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Czechoslovak Mathematical Journal, 19 (94) 1969, Praha 

FOURIER L,-TRANSFORM OF DISTRIBUTIONS 

JAN KUCERA, Praha 

(Received October 9, 1967) 

LAURENT SCHWARTZ [1] has defined Fourier transform #" of elements of the space 
9^' dual to Sf^ the Frechet space of "infinitely differentiable and rapidly decreasing 
functions". He has proved that ^ is an automorphism of 9'. Instead of 9 we define 
a sequence of Hubert spaces L2 => L2 => L̂ 2 ^ • • • ^ «^ ^^^ ^^ш duals L2 cz L2 ̂  с 

00 

cz L2^ с: . . . c= Sf', Then it turns out that (J U^ = Sf' and Fourier transform ^ 

is a unitary automorphism on every L2^, fe = 0, 1, 2, . . . This procedure enables us 
also to define more rich spaces of operators of multiphcation and convolution. 

We make use of the following notation. Symbols Ä", C, L^, L2, are, respectively, 
the n-dimensional Euclidean space, the set of all complex numbers, the space of 
absolutely, and of square integrable functions / : jR" -> C. In Я" we use the inner 
product (x, y) = Yu^jyp '^^y ^ ^"- ßy ^ we consistently denote a multiindex, i.e. an 
element (a^, «2-,..., a„) G K" whose components are non-negative integers. Given 

n n 

a multiindex a = (a^, 0C2,..., a„), then we write for brevity |a| = ^ ocp x'^ = Yl ^У^ 
where x e R\ D« = d^ôxf, '^^^ '"^^ 

By ^ we denote the set of all infinitely differentiable functions f : R^ -^ С with 
compact support. We say that a function f : R^ ~> С has a generalized derivative g 
of order a, if for all cp e 2 we have ^j^nfT>'^(p ax = (—1)''"' ^j^n gcp dx. We denote 
such function g by D7*. If a function / continuous on R" has a continuous (classical) 
derivative dfjdxi on i^" and a function g has a generalized derivative dgjdxi, then/^f 
has the generahzed derivative d{fg)\dx^ = {^fj^^i) Q + fi^ül^^i)-

We start with Fourier transform defined for functions from L^ as follows 

i^f) iO = f / W exp ( -2Я/Х, <̂) dx , / 6 Li . 

From Plancherel's theory it is well-known that if we take a sequence of functions 
fi^eL^n L2, fc = 1, 2 , . . . , converging to f eL2 in the topology of L2, then there 
exists a unique hmit F e L2 (in the topology of L2) of the sequence ^fj^, /<; = 1, 2 , . . . , 
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and this limit is independent of the choice of functions /&, fc = 1, 2 , . . . If we denote 
f =z #J j then J^ : L2 -> L2 is a unitary automorphism. Let us recall the formulae: 

(1) / , BJ eL2=> ^(DJ) = (Inixf . ^f, 

/ , xJeL2 =^ ^{{-InixYf) = Ü«#/ . 

The mapping #" and its inverse ^~^ are related by the identity 

(2) ^-'f^WJ, feL,. 

As Fourier image of a real even, resp. real odd function is a real even, resp. pure 
imaginary odd function, the identity (2) implies that 

(3) i^'f){x)=f{-x), xeR\ feL,; 

hence, the identities 

(4) ^^ .=. J ^ # ' -^ = # ' \ 

where J is the identity operator, are valid on L2. 

Definition 1. For every integer fc ^ 0 we define the linear space L \ as follows 

4 = | / : î " -> C; f x^^lD^/p dx < +00, |a| + Щ й k\. 

n 

' For brevity we introduce the operator D;̂  == (̂  + Z (̂ тп'х̂  + djoXj))^, where 

fe ^ 0 is an integer. (Performing the indicated fc-th power we must be careful because 
the operators 2niXj and djdxp j = 1, 2, ..., fi, are not commutative.) Evidently, for 
given / e L \ we have D,^f e L2. 

Let us denote, in any but fixed manner, the addends of the operator D^ by 
2n 

jk AQ, AI , ..., A2„, i.e. Di = X ^J- ^^^ every/, g e Ê2 we define 
j = 0 

[DJ, D,^] = X (Ал ... A,J) (A,, ... A,,̂ ) . 

