Czechoslovak Mathematical Journal

Avo Vrkoč

The class of functions fulfilling the inequality

$$
\|f(x+z)-f(x)-f(y+z)+f(y)\| \leq\|x-y\| \omega(\|z\|)
$$

Czechoslovak Mathematical Journal, Vol. 19 (1969), No. 3, 500-514

Persistent URL: http://dml.cz/dmlcz/100917

Terms of use:

© Institute of Mathematics AS CR, 1969

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE CLASS OF FUNCTIONS FULFILLING THE INEQUALITY $\|f(x+z)-f(x)-f(y+z)+f(y)\| \leqq\|x-y\| \omega(\|z\|)$
 Ivo Vrkoč, Praha
 (Received September 12, 1968)

The condition $(1,1)$ on a function $f(x)$ is considered in connection with the exponential stability [1]. Another condition that can be used for the same purpose is that $f(x)$ has continuous derivatives. A question arises, namely, what is the relation between the two mentioned classes of functions. The problem is formulated generally for transformations from linear spaces with semi-norms [2] into Banach spaces. It is shown that a transformation fulfilling $(1,1)$ and some weak additional assumptions permits the unique extension such that the Gateaux differential T_{x} exists and T_{x} depends continuously on x in the sense of $(11,1)$ (for the exact formulation see Theorems 1 and 2).

1. Definition and basic concepts. In what follows the symbol meas denotes always Lebesgue measure in Euclidean space of an arbitrary dimension. Instead of Lebesgue measuráble function we shall speak about measurable function only. Let G be an open set of the n-dimensional Euclidean space E_{n}. We say that a measurable set D is almost everywhere (a.e.) in G, if meas $(G-D)=0$. An open set G is called the carrier of D if it is the largest open set such that D is a.e. in G. In case of the onedimensional Euclidean space the components of the carrier G will be called carrierintervals.

Let A be a linear set. We denote by $A\left(x ; h_{1}, \ldots, h_{n}\right), x \in A, h_{i} \in A$ the linear set of all elements of A of the form $x+\sum_{i=1}^{n} \lambda_{i} h_{i}$ where λ_{i} are real numbers. There exists a one-to-one transformation \mathcal{O} of $A\left(x ; h_{1}, \ldots, h_{n}\right)$ onto the n-dimensional Euclidean space E_{n} : $\mathcal{O}\left(x+\sum_{i=1}^{n} \lambda_{i} h_{i}\right)=\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ provided that h_{i} are linearly independent. If B is a subset of $A\left(x ; h_{1}, \ldots, h_{n}\right)$, then $\mathcal{O}(B)=\{\mathcal{O}(z): z \in B\}$.

Let A be a linear set with a semi-norm [2]. We denote by $U\left(x ; h_{1}, \ldots, h_{n} ; \delta\right)$ a δ-neighbourhood of x in $A\left(x ; h_{1}, \ldots, h_{n}\right)$, i.e. $U\left(x ; h_{1}, \ldots, h_{n} ; \delta\right)=\{z: z \in$ $\left.\in A\left(x ; h_{1}, \ldots, h_{n}\right),\|z-x\|<\delta\right\}$.

Definition 1. Let D be a subset of A. The set D is a.e. in $U\left(x ; h_{1}, \ldots, h_{n} ; \delta\right)$ if $\mathcal{O}\left(D \cap U\left(x ; h_{1}, \ldots, h_{n} ; \delta\right)\right)$ is a.e. in $\mathcal{O}\left(U\left(x ; h_{1}, \ldots, h_{n} ; \delta\right)\right)\left(h_{i}\right.$ are linearly independent).

Definition 2. A subset S of A is called the basis of A if every element $x \in A$ is a linear combination of elements of S.

Definition 3. Let A be a linear set with a semi-norm, D a subset of A and S a basis of A. The set D has property (A), if there exist positive functions $\delta\left(x ; h_{1}, \ldots, h_{n}\right)$ defined for all integers $n \geqq 2$, all $x \in D$ and all linearly independent $h_{i} \in S, i=1, \ldots, n$ such that D is a.e. in every $U\left(x ; h_{1}, \ldots, h_{n} ; \delta\left(x ; h_{1}, \ldots, h_{n}\right)\right)$.

Definition 4. Let A be a linear set with a semi-norm, D, Q subsets of A. The set Q is called the star-neighbourhood of D if there exists a positive function $\eta(x, h)$, $x \in D, h \in A$ such that $x+\lambda h \in Q$ provided that $x \in D, h \in A,\|\lambda h\|<\eta(x, h)$.

Definition 5. Let A be a linear set with a semi-norm, D a subset of A with Property (A). We denote by $\hat{L}(D)$ the set of all triplets $[x, h, \delta]$ where $x \in D, h \in A, \delta$ is a positive number such that D is a.e. in $U(x ; h ; \delta)$. Denote by $L(D)$ the set

$$
\{y: \exists\{[x, h, \delta], \lambda:[x, h, \delta] \in \hat{L}(D), y=x+\lambda h,\|\lambda h\|<\delta\}\},
$$

i.e. the set of all points of A which belong at least to one interval $U(x ; h ; \delta)$ fulfilling $[x, h, \delta] \in \hat{L}(D)$.

Let B be a Banach space. In this paper we shall deal with transformations $f: D \rightarrow B$ fulfilling the inequality

$$
\begin{equation*}
\|f(x+h)-f(x)-f(y+h)+f(y)\| \leqq\|x-y\| \omega(\|h\|) \tag{1,1}
\end{equation*}
$$

for $x \in D, x+h \in D, y \in D, y+h \in D$ where $\omega(\eta)$ is defined and continuous for $\eta \geqq 0, \omega(0)=0$.

Definition 6. We say that $f^{*}(x)$ is an extension of $f(x)$ on $L(D)$ if $f^{*}(x)$ fulfils $(1,1)$ on $L(D)$ and $f^{*}(x)=f(x)$ on D. The extension on $L(D)$ is unique if any two extensions are equal on $L(D)$.

Definition 7. Let f be a transformation $f: D \rightarrow B$ where B is a Banach space, D is a subset of a linear set A. Let $x \in D$. If D is a star-neighbourhood of the point x and if

$$
T_{x} h=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}(f(x+\lambda h)-f(x))
$$

exists for all $h \in A$ and T_{x} is a linear operator $T_{x}: A \rightarrow B$, then T_{x} is called the (Gateaux) differential of f at the point x.

