in \mathfrak{R}(G), N \ll N_{3}$. Evidently we have $N \leqq N_{2}$, too.
III. By 4.2, I and II, $N \in \mathfrak{M}(G), N \ll N_{3}$ and $N \leqq N_{2}$ exists. From this $N \leqq N_{4}$ follows and consequently $N=N_{4}$ or $N_{4}=N_{3}$. If $N_{4}=N_{3}$, then $N_{2} \geqq N_{3}$, and consequently $N_{1}=N_{2}$, which is impossible. Thus $N_{4} \ll N_{3}$.

The assertion is proved.
4.4. Let $M=\{m \mid m \in G, m$ not being the largest element in $G, m \wedge x>o$ for every element $x \in G\}$. The following assertions are equivalent:
(A) For any set $N \in \mathfrak{M}(G)$ which is not the least element in $\mathfrak{M}(G)$, there exists $N^{\prime} \in \mathfrak{N}(G)$ such that $N^{\prime} \ll N$.
(B) For any element $m \in M, m^{\prime} \in G$ exists such that $m^{\prime} \gg m$.

Proof. I. Let (A) hold and let $m \in M$. Then $(m) \in \mathfrak{M}(G)$ and, according to 2.7, (m) is not the least element in $\mathfrak{N}(G)$. For this reason $N^{\prime} \in \mathfrak{N}(G), N^{\prime} \ll(m)$ exists. From 4.2 it follows that $N^{\prime}=\left(m^{\prime}\right)$, where $m^{\prime} \in G, m^{\prime} \gg m$.
II. Let (B) hold and let $N \in \mathfrak{P}(G), N$ not being the least element in $\mathfrak{P}(G)$. If card $N \geqq$ $\geqq 2$, then by $4.2, N^{\prime} \in \mathfrak{P}(G), N^{\prime} \ll N$ exist. If card $N=1$, then $N=(m)$, where $m \in M$, according to 2.7. Thus $m^{\prime} \in G, m^{\prime} \gg m$ exists. From 4.2 it follows that $\left(m^{\prime}\right) \in$ $\in \mathfrak{N}(G),\left(m^{\prime}\right) \ll(m)$.
4.5. For $N_{1}, N_{2} \in \mathfrak{N}(G)$, card $N_{1}+\operatorname{card} N_{2}<\aleph_{0}$ we have $\varrho\left(N_{1} \cup N_{2}\right) \in \mathfrak{N}(G)$, $\varrho\left(N_{1} \cup N_{2}\right)=\inf \left(N_{1}, N_{2}\right)$. We have $\bigvee k(k \in K) \neq \bigvee k^{\prime}\left(k^{\prime} \in K^{\prime}\right)$ for different classes K, K^{\prime} of the ϱ-decomposition of the set $N_{1} \cup N_{2}$.

Proof. If K, K^{\prime} are two different classes of the ϱ-decomposition of the set $N_{1} \cup N_{2}$, then $\bigvee k(k \in K) \wedge \bigvee k^{\prime}\left(k^{\prime} \in K^{\prime}\right)=o$, because we have $k \wedge k^{\prime}=o$ for $k \in K, k^{\prime} \in K^{\prime}$. Consequently, $\varrho\left(N_{1} \cup N_{2}\right)$ has the property (h) in G and the first assertion follows from 3.3.
4.6. Let $\quad N_{i} \in \mathfrak{P}(G)$ for $1 \leqq i \leqq 4, \quad N_{1}=\sup \left(N_{2}, N_{3}\right), \quad N_{4}=\inf \left(N_{2}, N_{3}\right)$, card $N_{2}+$ card $N_{3}<\aleph_{0}$. Then we have $v_{1}=\nu_{2} \wedge v_{3}, v_{4}=\nu_{2} \vee v_{3}$, where $v_{i}=$ $=\bigvee n\left(n \in N_{i}\right)$ for $1 \leqq i \leqq 4$.
Proof. From 3.1 $v_{1}=v_{2} \wedge v_{3}$ follows. Given $n_{2} \in N_{2}, n_{4} \in N_{4}$ exist such that $n_{2} \leqq n_{4}$. From this it follows that $v_{4} \geqq v_{2}$. In the same way, it turns out that $v_{4} \geqq v_{3}$. From 2.6 it follows that $\left(v_{2} \vee v_{3}\right) \in \mathfrak{R}(G)$ and $\left(v_{2} \vee v_{3}\right) \leqq N_{2},\left(v_{2} \vee v_{3}\right) \leqq N_{3}$. Thus $\left(v_{2} \vee v_{3}\right) \leqq N_{4}$ from which $v_{2} \vee v_{3} \geqq v_{4}$ follows. Consequently $v_{4}=v_{2} \vee v_{3}$.
 lattice if and only if $\mathrm{r}(G) \leqq 3$.