Then from Holder's inequahty it follows that 

f,gEL\=>[Dj,D,g']eL,, 

This enables us to define an inner product in every L̂ 2' ^ = 1, 2,. . . , by 

(/= g). = [DJ,D,g]dx, IgelH^, 
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which converts L \ , /C = 1, 2,. . . , into Hubert spaces. We denote ||. Ц̂  the norm in L\ 
generated by inner product (., .)fe. It is evident that L2 = L2 => L2 => L2 =з ... and 
that the identity operator J : L \ -> L^, к ^ I is continuous. 

Let us demonstrate the completeness of L\, Take a fundamental sequence f^e L\^ 
m — 1, 2,. . . . Then for each pair of multiindices a, ß, |a| + \ß\ ^ /c, the sequence 
x^ DXi, m = 1,2,... has a hmit/^^ in L2. Take zl > 0 then, using Holder's inequali
ty, we get 

f \x^Lo - Aß\ àx й f \x'Lo - x" D%| dx + f [x" DY^ - / , , | dx ^ 
J!xî<J J!x|<J J\x\<A 

x^Mx 

+ J \x\<A 

\х\<Л 

x" m^ - fj'àx-^ 0 

as m -> 00. Hence/a^î = x /̂̂ o a.e. in R", 

For a multiindex a, |a| ^ /c, cp e ^, we have (using the inner product in L2): 
(/,0, Ф) = lim (Dy,, ф) = ( - l)l«î hm (/,, D » = (-1)'«» (/00, D » . This means 

m-*oo m~*oo 

according to the definition of generalized derivatives that/^o = оУоо- Thus/oo e L2 
and ||X„ - /oollfc -> 0 as m -> 00. 

Theorem 1. Fourier transform ^ : L \ -> L\, /C à 0, integer, is a unitary auto-
morphism. 

Proof. The linearity of ^ is trivial, the one-to-one property of J^ is well known. 
From (1) it follows immediately that ß^L]^ = L\. Thus, it remains to prove only, 
Parseval's equality . 

(5) 

By definition. 

{f,g\ = {3Ff,ê^g\, f,geL\ 

2« 

Let us distinguish 3 cases: 

a) 

b) 

c) 

Ал = 1 ^ 

A^ = 2nixj 

Jk « 
OXj 

' 
^ then Aj^^f = • 

• ^^jJ 

OXj 

^-^{Inixjf) 
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In the case c) the commuting of operators Aŷ  and #" in the term A^^... kjj^g 
produces also the factor ( — 1) so that we need not take this change of signs into 
consideration. Having commuted ^ with all operators Aj ,̂ Aj,̂ _.p •.., A^̂ , we see 
that the operators Inixj and djdxp j = 1,2, ...,n, only have commuted in the 

n 

summation (1 + ^ (iniXj + djdXj)) which does not change the operator D^. 

We have proved the identity 
(6) [D,^f,D,^g-} = [^DJ,ß^D,g-], f,gBL\. 

Further, using ParsevaFs equality for L2-functions, we get 

(#-/, ^g\ = f [D,#-/, D,#-^] ax = 

= Г i^T>J, ê^D,g-\ dx = Г [DJ, D,^] àx = (/, g\ . 

J i?" J 1Î» 

Definition 2. We denote L2^ the dual space of L2 Д = 1, 2 , . . . The norm of elements 
00 

of L2 ^ we denote by ||. ||„; .̂ The elements of \J Lj ' ' will be called distributions. 

Proposition. Assume fe L\'^^, where r = 1 + [i«]. Then f has classical deriva
tives Wf for all a, |a| ̂  fe, which are uniformly continuous on Я". Moreover, if 
\ß\S к - |a| then 

sup(l+47r^H^fi/^|Dy(x)|^||/|U. 
j ceJR" 

Proof. Let us take multiindices a, y, |a| g fc, [y| ^ r. Then according to (l) we 
have J^(D"^y) = (27rî )̂  J^CDy) e L2. Using Holder's inequality we get 

f !#- Dy | d^ = Г !#- Dy | (1 + |̂ |2)(--^)/2 d(J < 
JA" JA" 

Hence ^(p"/) e L^. According to Parseval's equality we have 

[ f(pâx=[ #/F^dê = f Д,̂ ) f ^e^^'^^'^Mxd,^ = 
J R" JR" JR" JR" 

= [ ( [ ^/Ц)^'"^'''^'аЛЩах 

for each (ре У. It is possible only when f{x) = /д„ ^ / ({ ) ê "'**'̂ ^ di? for almost all 
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XER\ AS foralla, |a | й К ^ ( D y ) = {Ini^y # / G L^ we can dijBferentiate / up to the 
/c-th order. The uniform continuity is then evident. 