The semi-norm of A induces a certain topology on A. Although the topology need not be Hausdorff topology, we say that a transformation $f: D \rightarrow B, D \subset A$ is locally bounded (locally Lipschitz continuous) if to every $x \in D$ there exists a region $G_{x}, x \in G_{x} \subset A$ such that f is bounded (Lipschitz continuous) in G_{x}.
2. Let $[x, h, \delta] \in \hat{L}(D)$ then we can define $\varphi(x ; h ; \lambda)=f(x+\lambda h)$. The domain of definition of $\varphi(x ; h ; \lambda)$ (as a function of λ) is $\mathcal{O}(D \cap A(x ; h))$. With respect to Definition $5, D$ is a.e. in the $U(x ; h ; \delta)$ and this means (Definition 1) that $\mathcal{O}(D \cap A(x ; h))$ is a.e. in some open interval (a, b). The next Lemma enables us to consider only transformations $\varphi:(a, b) \rightarrow B$ where (a, b) is an open interval.

Lemma 1. Let A be a linear set with a semi-norm, B a Banach space, $D \subset A$, D have Property $(A), f$ be a transformation $f: D \rightarrow B$ fulfilling $(1,1)$. Let $[x, h, \delta] \in$ $\in \hat{L}(D)$, then the function $\varphi(x ; h ; \lambda)$ is defined on $H=\mathcal{O}(D \cap A(x ; h))$ which is a.e. in some carrier-interval (a, b) containing 0 and

$$
\begin{gather*}
\|\varphi(x ; h ; \lambda+\gamma)-\varphi(x ; h ; \lambda)-\varphi(x ; h ; \mu+\gamma)+\varphi(x ; h ; \mu)\| \leqq \tag{2,1}\\
\leqq|\lambda-\mu|\|h\| \omega(|\gamma|\|h\|) \leqq|\lambda-\mu| \omega^{*}(|\gamma|)
\end{gather*}
$$

for $\lambda \in H, \lambda+\gamma \in H, \mu \in H, \mu+\gamma \in H, \omega^{*}(\eta)=\|h\| \max _{0 \leqq \zeta \leqq \eta} \omega(\zeta\|h\|)$.
The proof follows immediately from Definition 5 and from the relation $\varphi(x ; h ; \lambda)=$ $=f(x+\lambda h)$.
3. For the following result we need some statement about measurable sets.

Lemma 2. Let H be a.e. in an interval $(a, b),-\infty<a<b<\infty$. Let numbers u, v, ε fulfil $0 \leqq u<(b-a) / 4,0 \leqq v<(b-a) / 4, \varepsilon \geqq 0$ and let a measurable set Q fulfil $Q \subset(a, b)$, meas $(Q) \geqq b-a-\varepsilon$. Then the set $F=\{x: a<x \leqq$ $\leqq(a+3 b) / 4, x+u \in Q, x+v \in H\}$ is measurable and meas $(F) \geqq 3(b-a) / 4-\varepsilon$.

Proof. Let $\pi_{u}(x)=x-u$ and $\pi_{v}(x)=x-v$. Denote $\pi_{u}(Q)=\{y: \exists\{x: x \in Q$, $y=x-u\}\}$ and similarly $\pi_{v}(H)=\{y: \exists\{x: x \in H, y=x-v\}\}$. Obviously

$$
\begin{align*}
F & =\{x: a<x \leqq(a+3 b) / 4, x+u \in Q, x+v \in H\}= \tag{3,1}\\
& =\{x: a<x \leqq(a+3 b) / 4\} \cap \pi_{u}(Q) \cap \pi_{v}(H) .
\end{align*}
$$

Since H is a.e. in (a, b) and $0 \leqq v<(b-a) / 4$, the set $\pi_{v}(H)$ is a.e. in the interval $\langle a,(a+3 b) / 4\rangle$. Since meas $(Q) \geqq b-a-\varepsilon$ and $0 \leqq u<(b-a) / 4$ we have meas $(Q \cap\{x: a+u<x \leqq u+(a+3 b) / 4\}) \geqq 3(b-a) / 4-\varepsilon$ and meas $\left(\pi_{u}(Q) \cap\right.$ $\cap\{x: a<x \leqq(a+3 b) / 4\})=$ meas $\pi_{u}(Q \cap\{x: a+u<x \leqq u+(a+3 b) / 4\}) \geqq$ $\geqq 3(b-a) / 4-\varepsilon$. From this inequality, $(3,1)$ and from the fact that $\pi_{v}(H)$ is a.e. in $\langle a,(a+3 b) / 4\rangle$ we obtain meas $(F) \geqq 3(b-a) / 4-\varepsilon$. Lemma 2 is proved.
4. Lemma 3. Let H be a.e. in an interval $(a, b),-\infty<a<b<\infty, B$ a Banach space, $\varphi(\lambda)$ a transformation $\varphi: H \rightarrow B$ fulfilling $(2,1)$ on H. If the function $\|\varphi(\lambda)\|$ is measurable then φ is bounded on $H \cap(a, b)$.

Proof. We shall assume that φ is not bounded on $H \cap(a, b)$. We choose a number N such that meas $(Q)>3(b-a) / 4$ where $Q=\{\lambda: \lambda \in H \cap(a, b),\|\varphi(\lambda)\| \leqq N\}$. Since φ is assumed not to be bounded, hence there exists a number $\bar{\lambda} \in H \cap(a, b)$ such that $\|\varphi(\bar{\lambda})\|>3 N+\omega^{*}((b-a) / 4)(b-a) / 4=M$. We shall assume $\bar{\lambda} \in H \cap$ $\cap(a,(3 a+b) / 4)$ without loss of generality. If $\varphi(\lambda)$ is bounded on some subinterval of (a, b) then by Lemma 5 it is locally Lipschity continuous on this subinterval and by $(2,1)$ is locally Lipschitz continuous on the whole (a, b). The proof of Lemma 5 is independent of Lemma 3. The set $Q^{*}=\{\lambda: \lambda \in H \cap(a,(a+3 b) / 4),\|\varphi(\lambda)\| \leqq N\}$ has the measure meas $\left(Q^{*}\right)>(b-a) / 2$ so that $Q^{*} \cap(a,(3 a+b) / 4)$ is nonempty. We choose $\mu \in Q^{*} \cap(a,(3 a+b) / 4)$. Using Lemma 2 with $u=\mu-a, v=\bar{\lambda}-a$ we obtain that the set $F=\{\lambda: \lambda \in(a,(a+3 b) / 4),\|\varphi(\lambda+\mu-a)\| \leqq N, \lambda+\bar{\lambda}-a \in$ $\in H\}$ has the measure meas $(F) \geqq(b-a) / 2$. Using $(2,1)$ we obtain