Proof. I. Let $\mathrm{r}(G) \leqq 2$. According to 3.1 and 3.3, $\mathfrak{N}(G)$ is a lattice. Let $A, B, C \in$ $\in \mathfrak{N}(G), S_{1}=\sup \{A, \inf (B, C)\}, \quad S_{2}=\inf \{\sup (A, B), \sup (A, C)\}$. For proving

According to 4.5 we have $S_{2}=\varrho(\sup (A, B) \cup \sup (A, C))$. Let $n \in S_{1}$. Then, by 3.1 , we have $n=a \wedge d$, where $a \in A, d \in \inf (B, C)$. According to $4.5, d=$ $=\bigvee t(t \in T)$, where T is a class of the ϱ-decomposition of the set $B \cup C$. By 3.4 we have card $T \leqq 3$. From 2.3 it follows that $T \cap B \neq \emptyset \neq T \cap C$. Thus we can assume that $T=\left\{b_{1}, b_{2}, c\right\}$, where $b_{1}, b_{2} \in B$ and $c \in C$. Consequently $n=\left(a \wedge b_{1}\right) \vee$ $\vee\left(a \wedge b_{2}\right) \vee(a \wedge c)>o$.
a) Let $a \wedge b_{1}=a \wedge b_{2}=o$. Then $n=a \wedge c \in \sup (A, C)$, according to 3.1. Consequently, $n^{\prime} \in S_{2}$ exists such that $n^{\prime} \geqq n$.
b) Let us assume that $a \wedge b_{1}>o$.
α Let $a \wedge c=o$. If $a \wedge b_{1} \geqq a \wedge b_{2}$, then $n=a \wedge b_{1} \in \sup (A, B)$ according to 3.1. Consequently, $n^{\prime} \in S_{2}$ exists such that $n^{\prime} \geqq n$. If $a \wedge b_{1}$ non $\geqq a \wedge b_{2}$, then $a \wedge b_{2}>o$ and $\left(a \wedge b_{1}\right) \wedge\left(a \wedge b_{2}\right)=o$, because $b_{1} \neq b_{2}$ and consequently, $b_{1} \wedge b_{2}=o$. By 2.3, $a^{\prime} \in A$ exists such that $a^{\prime} \wedge c>o$. Hence it follows that the set $\left\{a \wedge b_{1}, a \wedge b_{2}, a^{\prime} \wedge c\right\} \subseteq G$ is a three element set and possesses the property (h) in G which is a contradiction.
β Let $a \wedge c>o$. Since b_{1} and c belong to the same class $T=\left\{b_{1}, b_{2}, c\right\}$ of the ϱ-decomposition of the set $B \cup C$ and $b_{1}=b_{2}$ or $b_{1} \wedge b_{2}=o$, we have $b_{1} \wedge c>o$. If $a \wedge b_{1} \wedge c=o$, then according to 2,3, there exists $a^{\prime} \in A$ such that $a^{\prime} \wedge b_{1} \wedge c>$ $>o$. Evidently $a \neq a^{\prime}$, thus $a \wedge a^{\prime}=o$. Then the set $\left\{a \wedge b_{1}, a \wedge c, a^{\prime} \wedge c\right\} \subseteq G$ is a three element one and has the property (h) in G which is a contradiction. Thus $a \wedge b_{1} \wedge c>o$. From this it follows that $a \wedge b_{1}, a \wedge c$ belong to the same class of the ϱ-decomposition of the set $\sup (A, B) \cup \sup (A, C)$, because by 3.1 we have $a \wedge b_{1} \in \sup (A, B), a \wedge c \in \sup (A, C)$. Consequently, $n^{\prime} \in S_{2}$ exists such that $n^{\prime} \geqq a \wedge b_{1}, n^{\prime} \geqq a \wedge c$.