Take now a multindex ß, \ß\ й к - |а|, and put g = {l •+• 4л^•\x\^'У^^^^ ВУ(х). 
Then we can write 

\g{x)\ = \{^^-^g){x)\ й W^-'gU = f I (^"V)W1(1 + 4n'\x\J'--^"dx й 

й I \^-'g\'(1 + 4n'\x\'ydx\ M (1 + 4ii'\x\'y'dx\ й \\^-'g\\r = 

Corollary. П ^2 = ^ , и ^L = ^ ' - III fact from Proposition it follows that every 
fe>0 fe>0 

/ 6 0 ^ 2 has continuous derivatives of all orders and s^ß{f) = sup \x^ Dy(x) | < oo 
/c>0 xeR^ 

holds for all multiindices a, ß. The system of seminorms ŝ ^̂  defines the topology of ^ . 
Hence the inequalities s^ßif) й \\f\\ia\ + \ß\+nf ^ ^, imply the second assertion of our 
Corollary. 

The relations L^ ZD Ll :=> Ll :=> ... and the evident inequality ||/||^ ^ | | / | | | for 
feL\,k^l^O, imply that L2 c: L2 ^ c= £2^ <= . . . Moreover, for (not necessary 
positive) integers p, q, p 'è g, a n d / G L^ we have \\f\\p ^ ||/||^. 

Let us show that the space ^ is dense in each L2, к integer. Evidently we can assume 
/c < 0. Be given a functional F e (L^)'. As L \ :D L ^ an inclusion (L^)' с (L^)' = L^ 
holds. The prime denotes the dual space. It means that F is a function. Assume that 
for every ф G ^ we have Fcp = 0. It would imply 0 = Fcp = jj^n F(x) (p{x) dx = 0 
for every cp e ^. Hence F ~ 0. Thus, according to Hahn-Banach theorem the 
proposition is proved. As a corollary we see that for each pair of integers fc, Z, /c ^ /̂  
L2 is dense in L2. 

Definition 3. L e t / : i^" -^ С be measurable. Let an integer к ^ 0 and a constant 
Ä > 0 exist such that for each i; G L2 we have vf e L^ and 

f v{x)f{x)dx\uÄ\\vl. 

Then we identify the function / with the distribution Ju„ v{x)f{x) dx. 

Definition 4. Given an integer fc ^ 0, a multiindex a, / G LJ^. Then we define the 
derivative DT" as an element of LJ^~'*' by 

(7) (Dy) i ; = ( - l ) H / ( D « t ; ) , t;GL^2^H. 

The evident inequality ЦвуЦ.^-!«] й \\f\\-k proves the continuity of differentia
tion-operator D'' : L2^ -> LJ'^"'"^'. 

I f / G L J ^ is a function which has a generalized derivative D 7 ' G L 2 ^ ' " ' " ' then this 
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generalized derivative is identical with the distributive derivative introduced by 
Definition 4. 

To show it denote for an instant by J"/the distributive derivative. Then for each 
<p e ^ wc have 

(A J) cp - ( ^ l ) î « l / ( D » == (~-l)i«l Г f{x) D>(x) dx = f cp{x) Wf{x) ax . 
J K" J Я" 

Hence J*/ — Wf = 0 on the linear subspace ^ which is dense in LJ^"'''^ According 
to Hahn-Banach theorem AJ = DT* on LJ^"'"^'. 

Definition 5, Given integers p, q, p ^ q ^ 0. Then we denote by Op^^ a linear space 
of all functions м : Ĵ " -> С for which the mapping v -> uv continuously maps L^"^ 
into Щ~^\ for each fe = 0, 1,..., ^. The space 0?̂ ,̂ ^ is a normed space with the norm 
ikiU« = îî̂ ax sup \\uv\\q^k, иеФр^^. 

According to the continuity of identity-operator г/ : L\ -> Ь\, к ^ I, integers, we 
can easily prove that Op^^ с ^p,^_i с ... с фр^^, Фр^^ с ß?̂ ,̂ г '^ р^ q^O, 
^p+s,q+s ^ ^р,^. S = О, 1, 2 , . . . Moreover, we have \\и\\р^^ ^ Цг̂ Ц̂ ,,, ||w||̂ ,̂ ^ ^ ЦмЦ,̂ ,̂ 

> ^ I? ^ ^ ^ s ^ О, tf е Фр^^ and ||w||p+,,^+,^ ЦмЦ̂ ,,̂ , s ^ О, и е Фp+s,q+s' 

Lemma 1» Let non-negative integers q, s and a function и : R" -> С be given. Let 
for every multiindex a, |a| ^ q, the continuous (classical) derivative D°^u exist and 
fulfil an inequality 

sup \D%(x)\ (1 + X l^il)"'"'"' < +00. 

