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It is my feeling that the theory of partial differential equations developed in the
last years especially at Harvard is of great importance for the differential geome-
try. Because of that Chap. 1 of this paper is a report on some results due to H.
GoLpsmrTH and others; see [1]. In the second part I apply this theory, and I show that
to solve the equivalence problem for submanifolds in Klein spaces only a finite
process is needed. I restrict myself to the linear case, the non-linear case might be
treated in a similar way.

1. LINEAR HOMOGENEOUS SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS

1.1. Involution. Let ¥ and W be vector spaces of finite dimension; dim V = n.
Denote by S™V* the symmetric tensor product of m copies of V*, the symmetric
product of v¥, v; € V* denote by v¥ o v%. For v € Vintroduce the homomorphisms

(ry - 5, W® S"Ty* » W S"V*
satisfying '
(1.2) S(WRf)=w®f, for weW, feS"tiy*;

S is the derivative of f with respect to v. If vy, ..., v, is a basis of Vand v', ..., v" the
dual basis of V*, define the homomorphism

(1.3) 0=0,,1,;:WRS"™V*Q NV* > W S"V* @ NN *1v*

by means of the relation

(1.4) S(E®@ v A ... AVY) =i=i15,,i§ ®v' A VA LA DY

for £ € W ® Sm+1yp*, This definition does not depend on the choice of the basis.
Theorem 1.1, We have

(1.5) 62=0, ie, Oy ;+10m+1,;=0
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for each m and j. The sequence
16) 0o Wb wesiyr@ V> WOS" IV AV .
LA we syt OANTE -0

is exact; we set S'V* = 0 for I < 0. " . o
For each m = k be given a subspace 4~ = W ® S"V*. The sequence {g7} is

consistent if
(1.7) 5v(g"') c9
for each m > k and v e V. If the sequence {g™} is consistent we have

(1.8) g™ @ NV¥) < "t @ NIV,

m—1

and we may consider the sequences
(1.9) 05g" gt pr o gmr @ A2VES L
D gr@ AT S @ SFTIVE @ AT TRV
for m = k. Denote by H"~J-i = Hm~1.i(4*) the cohomology of the sequence (1.9)
on the (j + 1)-th place:
(1.10) H™ ™ = Ker 8, j,ilTM Op—ji1,j-1-

This is the so-called Spencer cohomology- A consistent sequence {g™} is called
involutive if all the sequences (1.9) are exact. {¢™} is called r-acyclic if

(1.11) H™ =0 for mzk, 05j=sr.
Let V;, = V be a subspace. Define
(1.12) (g™, = {€eg™| 5,6 =0 forall veV}.

The sequence {g"‘} being consistent, we have

(1.13) 3 (g™, = (g™ Y)y, forall veV,.

Let vy,...,v, be a basis of V; denote by {v,, Vpsgs-nos v,,} the space spanned by
v,, ..., v,. The basis vy, ..., v, is regular with respect to {g™} if the mappings
(1.14) 8, :g"ttogm,

Un

Sy (0" Doy = (0o,
50,._2 : (gm+1){un-130n} - (g"){"n—h"n} ’

are onto for all m’s.
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Theorem 1.2. The consistent sequence {g™} is involutive if and only if there is
a regular basis with respect to it.
Be given a space g* =« W ® S*V*. Its first prolongation is defined as

(115) pgk — (gk ® V*) A (W@ Sk+1V*) R

put p'g* = p(p'"*g*) for I > 1. The sequence {g"} with g™ = p™ *g* for m = k is
consistent. The space g* is called involutive (r-acyclic) if the corresponding sequence
{g™} = {p"*g"} is involutive (r-acyclic).

Theorem 1.3. Be given a space g =« W ® S*V*. Let there exist a basis v, ..., v,
of the space V such that the maps (1.14) are onto for m = k and g*** = pg*. Then g*
is involutive and vy, ..., v, is regular with respect to {g"} = {p"*g*}.