If $a \wedge b_{2}>o$, then it can be shown in the same way that $n^{\prime \prime} \in S_{2}$ exists such that $n^{\prime \prime} \geqq a \wedge b_{2}, n^{\prime \prime} \geqq a \wedge c$. Since $n^{\prime} \geqq a \wedge c, n^{\prime \prime} \geqq a \wedge c$, we have $n^{\prime}=n^{\prime \prime}$; thus $n \leqq n^{\prime}$.

If $a \wedge b_{2}=o$, then $n=\left(a \wedge b_{1}\right) \vee(a \wedge c) \leqq n^{\prime}$.
In this way it has been shown that $S_{1} \geqq S_{2}$.
II. Let $\mathrm{r}(G) \leqq 3$. Let us assume that $N_{i} \in \mathfrak{R}(G), 1 \leqq i \leqq 5$ exist such that $N_{1} \succ N_{3} \succ N_{4} \succ N_{5}, \sup \left(N_{2}, N_{3}\right)=\sup \left(N_{2}, N_{4}\right)=N_{1}, \inf \left(N_{2}, N_{3}\right)=\inf \left(N_{2}, N_{4}\right)=$ $=N_{5}$. Let us put $N_{i}=\left\{n_{1}^{i}, n_{2}^{i}, n_{3}^{i}\right\}$, where $n_{1}^{i}, n_{2}^{i}, n_{3}^{i} \in G, 1 \leqq i \leqq 5$. We can suppose that $n_{j}^{1} \leqq n_{j}^{2} \leqq n_{j}^{5}, n_{j}^{1} \leqq n_{j}^{3} \leqq n_{j}^{4} \leqq n_{j}^{5}$ for $1 \leqq j \leqq 3$. Let us put $\sigma_{i}=\bigvee_{j=1}^{3} n_{j}^{i}$ for $1 \leqq i \leqq 5$. According to 4.6 we have $\sigma_{2} \wedge \sigma_{3}=\sigma_{2} \wedge \sigma_{4}=\sigma_{1}$, $\sigma_{2} \vee \sigma_{3}=\sigma_{2} \vee \sigma_{4}=\sigma_{5}$. Furthermore $\sigma_{4}=\sigma_{4} \wedge \sigma_{5}=\sigma_{4} \wedge\left(\sigma_{2} \vee \sigma_{3}\right)=\left(\sigma_{4} \wedge\right.$ $\left.\wedge \sigma_{2}\right) \vee\left(\sigma_{4} \wedge \sigma_{3}\right)=\sigma_{1} \vee \sigma_{3}=\sigma_{3}$. Thus $\sigma_{4}=\sigma_{3}$.

Let card $N_{4} \geqq 2$. Since $N_{3} \succ N_{4}$, we can suppose that $n_{1}^{3}<n_{1}^{4}, n_{1}^{4} \neq n_{2}^{4}$. If $n_{1}^{4} \neq n_{3}^{4}$, we have $n_{1}^{3}=n_{1}^{4} \wedge\left(n_{1}^{3} \vee n_{2}^{4} \vee n_{3}^{4}\right)=n_{1}^{4} \wedge \sigma_{4}=n_{1}^{4}$, which is a contradiction. Thus $n_{1}^{4}=n_{3}^{4}$. From this $n_{1}^{5}=n_{3}^{5}$ follows. If $n_{1}^{3}=n_{3}^{3}$, then $n_{1}^{3}=n_{1}^{4} \wedge\left(n_{1}^{3} \vee\right.$ $\left.\vee n_{3}^{3} \vee n_{2}^{4}\right)=n_{1}^{4} \wedge \sigma_{4}=n_{1}^{4}$, which is a contradiction. Consequently $n_{1}^{3} \neq n_{3}^{3}$. According to $3.1, n_{1}^{1}=n_{1}^{2} \wedge n_{1}^{4}$ and $n_{3}^{1}=n_{3}^{2} \wedge n_{3}^{4}$. If it were $n_{1}^{2}=n_{3}^{2}$, then $n_{1}^{1}=$ $=n_{3}^{2} \wedge n_{3}^{4}=n_{3}^{1}$, which is impossible because $n_{1}^{1} \leqq n_{1}^{3}, n_{3}^{1} \leqq n_{3}^{3}$ and $n_{1}^{3} \neq n_{3}^{3}$. Consequently $n_{1}^{2} \neq n_{3}^{2}$. Since $n_{1}^{4}=n_{3}^{4} \neq n_{2}^{4}$, we get n_{1}^{3} non $\geqq n_{2}^{1}, n_{3}^{3}$ non $\geqq n_{2}^{1}$ and $n_{1}^{3} \wedge n_{3}^{3}=n_{3}^{3} \wedge n_{2}^{3}=o$. According to $3.1, n_{k}^{2} \wedge n_{l}^{3}=o$ or $n_{k}^{2} \wedge n_{l}^{3} \in N_{1}$ for $1 \leqq k, l \leqq 3$. Thus, $n_{1}^{3} \wedge n_{3}^{3}=n_{1}^{3} \wedge n_{2}^{3}=n_{2}^{3} \wedge n_{3}^{3}=n_{1}^{2} \wedge n_{3}^{2}=n_{1}^{3} \wedge n_{3}^{2}=n_{3}^{3} \wedge$ $\wedge n_{1}^{2}=o$ and $n_{2}^{3} \wedge n_{i}^{2}>o$ holds if and only if $n_{i}^{2}=n_{2}^{2}(i=1,2,3)$, and $n_{j}^{3} \wedge$
$\wedge n_{2}^{2}>o$ if and only if $n_{2}^{2}=n_{j}^{2}(j=1,3)$. From this it is easy to see that the sets $\left\{n_{1}^{2}, n_{1}^{3}\right\}$ and $\left\{n_{3}^{2}, n_{3}^{3}\right\}$ lie in different classes T_{1} and T_{3} of the ϱ-decomposition of the set $N_{2} \cup N_{3}$. According to $4.5, n_{1}^{5}=\bigvee t\left(t \in T_{1}\right) \neq \mathrm{V} t\left(t \in T_{3}\right)=n_{3}^{5}$, which is a contradiction.