$$
\begin{gathered}
\|\varphi(\lambda+\bar{\lambda}-a)-\varphi(\bar{\lambda})-\varphi(\lambda+\mu-a)+\varphi(\mu)\| \leqq \\
\leqq|\mu-\bar{\lambda}| \omega^{*}(|\lambda-a|) \leqq \frac{b-a}{4} \omega^{*}\left(\frac{b-a}{4}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \|\varphi(\lambda+\bar{\lambda}-a)\| \geqq\|\varphi(\bar{\lambda})\|-\|\varphi(\mu)\|-\|\varphi(\lambda+\mu-a)\|-\frac{b-a}{4} \omega^{*}\left(\frac{b-a}{4}\right)> \\
& >M-2 N-\frac{b-a}{4} \omega^{*}\left(\frac{b-a}{4}\right) \geqq N \text { i.e. }\|\varphi(\lambda+\bar{\lambda}-a)\|>N \text { for } \lambda \in F .
\end{aligned}
$$

($\mu \in Q^{*}$ which implies $\|\varphi(\mu)\| \leqq N$).
The set $Q^{* *}=\{\lambda+\bar{\lambda}-a: \lambda \in F\}=\pi_{a-\bar{\lambda}}(F)$ for which meas $\left(Q^{* *}\right)=$ meas $(F)>$ $>(b-a) / 2$ is a subset of the complement of the set Q and therefore $(b-a) / 2<$ $<$ meas $\left(Q^{*}\right) \leqq$ meas $\left(\langle a, b\rangle-Q^{* *}\right)<(b-a) / 2$. This contradiction proves Lemma 3.
5. We shall need one more statement about measurable sets.

Lemma 4. Let H be a.e. in (a, b), then there exists a set \tilde{H} which is a.e. in $(a, b) \times$ $\times(a, b)$ and fulfils
i) if $(\lambda, \mu) \in \tilde{H}$ then $(\mu, \lambda) \in \tilde{H}$,
ii) if $(\lambda, \mu) \in \tilde{H}$ and $\lambda+k(\mu-\lambda) \in(a, b)$ for any integer k, then $\lambda+k(\mu-\lambda) \in H$,
iii) if $(\lambda, \mu) \in \tilde{H}$, then $\lambda \in H, \mu \in H$.

Proof. Denote $J=(a, b), J^{2}=(a, b) \times(a, b)$. Let \tilde{H} be the set

$$
\begin{aligned}
\tilde{H} & =\left\{(\lambda, \mu):(\lambda, \mu) \in J^{2}, \lambda \in H, \mu \in H\right\}+\{(\lambda, \mu): \lambda \in H J, \mu \notin J\}+ \\
& +\{(\lambda, \mu): \lambda \notin J, \mu \in H J\}+\{(\lambda, \mu): \lambda \notin J, \mu \notin J\} .
\end{aligned}
$$

The set \tilde{H} is a.e. in the plane $(-\infty, \infty) \times(-\infty, \infty)$. Denote

$$
\begin{aligned}
\tilde{H}_{k} & =\left\{(\lambda, \mu): \lambda=\frac{1}{2 k-1}((k-1) x+k y)\right. \\
\mu & \left.=\frac{1}{2 k-1}(k x+(k-1) y),(x, y) \in \tilde{H}\right\}
\end{aligned}
$$

for every integer k. The sets \tilde{H}_{k} are also a.e. in the plane. It means that $\tilde{H}=\bigcap_{k} \widetilde{H}_{k} \cap J^{2}$
is a.e. in J^{2}.
The item i) is fulfilled since all \widetilde{H}_{k} fulfil i). Let $(\lambda, \mu) \in \widetilde{H}$ and let $\lambda+k(\mu-\lambda) \in J$. Obviously $(\lambda, \mu) \in \widetilde{H}_{k}$. By the definition of \tilde{H}_{k} there exists a point $(x, y) \in \tilde{H}$ such that

$$
x=\lambda+k(\mu-\lambda), \quad y=\mu+k(\lambda-\mu), \quad(x, y) \in \tilde{H}, \quad x \in J
$$

which means with respect to the definition of \tilde{H} that $x \in H$. Condition iii) is a simple consequence of conditions i) ii) since if $(\lambda, \mu) \in \tilde{H}$ we can apply ii) with $k=0$. It implies $\lambda \in H$. To prove that also $\mu \in H$ we can use condition i).
6. Lemma 5. Let H be a.e. in $(a, b),-\infty<a<b<\infty$. Let B be a Banach space, $\varphi(\lambda)$ a transformation $\varphi: H \rightarrow B$ fulfilling (2,1) on H. If the function $\|\varphi(\lambda)\|$ is bounded then φ is Lipschitz continuous on $H \cap(a, b)$.

Proof. First we prove a proposition.
Proposition 1. Let the assumptions of Lemma 5 be fulfilled, then there exists a number $L>0$ such that

$$
\|\varphi(\lambda)-\varphi(\mu)\| \leqq L|\lambda-\mu| \quad \text { if } \quad(\lambda, \mu) \in \tilde{H}
$$