Then и e Ф^+^,а' 

^ Proof. For ve Ll'^^~^, к ^ q, we have to estimate - . 

\\q~k = l^-kiuvl D^_,(uv)] dx= Z I A,.,... Aj^Juv)\^ dx 
J Rn JU-'.,jq-k = 0 J j^n 

Performing the indicated operations we get Aj^... Aj^_J^uv) = Y, ^aßy^"^ • 

. D^u D'^v, where the coefficients a^ßy do not depend on the functions w, v. According 
the assumptionsi there is a constant x^ > 0 such that [x^'D^u D^v\ S Xi(l + 

n 

+ X I^JI)""*''^' Î :'' D^Î;|. As s + \ß\ + \a\ + \y\ ^ s + q - к we can find another 
j = i 

constant ^2 > 0 such that 

Г |x« D^u Щ^ dx й M4s+a~k . 1̂1 + \ß\ + bl â ^ - /с. 
J к« 
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Then the existence of such constant X3 > 0 that 

\Aj,...Aj^Juv)\^xuxMl^s-k J l 
for all integers j ^ , 0 ^ j ^ ^ 2n, m = 1,2,..., q — k, follows from Holder's inequa
lity. The proof is complete. 

Corollary 1. Every polynomial of degree k is an element of Фрр^^, p ^ к. 

Corollary 2. Ь!̂ *" с (P̂  g, where ^ = 0, 1, 2, . . . , r = 1 + [in], and the identity-
operator J : Ll"̂ ** -» (P̂ ^ is continuous. 

Proof. It follows from the Proposition that the assumptions of Lemma 1 are 
fulfilled with s = 0. 

From the proof of Lemma 1 it follows immediately the assertion: Let functions ŵ ,, 
к = 1, 2,. . . , have continuous (classical) derivatives of all orders a, |a| ^ q, and let 

n 

Hm max sup | D X W | (1 + Z I^JD"""''''^ = 0 . 
^-»•00 | a j ^ ^ xeR^ j=l 

Then lim ||wfc|l̂ +,,« = 0. 
Ä:-*oo 

Remark. Given p ^ q ^ 0, feOpq. Then for each multiindex a, |a| ^^^, the 
generalized derivative D"/ exists. 

Proof. Choose г; e ^ so that v(x) == 1 for |x| S 1- Take a, |a| ^ q, and arbitrary 
(peSi. Then for Л > 0 such that support cp с {x; |x] ^ A] we have /(x) v{xJÄ) e 
G Ü2 and 

Г / D > d x = Г / ( x ) i ; Q D > ( x ) d x = ( - l ) H j D'^ff{x)vf^yix)dx. 

Let 0 < A < В then for xj/ e ^, support ij/ с {x; |x| g A] we have 

I D« (fix) V f^^ ф{х) dx = f D« (fix) V (^\ x^ix) dx . 

Hence D\f{x)v{xlA)) = D''{f{x)v{xlB)) for almost all x, |x| ^ yl, and we can 
uniquely define a function g :BP -^ С putting g{x) = D''(f{x)v{x]A)) for almost all x, 
|x| S Л, and all A > 0. Then evidently g = Ву. 

Definition 6. Given integers p ^ ^ ^ 0, иефр^^, f^i^- Then we define м/ as 
a distribution from Ьз^ by formula 

(8) ( ц / ) 1 ^ = / И , t ; e l ^ . 
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lîfeL^^ is a function then the distribution uf, where и e Фр^^, is identical with the 
function w/. The mapping (w,/) -> uf of Фр^^ x L'^^ into L~2^ is hypocontinuous, i.e. 
continuous in each variable locally uniformly with respect to the other one. In fact, 
||w/||_p = sup iuf)v= sup f{uv) s \\f\\~, sup \\uv\l й \\f\\-~a \\u\\ 

\\v\\pui 
\\P.4^ 

Lemma 2« Given integers p"^ q ^ l,u e Фр^^,/еЬ\ .̂ Let there exist a continuous 
derivative dujdxi e Фpq-. I. Then 

(9) 
3 / .4 du J. of (w/) = — - / + w - i - . 

dxi dxi dxi 

Moreover, on both sides of [9) there are distributions from Ьз^. 