Theorem 1.4. Let, for each m = 1, be given a space g" <« W® S"V*. If pg™ o
> g™*! for each m = 1, there is a number m,, such that

(1.16) pg™ = g™t for m = m,
and the space g™ is involutive.

1.2.. Differential equations. Let X be a differentiable manifold of class C*, dim X =
= n. Denote by T = T(X) its tangent bundle, T* be its cotangent bundle. E being
a vector bundle over X, E, is the fibre over x € X and & is the sheaf of germs of C*
sections of E.

Be given a C® vector bundle E over X with the projection 7 : E — X; let x, € X be
a fixed point and sy, s, € & sections defined in a neighborhood of x,. Let U = X be
a coordinate neighborhood of x, such that s,, s, are defined in it and we may write
n ! (U)="U x V™, V™ being an m-dimensional vector space. Choosing a basis
Vs .enr Up 0 V™, the section s,; T = 1, 2; is given (in U) by y* = fi(x', ..., x"); a« =
=1,...,m; x, ..., x" being the local coordinates in U. We say that s, and s, belong
to the same k-jet at x,, and we write j%(s;) = jk(s,), if all the partial derivatives
at x, of the functions f7 up to the order k are equal to the corresponding derivatives
of 3.

Denote by J¥(E) the set of all k-jets of sections of E. This set has a natural structure
of a vector bundle over X. The bundle J°(E) is obviously equal to E. Let = : J{E) —
— JYE), k > 1, be the natural projection. Denote by #*(E) the sheaf of the germs
of the sections of J¥(E). The mapping j*: & — #¥(E) be defined as follows: se &
being defined on U < X, set [j*(s)] (x) = ji(s) for xe U.

There is just one bundle morphism & : S*T* ® E — JXE) characterized by the
following property. Let x e X; ¢4, ..., ty € T¥; e € E,. Choose functions f, ..., f; on
a neighborhood of x such that (df,), = t, and f,(x) = 0 for o = 1, ..., k; further,
choose s € & such that s(x) = e. Now, we have

etyo...ot,®e€)=jufy...fi5).
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Theorem 1.5. The sequence

(1.17) 0 - S*T* ® E = JHE) = J*"Y(E) » 0
is exact.

Let E, F, G be vector bundles over X; f: E —» F be a bundle morphism and
f: & — & the corresponding sheaf morphism.

Theorem 1.6. To a given bundle morphism f: E — F there is a unique bundle
morphism j(f) : J(E) — JF) such that the diagram

& f F
(1.18) it i
1 1
F(E) — #(F)

is commutative.

Theorem 1.7. There is a unique bundle monomorphism

pl(id") : J*H(E) » JH(IHE))

such that the diagram
jk
&

FHE)
(1.19) i !

k+1, E 1 1k E
FHE) S )
is commutative.

Considering (1.19) and- (1.18) with G = J*E), we get the following corrolary:
Given a bundle morphism f : J¥E) — F there is a unique bundle morphism p'(f) :
: J**YE) - J'(F) such that the diagram

-k
e 1 F

_—_—

k+1

(1.20) Y it
Jk+l E lF
®) 5o #0

is commutative; here, p'(f) = j'(f) p'(id").
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Considering F = JE) and f = id, we get p(id) = p'(id¥), thus explaining why
we have denoted by p'(id¥) the morphism of Theorem 1.7. The morphism p'(f) is the
I-th prolongation of f : JE) — F.

The differential equation (of order k) is a C* sub-bundle R* = J¥E). The I-th
(I = 0) prolongation of R* is the subset

(1.21) p'R* = R¥*! = JY(R¥) n J**HE).

Obviously, JY(R*) = J'(JX(E)) and J**Y(E) is identified with its image in the mono-
morphism p(id¥) of Theorem 1.7. Define R*~! = J*"{(E) for 1 < I < k. R**' need
not to be a sub-bundle of J**/(E) as dim R%*" is not constant in general.