where \tilde{H} is the set constructed in Lemma 4.
Proof of the Proposition. We choose a number $\delta>0$ such that $\omega^{*}(\delta)<\frac{1}{2}$, $\delta_{1}=\frac{1}{3} \min (\delta,(b-a) / 2)$ and put $L=\max \left(1,2 N / \delta_{1}\right)$ where N is the upper bound of $\varphi:\|\varphi(\lambda)\| \leqq N$. Assume that there exists $\left(\lambda_{1}, \lambda_{2}\right) \in \widetilde{H}$ such that $\left\|\varphi\left(\lambda_{1}\right)-\varphi\left(\lambda_{2}\right)\right\|>$ $>L\left|\lambda_{1}-\lambda_{2}\right|$. This inequality yields $\left|\lambda_{1}-\lambda_{2}\right| \leqq 2 N / L \leqq \delta_{1}$. Without loss of generality we assume $\lambda_{1}<\lambda_{2}$ and $2 \lambda_{1} \leqq a+b$ (if $2 \lambda_{1}>a+b$ then we consider $\tilde{\varphi}(\lambda)=$ $=\varphi(-\lambda), \tilde{a}=-b, \tilde{b}=-a, \tilde{\lambda}_{1}=-\lambda_{2}, \tilde{\lambda}_{2}=-\lambda_{1}$; since $a+b<2 \lambda_{1}<2 \lambda_{2}$ we obtain $2 \tilde{\lambda}_{1}<2 \tilde{\lambda}_{2}<\tilde{a}+\tilde{b}$ so that the additional assumption is fulfilled for $\left.\tilde{\varphi}(\lambda), \tilde{\lambda}_{1}, \tilde{\lambda}_{2}\right)$. We find the largest integer k such that $\lambda_{k}=\lambda_{1}+(k-1)\left(\lambda_{2}-\lambda_{1}\right) \in$ $\in(a, b), \lambda_{k}<\lambda_{1}+\delta$. Since $\delta_{1} \leqq \delta / 3, \delta_{1} \leqq(b-a) / 6$ and $\lambda_{1} \leqq(a+b) / 2$ we obtain

$$
\begin{equation*}
\delta>\lambda_{k}-\lambda_{1}=(k-1)\left(\lambda_{2}-\lambda_{1}\right) \geqq 2 \delta_{1} . \tag{6,1}
\end{equation*}
$$

By Lemma 4 we know that $\lambda_{i} \in H$ for $i=1, \ldots, k$ and using $(2,1)$ we obtain

$$
\begin{gathered}
\left\|\varphi\left(\lambda_{k}\right)-\varphi\left(\lambda_{1}\right)\right\|= \\
=\left\|(k-1)\left(\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)\right)+\sum_{l=1}^{k-1}\left(\varphi\left(\lambda_{l+1}\right)-\varphi\left(\lambda_{l}\right)-\varphi\left(\lambda_{2}\right)+\varphi\left(\lambda_{1}\right)\right)\right\| \geqq \\
\geqq(k-1)\left\|\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)\right\|-\left|\lambda_{2}-\lambda_{1}\right| \sum_{l=1}^{k-1} \omega^{*}\left((l-1)\left|\lambda_{2}-\lambda_{1}\right|\right)> \\
>(k-1) L\left|\lambda_{2}-\lambda_{1}\right|-\left|\lambda_{2}-\lambda_{1}\right| \sum_{l=1}^{k-1} \omega^{*}\left((l-1)\left|\lambda_{2}-\lambda_{1}\right|\right) \geqq \\
\geqq L\left|\lambda_{2}-\lambda_{1}\right| \sum_{l=1}^{k-1}\left(1-\omega^{*}\left((l-1)\left|\lambda_{2}-\lambda_{1}\right|\right)\right) \geqq \\
\geqq L\left|\lambda_{2}-\lambda_{1}\right| \sum_{l=1}^{k-1}\left(1-\omega^{*}(\delta)\right) \geqq L\left|\lambda_{2}-\lambda_{1}\right|(k-1) / 2 \geqq 2 N .
\end{gathered}
$$

The two last inequalities follow from $(6,1)$ and from the definition of L. The former inequality gives $\left\|\varphi\left(\lambda_{k}\right)\right\|>2 N-\left\|\varphi\left(\lambda_{1}\right)\right\| \geqq N$ and finally $\left\|\varphi\left(\lambda_{k}\right)\right\|>N$ which is in contradicition with the boundedness of φ. Proposition 1 is proved.

Let H^{*} be the set of all λ such that $(\lambda, \mu) \in \widetilde{H}$ for almost all $\mu \in(a, b)$. Since \widetilde{H} is a.e. in J^{2} we obtain by Fubini's theorem that H^{*} is a.e. in $J=(a, b)$. By Lemma 4 iii) we have $H^{*} \subset H$. Let $\lambda_{i} \in H^{*}, i=1,2, \lambda_{1}<\lambda_{2}$. Put $Z_{i}=\left\{\lambda:\left(\lambda_{i}, \lambda\right) \in \widetilde{H}\right.$, $\left.\lambda_{1} \leqq \lambda \leqq \lambda_{2}\right\}, i=1,2$. The sets Z_{i} are a.e. in $\left(\lambda_{1}, \lambda_{2}\right)$ so that there exists $\mu \in \bigcap_{i=1}^{2} Z_{i}$. It means $\left(\lambda_{i}, \mu\right) \in \tilde{H}, i=1,2, \lambda_{1} \leqq \mu \leqq \lambda_{2}$. Using Proposition 1 we obtain $\| \varphi\left(\lambda_{2}\right)-$ $-\varphi\left(\lambda_{1}\right)\|\leqq\| \varphi\left(\lambda_{2}\right)-\varphi(\mu)\|+\| \varphi(\mu)-\varphi\left(\lambda_{1}\right) \| \leqq L\left(\lambda_{2}-\mu\right)+L\left(\mu-\lambda_{1}\right)=L\left(\lambda_{2}-\right.$ $-\lambda_{1}$). We have already proved that $\varphi(\lambda)$ is Lipschitz continuous on $H^{*}, H^{*} \subset H, H^{*}$ is a.e. in (a, b). It remains to prove that $\varphi(\lambda)$ is Lipschitz continuous on H. To prove this we shall need another proposition.

Proposition 2. For every $\lambda \in H-H^{*}$ there exists a sequence $\lambda_{n}, \lambda_{n} \in H^{*}, \lambda_{n} \rightarrow \lambda$ such that $\varphi\left(\lambda_{n}\right) \rightarrow \varphi(\lambda)$.