Proof. We have dfjdxieL'^^, Hence, the products uf,{du\dx^f, u(df\dx^ are 
defined and uf el}^^^ [dujdxi)feL'^^, u{dfldxi) e L~2^. Let us take v e L^; then 

OXi OXiJ \OXi J OXi \0^l J \d^l J 

,,f du du dv\ rfdv\ d(uf) 
= f I V v ~ и ) = -ufl = -^^ -^ i ; . 

\ôxi dxi dxij \dxij dxi 

Theorem 2. Given fe L2^, fc ^ 0, integer. Then for each multiindex a, \oc\ ^ k, 
there are a function g^ e L2 and a polynomial P^ of degree ^fe — |a| such that 

Proof. According to Fréchet-Riesz theorem on the representation of linear 
functional such element g G L \ exists that for every v e L\ we have 

fv = {v, g\ = f [D,ü, D,^] dx= t f (Ал • • • ^j,v) {Aj^...%^ ax = 
jRn Ji Jk = 0 J ^ n 

2n 
= Z (A,.,...A,.^^)(A,.,...A,.,t;). 

Let us choose a permutation (j i , . . . ,A) and for brevity denote h =: Äji ••• ^jk9-
Evidently, й e L2. We now distinguish 3 cases: 

Гй(А,.,...А,.,1;) 

then h{Aj^... Aj^v) = \ 2nixjh{Aj^... Ay/) 

a) 

b) 

c) 

A,. = 1 

Aj^ = 2niXj 

A,. = A 
dxj dx 

h{A%...Apv). 

150 



Hence, according to Lemma 2, 

K^n • • • ^J.^) = ± ( А л . . . A;,/i) г. = ( E öa ^"h) V , 

where ß^ are polynomials of degree ^ к — |a|. 

Corollary. The space Lj'^, /c ^ 0, consists entirely of such elements which we get 
by formal differentiation of elements of L2 and multiplication by functions 
Inixp j = 1, 2 , . . . , n. At the same time the sum of these operations applied on any 
element of L2 may not exceed k. 

Lemma 3. Given integers p, q, p "^ q ^ 0. Then G^^^ cz L!Ç^~\ where r = 1 + 
+ [ i ^ ] , and the identity-operator J : Фр^^ -> Ь!"^"** is continuous. 

Proof. Let us take feOp^^ and denote g{x) = (l + (x, x))"^^"^"^/^. Then g e L^2 
and l/^(x)e(P,^.,+,,„ s = 0 / 1 , . . . . H e n c e / ^ e L | and f = {llg)fg E ЬГ'~'. 

Using the hypocontinuity of multiplication we see that there exists a constant 
Ä> 0, which does not depend on / , such that | | / | |^-p-r = \\{^lo)f9\\q-p-r S 

^л||/,|1,^л||/||,,.1|,||,. 
Lemma 4. Given integer fe ^ 0, f,geL\. Then according to Fréchet-Riesz 

theorem there are unique elements cp^ij/ e L]^ such that fv = (v, (p\, gv = (t?, i/̂ )̂ , 
veL\. If we denote {f,g)-k = (^5 <р)ь w^ g^t ^^ inner product defined in U^. 
The norm induced by this inner product is identical with the norm ||. jj_fc. 

Proof. The mapping f, g -^ (/, g)-k has evidently all properties of an inner 
product. We only show the equality of norms. Actually, 

||/|l-fc = sup /ü = sup {v, (p\ = (—r~, (p) = \\(p\\k' 

Since [f,f)^k = (<PJ 9)b the proof is completed. 

Definition 7. Given integer fe ^ 0, feL^^. Then we define the Fourier image 
^f as an element of L^^ by ( # / ) v = f{^v), veL\. 

Remark . If a distribution/ e Lj'^ is a function from L2, then the Fourier image ^f 
defined by Definition 7 coincides with the classially defined Fourier image. This 
follows from the well-known theorem 

I {^f)vdx = \ f,^vdx, f,veL2. 

Now we are prepared to drop the assumption /c ^ 0 in Theorem L Actually, we 
have 
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Theorem la. Fourier transform ,^ :L\-^ L2, к integer, is a unitary auto
morphism. 