Consequently, card $N_{4}=1$, so that $n_{1}^{4}=n_{2}^{4}=n_{3}^{4}=\sigma_{4}, n_{1}^{5}=n_{2}^{5}=n_{3}^{5}=\sigma_{5}$. Since $\sigma_{4}=\sigma_{3}$, we have card $N_{3} \geqq 2$. We can suppose that $n_{2}^{3} \neq n_{1}^{3} \neq n_{3}^{3}$. Then $n_{2}^{1} \neq n_{1}^{1} \neq n_{3}^{1}$ is valid. According to $3.1, n_{1}^{2} \wedge \sigma_{4}=n_{1}^{1}, n_{2}^{2} \wedge \sigma_{4}=n_{2}^{1}$ and $n_{3}^{2} \wedge$ $\wedge \sigma_{4}=n_{3}^{1}$. Thus $n_{2}^{2} \neq n_{1}^{2} \neq n_{3}^{2}$. Consequently $n_{k}^{2} \wedge n_{l}^{3}=o$ or $n_{k}^{2} \wedge n_{l}^{3} \in N_{1}$ holds for $1 \leqq k, 1 \leqq 3$ by 3.1. From this it is easy to see that the sets $\left\{n_{1}^{2}, n_{1}^{3}\right\}$ and $\left\{n_{2}^{2}, n_{2}^{3}\right\}$ lie in different classes T_{1} and T_{2} of the ϱ-decomposition of the set $N_{2} \cup N_{3}$. According to $4.5, n_{1}^{5}=\bigvee t\left(t \in T_{1}\right) \neq \mathrm{V} t\left(t \in T_{2}\right)=n_{2}^{5}$ which is a contradiction.