Proof of Proposition 2. Suppose that Proposition 2 is not true, then there exists $\bar{\lambda} \in H-H^{*}$ and a number $\delta>0$ such that

$$
\begin{equation*}
\|\varphi(\bar{\lambda})-\varphi(\lambda)\|>\delta \quad \text { for } \quad \lambda \in H^{*}, \quad|\bar{\lambda}-\lambda| \leqq \delta \tag{6,2}
\end{equation*}
$$

Choose a number $\delta_{1}, 0<\delta_{1}<\delta, \frac{1}{2} \delta_{1}\left(L+\omega^{*}\left(\frac{1}{2} \delta_{1}\right)\right)<\delta$ and $\mu, \mu \in H^{*} \cap(\bar{\lambda}, \bar{\lambda}+$ $\left.+\delta_{1} / 4\right)$. Using Lemma 2 (where instead of (a, b) is $\left(\bar{\lambda}, \bar{\lambda}+\delta_{1}\right)$, instead of the sets H, Q is the set $\left.H^{*}, u=0, v=\mu-\bar{\lambda}\right)$ we obtain: There exists γ fulfilling $\gamma \in$ $\in H^{*} \cap\left(\bar{\lambda}, \bar{\lambda}+\frac{1}{2} \delta_{1}\right), \gamma+\mu-\bar{\lambda} \in H^{*} \cap\left(\bar{\lambda}, \bar{\lambda}+\delta_{1}\right)$. With respect to $(2,1)$ there is

$$
\begin{gather*}
\|\varphi(\gamma)-\varphi(\bar{\lambda})\| \leqq\|\varphi(\gamma+\mu-\bar{\lambda})-\varphi(\mu)\|+\frac{\delta_{1}}{2} \omega^{*}\left(\frac{\delta_{1}}{2}\right) \leqq \tag{6,3}\\
\leqq L|\gamma-\bar{\lambda}|+\frac{\delta_{1}}{2} \omega^{*}\left(\frac{\delta_{1}}{2}\right) \leqq \frac{\delta_{1}}{2}\left(L+\omega^{*}\left(\frac{\delta_{1}}{2}\right)\right)<\delta .
\end{gather*}
$$

But $\gamma \in H^{*} \cap\left(\bar{\lambda}, \bar{\lambda}+\delta_{1} / 2\right)$ implies $|\gamma-\bar{\lambda}| \leqq \delta_{1} / 2<\delta$, hence $(6,3)$ is in contradiction with $(6,2)$. Proposition 2 is proved.

Let $\bar{\lambda} \in H, \bar{\lambda} \in H$. By Proposition 2 there exist sequences $\bar{\lambda}_{n}$,

$$
\bar{\lambda}_{n} \rightarrow \bar{\lambda}, \quad \bar{\lambda}_{n} \in H^{*}, \quad\left\|\varphi\left(\bar{\lambda}_{n}\right)-\varphi(\bar{\lambda})\right\| \rightarrow 0
$$

and $\overline{\bar{\lambda}}_{n}$,

$$
\overline{\bar{\lambda}}_{n} \rightarrow \overline{\bar{\lambda}}, \overline{\bar{\lambda}}_{n} \in H^{*}, \quad\left\|\varphi\left(\overline{\bar{\lambda}}_{n}\right)-\varphi(\bar{\lambda})\right\| \rightarrow 0 .
$$

According to the fact that $\varphi(\lambda)$ is Lipschitz continuous on H^{*} we obtain

$$
\|\varphi(\bar{\lambda})-\varphi(\overline{\bar{\lambda}})\| \leqq\left\|\varphi(\bar{\lambda})-\varphi\left(\bar{\lambda}_{n}\right)\right\|+L\left|\bar{\lambda}_{n}-\overline{\bar{\lambda}}_{n}\right|+\left\|\varphi\left(\bar{\lambda}_{n}\right)-\varphi(\overline{\bar{\lambda}})\right\| .
$$

Thus $\varphi(\lambda)$ is Lipschitz continuous on H.
Remark 1. The Lipschitz coefficient $L=\max \left(1,2 N / \delta_{1}\right)$ depends on the length of the interval (a, b), on ω^{*} and on N which bounds $\varphi(\lambda)$. The constant N can be determined by $N=\inf _{z \in B} \sup _{y \in H(a, b)}\|\varphi(\lambda)-z\|$.
7. Remark 2. Let the statement of Lemma 5 hold. Since the space B is complete we can extend $\varphi(\lambda)$ onto the whole carrier-interval of H (may be $(-\infty, \infty)$) so that $\varphi(\lambda)$ is continuous and locally Lipschitz continuous on the carrier-interval.

Let $\lambda_{i}, i=1, \ldots, 4$ belong to the carrier-interval and $\lambda_{2}-\lambda_{1}=\lambda_{4}-\lambda_{3}$. Consider numbers $\lambda, \lambda+\lambda_{2}-\lambda_{1}, \lambda+\lambda_{3}-\lambda_{1}, \lambda+\lambda_{4}-\lambda_{1}$. Since H is a.e. in the carrierinterval there exists a sequence $\lambda_{n}, n>4$ such that $\lambda_{n} \rightarrow \lambda_{1}$ for $n \rightarrow \infty, \lambda_{n} \in H$, $\lambda_{n}+\lambda_{2}-\lambda_{1} \in H, \lambda_{n}+\lambda_{3}-\lambda_{1} \in H, \lambda_{n}+\lambda_{4}-\lambda_{1} \in H$ (this can be proved similarly as Lemma 2). As $(2,1)$ is fulfilled for

$$
\lambda_{n}, \lambda_{n}+\lambda_{2}-\lambda_{1}, \quad \lambda_{n}+\lambda_{3}-\lambda_{1}, \quad \lambda_{n}+\lambda_{4}-\lambda_{1}
$$

and ω^{*} is continuous, inequality $(2,1)$ holds for $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, too.
This extension is obviously unique as a continuous extension, but we shall prove that the extension is unique in the sense of Definition 6. Let (a, b) be a part of the carrier-interval and $\tilde{\varphi}(\lambda)$ be another extension of φ. Put $\Delta(\lambda)=\varphi(\lambda)-\tilde{\varphi}(\lambda)$. The function $\Delta(\lambda)$ fulfils $(2,1)$ on (a, b) (see Definition 6) and $\Delta(\lambda)=0$ for $\lambda \in H, H$ is a.e. in (a, b). Let $\bar{\lambda} \in(a, b)-H$. We choose $\mu, \mu \in H \cap(a, \min (b, a+b-\bar{\lambda}))$. Since $a<\min (b, a+b-\bar{\lambda})$ and H is a.e. in this interval, such μ exists. We have $\mu+$ $+\bar{\lambda}-\lambda \in H \cap(a, b)$ for almost all $\lambda, a<\lambda<\bar{\lambda}$. Since H is a.e. in $(a, \bar{\lambda})$ there exists a sequence $\lambda_{n}, \lambda_{n} \rightarrow \bar{\lambda}, \lambda_{n} \in H \cap(a, \bar{\lambda}), \mu+\bar{\lambda}-\lambda_{n} \in H$. It means $\Delta\left(\lambda_{n}\right)=\Delta(\mu+$ $\left.+\bar{\lambda}-\lambda_{n}\right)=\Delta(\mu)=0$. If we use $(2,1)$ for $\lambda_{n}, \bar{\lambda}, \mu, \mu+\bar{\lambda}-\lambda_{n}$ we obtain $\Delta(\bar{\lambda})=0$.
8. We have defined the differential of $f(x)$ as an operator. Since the domain of definition of φ is a one-dimensional interval the domain of the differential operator of φ is the real line. It is clear that there exists an element ζ of B such that $T_{x} \lambda=\zeta \lambda$. In case of the transformation φ we shall define the derivative $\varphi^{\prime}(x)$ by $\varphi^{\prime}(x)=\zeta$.