Theorem 1.8. To each differential equation R* on E there is a bundle F and
a bundle morphism f: JE) —» F such that R* = Ker f. Then R**! = Ker p'(f).

1.3. The formal complete integrability. The equation R* < J¥E) is formally
completely integrable if, for each I = 0, R**! is a vector bundle and

(1.22) R¥TIFL _, RE+L _,

is exact.

One of the main results is to obtain criteria for the formal complete integrability
of a given differential equation.

Let R* < JXE) be an equation. For each I = 0, define g**! < S**!T* ® E by the
exact sequence

(1.23) 0— gk+l_“3’ R+ 1) RE+IFL.

)

further, set g* ™' = S*7!'T* @ E for 1 £ I £ k. g* is the symbol of R*. In general,

g**'is not a bundle.

Theorem 1.9. Let R* be an equation of order k and g*** the corresponding system

of spaces. Then g“*' = p'g* for each 1 = 0 and x € X, and the sequence

(1‘24) 0 - ghtit+t AR ® g"+'—6>/\2T* ® gkttt
is exact for 1 = 0; i.e., {g"*'} is 1-acyclic.
Theorem 1.10. The manifold X being connected, there is an integer ko > k

(depending only on k, n = dim X and dim E) such that H**™J = 0 for each m = 0,
jzo.

Theorem 1.11. If R**! is a vector bundle (for an I = 0) and = : R¥*' - R+*!7!
is an epimorphism, there is a bundle morphism (the so-called curvature of R**")

(1.25) x = w(R*1) : R+ grri-12
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such that the sequence
(1.26) RE+IHL N R+ x HE+i-1.2

is exact.

Theorem 1.12. If g* and g**! are vector bundles and g* is 2-acyclic, g**" is a vector
bundle for any 1 = 0.

Combining the preceding two theorems, we get

Theorem 1.13. Let R* = J*(E) be a differential equation and suppose: (1) R**!
is a vector bundle, (2) = : R*** — R* is an epimorphism, (3) g* is a 2-acyclic system,
(4) g* andfor g**? is a vector bundle. Then R* is formally completely integrable.

Finally, combining this theorem with Theorem 1.10, we get

Theorem 1.14. If X is connected and R* = J¥(E) a differential equation, there is
a number ko > k (depending only on n, k and dim E) such that if R**'** is a vector
bundle and n : R**'*1 o R¥*! is an epimorphism for 0 £ 1 < ky — k, then R*
is formally completely integrable.

A (local) section s € & is called a solution of R*if j*s € #¥(E) is contained in R*.

Theorem 1.15. Let X be an analytic manifold, E an analytic vector bundle and
R* < JYE) an analytic sub-bundle. Let R* be a formally completely integrable
equation. Be given a point u€R**!, let n(u) = xe X. Then there is a neigh-
borhood U < X of x and an analytic section s : U — E which is a solution of R*
and j*Y(s) = u.

2. EQUIVALENCE OF SUBMANIFOLDS

2.1. Initial conditions of differential equations. Let X be a C® differentiable manifold
and E a vector bundle over it. Suppose that all the manifolds and maps considered
are of the class C*. Let X, be a submanifold of X. Let E, be the restriction of E
to X,,i.e., E; = E | X ;. Define the bundle morphisms

(2.1) 2 JHE) | X, - JHE,)

as follows. Let ue JYE)|X,, ie., x = n(u) € X,. Then there is a neighborhood
U = X of x and a section s : U — E such that u = j(s). We set 7(u) = ji(s | X; n
nU); nk(u) obviously does not depend on s.