From this, from 3.1 and 3.3 , it follows that $\mathfrak{N}(G)$ is a modular lattice.
III. Let $\mathrm{r}(G) \geqq 3$. Then there exists a set $N_{1} \in \mathfrak{N}(G)$ which contains mutually different elements a, b, c. Let us put $N_{2}=\left(N_{1}-\{a, b\}\right) \cup(a \vee b), N_{3}=\left(N_{1}-\right.$ $-\{a, c\}) \cup(a \vee c), N_{4}=\left(N_{1}-\{b, c\}\right) \cup(b \vee c), N_{5}=\left(N_{4}-\{a, b \vee c\}\right) \cup(a \vee$ $\vee b \vee c$). By 4.2, $N_{i} \in \mathfrak{P}(G)$ for $2 \leqq i \leqq 5$. Evidently, $N_{5} \leqq N_{2}, N_{5} \leqq N_{3}$. Let $N \leqq N_{2}, N \leqq N_{3}$. Then $n_{1}, n_{2} \in N$ exist such that $n_{1} \geqq a \vee b, n_{2} \geqq a \vee c$. Since $n_{1} \geqq a, n_{2} \geqq a$, we have $n_{1}=n_{2}$, from which $n_{1} \geqq a \vee b \vee c$ follows; consequently, $N \leqq N_{5}$ which means that $N_{5}=\inf \left(N_{2}, N_{3}\right)$. From 3.1 we get that sup $\left(N_{2}, N_{4}\right)=$ $=\sup \left(N_{3}, N_{4}\right)=N_{1}$. Since $N_{4} \geqq N_{5}$, we have sup $\left\{N_{4}, \inf \left(N_{2}, N_{3}\right)\right\}=N_{4}$ whereas $\inf \left\{\sup \left(N_{2}, N_{4}\right)\right.$, $\left.\sup \left(N_{3}, N_{4}\right)\right\}=N_{1}$. Consequently, $\mathfrak{N}(G)$ fails to be a distributive lattice.
IV. Let $\mathrm{r}(G) \geqq$. Then there exists a set $N_{1} \in \mathfrak{N}(G)$ which contains mutually different elements a, b, c, d. Let us put $N_{2}=\left(N_{1}-\{a, b\}\right) \cup(a \vee b), N_{3}=$ $=\left(N_{2}-\{c, d\}\right) \cup(c \vee d), N_{4}=\left(N_{1}-\{a, c\}\right) \cup(a \vee c), N_{5}=\left(N_{4}-\{b, d\}\right) \cup$ $\cup(b \vee d), N_{6}=\left(N_{3}-\{a \vee b, c \vee d\}\right) \cup(a \vee b \vee c \vee d)=\left(N_{1}-\{a, b, c, d\}\right) \cup$ $(a \vee b \vee c \vee d)$. By 4.2, $N_{i} \in \mathfrak{N}(G)$ for $2 \leqq i \leqq 6$, and evidently, $N_{6} \leqq N_{2}, N_{6} \leqq$ $\leqq N_{5}$. Let $N \leqq N_{2}, N \leqq N_{5}$. Then $n_{1}, n_{2}, n_{3} \in N$ exist such that $n_{1} \geqq a \vee b$, $n_{2} \geqq a \vee c, n_{3} \geqq b \vee d$. Since $n_{1} \geqq a, n_{1} \geqq b, n_{2} \geqq a, n_{3} \geqq b$, we have $n_{1}=$ $=n_{2}=n_{3}$, from whence $n_{1} \geqq a \vee b \vee c \vee d$ follows; consequently, $N \leqq N_{6}$, which means that $N_{6}=\inf \left(N_{2}, N_{5}\right)$. According to 3.1 , $\sup \left(N_{3}, N_{5}\right)=N_{1}$. We have $N_{1} \geqq N_{2} \succ N_{3} \geqq N_{6}$. As sup $\left\{N_{3}, \inf \left(N_{2}, N_{5}\right)\right\}=N_{3} \neq N_{2}=\inf \left\{\sup \left(N_{3}\right.\right.$, $\left.\left.N_{5}\right), N_{2}\right\}, \mathfrak{P}(G)$ is not a modular lattice.

Thus the assertion is proved.

Remark. If G is the set of all non-void subsets of a set $P \neq \emptyset$ ordered by means of inclusion (see example 2.1), then the assertion 4.7 is known and can be proved without difficulties.

References

[1] Birkhoff G.: Lattice Theory, New York, 1948, rev. ed.
[2] Čech E.: Topologické prostory, Čas. pro pěst. mat. a fys. 66 (1937), D 225-D 264.
[3] Skula L.: Ordered set of classes of compactifications, Czech. Math. Journal, (in print).

Author's address: Brno, Janáčkovo nám. 2a, ČSSR (Universita J. E. Purkyně).

[^0]: ${ }^{1}$) The relation \leqq can be introduced in the same way among all subsets of the set G. In this case, however, the relation need not be an ordering but is a quasiordering.

[^1]: ${ }^{2}$) Cech's B-space is a topological space fulfilling the following axioms: $\bar{\emptyset}=\emptyset,(\bar{x})=(x)$, $X \subseteq \bar{X}, X \subseteq Y \Rightarrow \bar{X} \subseteq \bar{Y}$ ([2]).

[^2]: ${ }^{3}$) $G^{\prime}=(o) \oplus G$, where o is some symbol different from all elements of the set G and \oplus denotes Birkhoff's ordinal operation of addition (see [1]).