Lemma 6. Let $-\infty<a<b<\infty$, B be a Banach space, $\varphi(\lambda)$ be a transformation $\varphi:(a, b) \rightarrow B$. If $\varphi(\lambda)$ is Lipschitz continuous and fulfils $(2,1)$ on (a, b), then $\varphi(\lambda)$ has the derivative $\varphi^{\prime}(\lambda)$ at every point of (a, b) and $\left\|\varphi^{\prime}(\lambda)-\varphi^{\prime}(\mu)\right\| \leqq \omega^{*}(|\lambda-\mu|)$.
Proof. Let $\quad \xi \in(a, b)$ be given. Let $\delta \leqq \min (\xi-a,(1+2(b-\xi)-$ $-\sqrt{ }[1+4(b-\xi)]) / 2)$ and let $\lambda_{i}, \tilde{\lambda}_{i}, i=1,2$ fulfil $\left|\lambda_{i}-\xi\right|<\delta / 2, \lambda_{1}<\lambda_{2}, \lambda_{1} \leqq$ $\leqq \xi \leqq \lambda_{2}$ and $\left|\tilde{\lambda}_{i}-\xi\right|<\delta / 2, \tilde{\lambda}_{1}<\tilde{\lambda}_{2}, \tilde{\lambda}_{1} \leqq \xi \leqq \tilde{\lambda}_{2}$. Put $\lambda_{k}=\lambda_{1}+(k-1)\left(\lambda_{2}-\right.$ $\left.-\lambda_{1}\right), \tilde{\lambda}_{l}=\tilde{\lambda}_{1}+(l-1)\left(\tilde{\lambda}_{2}-\tilde{\lambda}_{1}\right)$. Consider the largest k such that $\lambda_{k} \in\langle\xi+$ $+\sqrt{ } \delta, \xi+\delta+\sqrt{ } \delta\rangle$, and the largest l such that $\tilde{\lambda}_{l} \in\langle\xi+\sqrt{ } \delta, \xi+\delta+\sqrt{ } \delta\rangle$. For $\lambda_{i}, \tilde{\lambda}_{j}$ we have

$$
\begin{gather*}
\left|\lambda_{1}-\tilde{\lambda}_{1}\right|<\delta / 2, \quad\left|\tilde{\lambda}_{l}-\lambda_{k}\right| \leqq \delta, \quad \sqrt{ } \delta \leqq\left|\lambda_{k}-\lambda_{1}\right| \leqq 2 \delta+\sqrt{ } \delta, \tag{8,1}\\
\sqrt{ } \delta \leqq\left|\tilde{\lambda}_{l}-\tilde{\lambda}_{1}\right| \leqq 2 \delta+\sqrt{ } \delta
\end{gather*}
$$

By $(2,1)$ we obtain

$$
\begin{aligned}
& \left\|\frac{\varphi\left(\lambda_{k}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{k}-\lambda_{1}}-\frac{\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}\right\| \leqq \frac{1}{k-1} \sum_{s=1}^{k-1} \omega^{*}\left((s-1)\left|\lambda_{2}-\lambda_{1}\right|\right) \leqq \omega^{*}(2 \delta+\sqrt{ } \delta) \\
& \left\|\frac{\varphi\left(\tilde{\lambda}_{l}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{l}-\tilde{\lambda}_{1}}-\frac{\varphi\left(\tilde{\lambda}_{2}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{2}-\tilde{\lambda}_{1}}\right\| \leqq \frac{1}{l-1} \sum_{s=1}^{l-1} \omega^{*}\left((s-1)\left|\lambda_{2}-\lambda_{1}\right|\right) \leqq \omega^{*}(2 \delta+\sqrt{ } \delta) .
\end{aligned}
$$

These inequalities imply

$$
\begin{gather*}
\left\|\frac{\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}-\frac{\varphi\left(\tilde{\lambda}_{2}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{2}-\tilde{\lambda}_{1}}\right\| \leqq \tag{8,2}\\
\leqq\left\|\frac{\varphi\left(\lambda_{k}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{k}-\lambda_{1}}-\frac{\varphi\left(\tilde{\lambda}_{l}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{l}-\tilde{\lambda}_{1}}\right\|+2 \omega^{*}(2 \delta+\sqrt{ } \delta) .
\end{gather*}
$$

Using $(8,1)$ we obtain

$$
\begin{gathered}
\left\|\frac{\varphi\left(\tilde{\lambda}_{l}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{l}-\tilde{\lambda}_{1}}-\frac{\varphi\left(\tilde{\lambda}_{l}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\lambda_{k}-\lambda_{1}}\right\|= \\
=\left\|\varphi\left(\tilde{\lambda}_{l}\right)-\varphi\left(\tilde{\lambda}_{1}\right)\right\| \frac{\left|\lambda_{k}-\tilde{\lambda}_{l}-\lambda_{1}+\tilde{\lambda}_{1}\right|}{\left(\lambda_{k}-\lambda_{1}\right)\left(\tilde{\lambda}_{l}-\tilde{\lambda}_{1}\right)} \leqq 2 L(2 \delta+\sqrt{ } \delta)
\end{gathered}
$$

and by $(8,2)$

$$
\begin{aligned}
& \left\|\frac{\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}-\frac{\varphi\left(\tilde{\lambda}_{2}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{2}-\tilde{\lambda}_{1}}\right\| \leqq \frac{1}{\sqrt{ } \delta}\left\|\varphi\left(\lambda_{k}\right)-\varphi\left(\lambda_{1}\right)-\varphi\left(\tilde{\lambda}_{l}\right)+\varphi\left(\tilde{\lambda}_{1}\right)\right\|+ \\
& \quad+2 L(2 \delta+\sqrt{ } \delta)+2 \omega^{*}(2 \delta+\sqrt{ } \delta) \leqq 4 L(2 \delta+\sqrt{ } \delta)+2 \omega^{*}(2 \delta+\sqrt{ } \delta)
\end{aligned}
$$