Proof. Let fc < 0. The equality ^L\ = ^2 is an immediate consequence of 
Theorem 1 and Definition 7. Let us prove the invariance of inner product. Take 
f, g G L\; then according to Lemma 4 there are elements ср^ф e L~2^ such that fv = 
= {^^ (p)-k^ Qv = (v, il/)_k, V e L2^ (Л 9)k = {Ф, Я>)-к- For every v e L~2^ we have 
( # / ) /; = f{^v) = {^v, (p),j, = {v, J^"V)-fc; similarly, {^g) v = {v, ^ - V ) - ^ . 
Hence, as a consequence of Theorem 1 we have (# / , ^g)k = {^"^ф, ^~'^(p)-.j^ = 
= {Ф. (p)-k = {L 9)k' 

Theorem 3. Given integer k,feL\ ^^d multiindex a. Then 

(la) ^{DJ) = (Inixy # / 
^{{-Inixff) = W{^f). 

Proof. On l)oth sides of (la) there are elements of L^'^'^K If fc — |aj ^ 0, then the 
statement of Theorem 3 is the well-known result. Thus, let к — \(x\ < 0, v e LĴ '"'"̂ '. We 
get 

^{DJ)v = {DJ){^ - (~-l)'"!/(D^#'i;) = (-1)«"!/(#-((-ITTIX)« Î;)) = 

== ( # / ) {(Inixf v) = {{inixY # / ) V , 

^{{-InixYf) V =•• {{-Inixff) {^v) = f{{-~2nixy ^v) = 

== (-1) '" ' / ( .TD^Î;) = (-1)'«' ( # / ) (D t̂;) = D^(#'/) i;. 

Definition 8. Given integers p, q, p "^ q ^ 0. Then we define 6?*̂ ^ = {/e U L2 ^ : 

: ^feOpJ. If we define a norm ||/||*^ = W^fLa for / G 6?*, then < ; t u r n s into 
a normed linear space. 

Example. x{~^e(9p^q, p ^ q ^0, has Fourier image J^xf'^ = (-27ri)^~^. 
. {ô^~^lôx^{~^) ÔQ G {P̂ ,̂ ^ which is not a function. Hence for each j?, q, p ^ q ^ 0, 
6?*,+ ß?,,, holds. 

Let / G Op^q. According to Definition 8 ^fe Фр^^^ is a function. For every x G Я" 
i^'^f) (x) = ( # / ) ( -x) holds. Hence ^~^fe Фр^^. Thus, we could also define (P*̂ ^ 

We know that for each pair p, q, p ^ q ^ 0, L^ '' cz Фр^^ <=• L\ ^ '', where r = 
= 1 + [iw], holds. Then from Theorem la the inclusions Lf' с {p*̂  с: L\~^~' 
follow. The identity-operator corresponding to each inclusion is continuous. More
over, ^{RP) cz фр^ and henceforth for each integer к the space (P*̂ ^ n L2 is dense 
inL'2. 

Definition 9. Given integers p, q, p ^ q ^ 0,fe Фр^^, g e L2 .̂ Then the distribution 
^~^{^f .Wg)eL2^ is called the convolution of distributions f,g and denoted 
b y / * of. 
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For/e^*^,ö'eL2^wehave 

\\f*g\\-p= sup (f^g)v= sup (f^g).^v= sup ^g{v.^f)u 
\M\PUI \\v\\pul \\v\\pul 

\\v\\pul 

Hence the mapping {f,g)->f^g of Cartesian product Ф^^^ x LJ^ into LJ^ is 
hypocontinuous. 

Theorem 4. Given integers p, q, p ^ q ^ 0, fe Фр^, g E LJ^ , h e Ф^^^. Then 

(10) ' Hf^9) = ^f'^9^ 
(11) ^{hg) =• ^h^^g , 

Proof. Formula (10) is an immediate consequence of Definition 9. To prove (11), 
let us take Ü e L2 ; then 

J^(%) V = {hg) ßFv - g{h^v) = ^(J^^^^^^)) = д{^\^^^^~^^У) = 
= #'^ö^(#'^/iJ^~^i;) = {^^h^'^g)^~^v = 

= ^~\^^h^^g) V = {^h * J^^) V , 

Remark. From the identity (4) it follows immediately that formulae (10), (11) 
are also vahd if the operator #" is replaced by J^"- .̂ 

References 

[1] L. Schwartz: Théorie des distributions, vols I, II, Hermann, Paris 1950 and 1951. 
[2] S. Bochner, K. Chandrasekharan: Fourier Transforms, Princeton 1949. 

Author's address: Praha 1, Zitna 25, CSSR (Matematicky ustav CSAV). 

153 


		webmaster@dml.cz
	2020-07-02T21:13:31+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