Be given a formally completely integrable equation R* = J*(E). For each m 2= k
define a system of spaces S(,) = J"(E,) as

(22) Sty =n1"(R" | X,) ;
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of course, R™ is the (m — k)-th prolongation of R*. Although Sf,, is not always
a differential equation, we may define its prolongation SZ",,,“;" in a natural way. The

diagram
m+ 1

Jm+1(E) I X1 _ﬂ-__) Jm+1(El)
(2.3) n n

J"(E) | X,

J™(E,)

being commutative, we get
(24) ©(Stmrn) = St

for each m = k because of the formal complete integrability of R*. Indeed, let u € S{,,).
Then there exists a v € R™ such that #™(v) = u. Because of the complete integrability
there is a w e R™** such that n(w) = v, from the commutativity of the diagram (2.3)
it follows n(y™**(w)) = u, and the mapping = : S{,/\;, = S{,,, is onto. Further, to
each 1€ Sp,) there is a t; € R™** such that #"*(¢,) = t, hence n(t) = n"(n(t,)) €
€ S,y because of n(t,) € R™. Thus we get (2.4). It is easy to see that

(2'5) S(m+1) < S(m) = PS(m)

m+p+1

for each m = k. The system of subspaces g{,,,”** be defined as in (1.23) by the exact
sequence

(2.6) ' 0 — gphrtt 5 sptrtt 5o spir,
Let us choose a fixed point y € X. For each m > k consider the space
2.7) "= gim(v) 5

from (2.5) we get h™** < ph™ for each m = k. Applying Theorem 1.4, we get the
existence of an integer ko = k such that ‘

(2.8) ™t = ph™ foreach m 2 k.

Thus we obtain

Theorem 2.1. Let R J"(E) be a formally completely integrable equation. Let
X, © X be a submanifold, y e X, a fixed point and S,y be defined by (2.2). Then
there is a ko = k such that

(2.9) Serl () = Sty '(v) foreach m = ko .

The formal solution of the equation R* at the point y € X is a sequence {s"} with
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s7e R(y) and n(s?* ') = s?for q = 1,2, ... The formal initial conditionat ye X, <
< X with respect to the submanifold X, is a sequence {r'} with r?e JYE,), and
n(r?*') = % for ¢ = 1,2, ... The formal solution {s?} goes through the formal
initial condition {r?} if n%(s?) = r? for each g. The formal initial condition {r?} is
m-admissible if r"*? e S, ?(y) for each p = 0.

It is easy to prove the following

Theorem 2.2. Be given the situation described in Theorem 2.1. There is a kg = k
such that through each m-admissible, m = k,, formal initial condition at y with
respect to X, there goes a formal solution of R*.

2.2. Equivalence of submanifolds. Let X be a vector space. Consider the trivial
vector bundle E = X x X over it with the projection 7= = pry : X x X — X, pry
being the projection on the first factor. Be given a formally completely integrable
equation R* = J¥(E) and a submanifold X; < X. Let s & be a local section of E
over U < X, i.e., a mapping s(x) = (x, §(x)) for x € U determining thus the mapping
§:U — X. Denote by & the set of all local mappings § : U — X such that the cor-
responding section s(x) = (x, §(x)), x e U, is a solution of R*. Further, be given
a mapping f : X, — X. fis called the deformation of order m of X, with respect to &
if, for each x; € X, there is a §,, € & (defined in the neighborhood of x,) such that
Jju(f) = j=(sx, | X1)- The mapping f: X; — X determines the section f : X; —» E, =
= E| X, given by f(x,) = (x;,f(x,)). It is easy to see that f is the deformation of
order m if and only if f is a solution of the (generalized) equation S(m constructed
above.

The mapping f is called the formal equivalence at y € X, with respect to & if
there is a sequence of local maps {§?: U? - X} of the neighbourhoods U? of y such
that, for g = 1,2,..., ji57*") = ji(89), s%e &2, jAf) = ji3| X,). We get from
Theorem 2.2

Theorem 2.3. Be given a vector space X and a set & of local maps on it which are
the solutions of an equation R* (in the way described above). Be given a submanifold
X, « X and y € X,. Then there is an integer ko = k with the following property:
f: X, —» X being the deformation of order m = k, f is the formal equivalence at y.
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