Thus we have proved the inequality

$$
\left\|\frac{\varphi\left(\lambda_{2}\right)-\varphi\left(\lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}-\frac{\varphi\left(\tilde{\lambda}_{2}\right)-\varphi\left(\tilde{\lambda}_{1}\right)}{\tilde{\lambda}_{2}-\tilde{\lambda}_{1}}\right\| \leqq 4 L(2 \delta+\sqrt{ } \delta)+2 \omega^{*}(2 \delta+\sqrt{ } \delta)
$$

Since B is a complete space there follows from the last inequality that $\varphi(\lambda)$ has the derivative at all points of (a, b). With respect to $(2,1)$ we easily obtain $\| \varphi^{\prime}(\lambda)-$ $-\varphi^{\prime}(\mu) \| \leqq \omega^{*}(|\lambda-\mu|)$.
9. Now we return to the transformation $f(x)$. We have a set of extended functions $\varphi(x ; h ; \lambda)$. We may use this set of functions for the extension of $f(x)$ on $L(D)$ only if the following condition is fulfilled. Let $z \in L(D)$ and let $\left[x_{i}, h_{i}, \delta_{i}\right], \lambda_{i}, i=1,2$ be given such that $\left[x_{i}, h_{i}, \delta_{i}\right] \in \hat{L}(D), z=x_{i}+\lambda_{i} h_{i},\left\|\lambda_{i} h_{i}\right\|<\delta_{i}, i=1,2$, then $\varphi\left(x_{1} ; h_{1} ; \lambda_{1}\right)=\varphi\left(x_{2} ; h_{2} ; \lambda_{2}\right)\left(h_{i}\right.$ linearly independent $)$.
If this condition is fulfilled, we can define the extension of $f(x)$ by $f(z)=\varphi\left(x_{1} ; h_{1}\right.$; λ_{1}). To this problem the next Lemma is devoted.

Lemma 7. The set of functions $\varphi(x ; h ; \lambda)$ determines the extension $f(x)$ on $L(D)$.
Proof. Let $\left[x_{i}, h_{i}, \delta_{i}\right], \lambda_{i}, i=1,2$ have the above formulated properties. Since $x_{1} \in D$ there exists a constant $\delta=\delta\left(x_{1} ; h_{1}, h_{2}\right)$ (cf. Definition 3) such that $\mathcal{O}(D \cap$ $\left.\cap A\left(x_{1} ; h_{1}, h_{2}\right)\right)$ is a.e. in $\mathcal{O}\left(U\left(x_{1} ; h_{1}, h_{2} ; \delta\right)\right)$. By Fubini theorem we obtain that there exists $\bar{\lambda}, \bar{\lambda}$ between 0 and λ_{1} such that $x_{1}+\bar{\lambda} h_{1} \in D, x_{1}+\bar{\lambda} h_{1}+\mu h_{2} \in D$ for almost all $|\mu|<\delta^{*}$ where δ^{*} is a positive number. (Since $\bar{\lambda}$ is between 0 and λ_{1} it belongs to the same carrier-interval as 0 and λ_{1}.) Hence there exists a sequence of μ_{n} such that $x_{1}+\bar{\lambda} h_{1}+\mu_{n} h_{2} \in D$ and $x_{1}+\lambda_{1} h_{1}+\mu_{n} h_{2} \in D, \mu_{n} \rightarrow 0$. Obviously we can choose λ, λ between $0, \lambda_{1}$ such that $x_{1}+\lambda h_{1} \in D$ and $x_{1}+\left(\lambda+\lambda_{1}-\bar{\lambda}\right) h_{1} \in$ $\in D$. As these four points belong to D we use $(1,1)$ to obtain

$$
\begin{gather*}
\left\|f\left(x_{1}+\left(\lambda+\lambda_{1}-\bar{\lambda}\right) h_{1}\right)-f\left(x_{1}+\lambda_{1} h_{1}+\mu_{n} h_{2}\right)\right\| \leqq \tag{9,1}\\
\leqq \| f\left(x_{1}+\left(\lambda+\lambda_{1}-\bar{\lambda}\right) h_{1}\right)-f\left(x_{1}+\lambda_{1} h_{1}+\mu_{n} h_{2}\right)-f\left(x_{1}+\lambda h_{1}\right)+ \\
+f\left(x_{1}+\bar{\lambda} h_{1}+\mu_{n} h_{2}\right)\|+\| f\left(x_{1}+\lambda h_{1}\right)-f\left(x_{1}+\bar{\lambda} h_{1}+\mu_{n} h_{2}\right) \| \leqq \\
\leqq\left(|\lambda-\bar{\lambda}| \times\left\|h_{1}\right\|+\left|\mu_{n}\right| \times\left\|h_{2}\right\|\right) \omega\left(\left|\lambda_{1}-\bar{\lambda}\right| \times\left\|h_{1}\right\|\right)+ \\
\quad+\left\|f\left(x_{1}+\lambda h_{1}\right)-f\left(x_{1}+\bar{\lambda} h_{1}+\mu_{n} h_{2}\right)\right\| .
\end{gather*}
$$

Denote $\bar{f}(z)=\lim _{n \rightarrow \infty} f\left(z+\mu_{n} h_{2}\right)$. Since $x_{1}+\lambda_{1} h=z=x_{2}+\lambda_{2} h_{2}$, there is $\bar{f}(z)=$ $=\lim f\left(x_{1}+\lambda_{1} h_{1}+\mu_{n} h_{2}\right)$. By $(9,1)$ and by $x_{1}+\bar{\lambda} h_{1} \in D, x_{1}+\bar{\lambda} h_{1}+\mu h_{2} \in L(D)$ for $|\mu|<\delta^{*}$, which means $\left[x_{1}+\bar{\lambda} h_{1}, h_{2}, \delta^{*}\right] \in \hat{L}(D)$, we obtain

$$
\begin{align*}
& \text {,2) }\left\|f\left(x_{1}+\left(\lambda+\lambda_{1}-\bar{\lambda}\right) h_{1}\right)-\bar{f}(z)\right\| \leqq|\lambda-\bar{\lambda}| \times\left\|h_{1}\right\| \omega\left(\left|\lambda_{1}-\bar{\lambda}\right| \times\left\|h_{1}\right\|\right)+ \tag{9,2}\\
&+\left\|f\left(x_{1}+\lambda h_{1}\right)-f\left(x_{1}+\bar{\lambda} h_{1}\right)\right\| \leqq|\lambda-\bar{\lambda}| \times\left\|h_{1}\right\|\left(\omega\left(\left|\lambda_{1}-\bar{\lambda}\right| \times\left\|h_{1}\right\|\right)+L\right) .
\end{align*}
$$

Since $\mathcal{O}\left(D \cap A\left(x_{1} ; h_{1}\right)\right)$ is a.e. on $\mathcal{O}\left(U\left(x_{1} ; h_{1} ; \delta_{1}\right)\right)$ we can choose a sequence of λ_{n} such that $\lambda_{n} \rightarrow \bar{\lambda}$ and $x_{1}+\lambda_{n} h_{1} \in D, x_{1}+\left(\lambda_{n}+\lambda_{1}-\bar{\lambda}\right) h_{1} \in D$. With respect to $(9,2)$ we obtain $\lim _{n \rightarrow \infty} f\left(x_{1}+\left(\lambda_{n}+\lambda_{1}-\bar{\lambda}\right) h_{1}\right)=\bar{f}(z)=\lim _{n \rightarrow \infty} f\left(z+\mu_{n} h_{2}\right)$. Since $x_{1}+$ $+\left(\lambda_{n}+\lambda_{1}-\bar{\lambda}\right) h_{1}$ converges to z the uniqueness is proved.
10. Lemma 8. The set $L(D)$ is a star-neighbourhood of D.

Proof. Let $x \in D, h \in A$. Since S is a basis of A (Definition 2) there are linearly independent $h_{i}, i=1, \ldots, n, h_{i} \in S$ such that $h=\sum_{i=1}^{n} \lambda_{i} h_{i}$. Since the set D has Property (A) there exists a positive number $\delta\left(x ; h_{1}, \ldots, h_{n}\right)$ (cf. Definition 3). We shall prove that the set $U\left(x ; h_{1}, \ldots, h_{n} ; \delta\left(x ; h_{1}, \ldots, h_{n}\right)\right)$ is a subset of $L(D)$. Let $y \in U\left(x ; h_{1}, \ldots, h_{n}\right.$; $\left.\delta\left(x ; h_{1}, \ldots, h_{n}\right)\right)$. Since $\mathcal{O}\left(D \cap A\left(x ; h_{1}, \ldots, h_{n}\right)\right)$ is a.e. in $\mathcal{O}\left(U\left(x ; h_{1}, \ldots, h_{n} ; \delta\left(x ; h_{1}, \ldots\right.\right.\right.$ $\left.\left.\ldots, h_{n}\right)\right)$) there exists \tilde{h} which is a linear combination of h_{1}, \ldots, h_{n} and there exists a number $\tilde{\delta}>0$ such that $\mathcal{O}(D \cap A(y ; \tilde{h}))$ is a.e. in $\mathcal{O}(U(y ; \tilde{h} ; \tilde{\delta}))$. It means that y belongs to $L(D)$. The statement is proved and from this statement Lemma immediately follows.
11. We have all prepared to present one of the main results.

Theorem 1. Let A be a linear set with a semi-norm, B a Banach space, D a subset of A having property (A). Let f be a transformation $f: D \rightarrow B$ fulfilling $(1,1)$ on D. If the condition:
$(\alpha)\|f(x+\lambda h)\|$ is a measurable function of λ for every $x \in D, h \in S$ for which the carrier-interval of $H=\mathcal{O}(D \cap A(x ; h))$ containing 0 is nonempty (where S is basis in A)
is fulfilled, then f can be extended onto the star-neighbourhood $L(D)$ of D and the extension has the differentials T_{x} at all points of D. We have

$$
\begin{equation*}
\left\|T_{x} h-T_{y} h\right\| \leqq\|h\| \omega(\|x-y\|) \quad \text { for } \quad x \in D, \quad y \in D \tag{11,1}
\end{equation*}
$$

The extension of f on $L(D)$ is unique in the sense of Definition 6.
Proof. Let a point z be from $L(D)$. By Definition 5 there exists $[x, h, \delta] \in \hat{L}(D), \lambda$ such that $z=x+\lambda h,\|\lambda h\|<\delta$ and $\mathcal{O}(D \cap A(x ; h))$ is a.e. in $\mathcal{O}(U(x ; h ; \delta))$. It means that $\mathcal{O}(U(x ; h ; \delta))$ is a part of the carrier interval containing $H=\mathcal{O}(D \cap$ $\cap A(x ; h))$. The function $\varphi(x ; h ; \lambda)$ is defined on H. Hence recalling assumption (α) we can successively apply Lemmas $1,3,5$. Since the function φ is Lipschitz continuous on H we can extend φ on the carrier-interval of H as in Remark 2. Then using Lemma 6 we obtain that φ has the derivatives at all points of the carrier-interval of H. By Lemma 7 we can define $f(z)=\varphi(x+\lambda h)$ where $z=x+\lambda h$. We have just extended the domain of definition of $f(x)$ onto the whole $L(D)$ (we shall denote this extension by the same letter f).

We pass to the proof that the extension f has the differentials T_{x} at all points of D. Let points $x \in D$ and $h \in A$ be given. Since $L(D)$ is a star-neighbourhood of D (cf. Lemma 8) there exists a positive δ such that $[x, h, \delta] \in \hat{L}(D)$. We shall consider the function $\varphi(x ; h ; \lambda)=f(x+\lambda h)$. By Lemma 6 there exists the derivative $\varphi^{\prime}(x ; h ; 0)$. We put $T_{x} h=\varphi^{\prime}(x ; h ; 0)$. We must still prove that T_{x} is a linear operator.

1. T_{x} is homogeneous. Let Θ be a real number, then

$$
\begin{aligned}
& T_{x} \Theta h=\varphi^{\prime}(x ; \Theta h ; 0)=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}(\varphi(x ; \Theta h ; \lambda)-\varphi(x ; \Theta h ; 0))= \\
& =\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}(f(x+\Theta \lambda h)-f(x))=\Theta \lim _{\lambda \rightarrow 0} \frac{1}{\lambda}(f(x+\lambda h)-f(x))= \\
& =\Theta \lim _{\lambda \rightarrow 0} \frac{1}{\lambda}(\varphi(x ; h ; \lambda)-\varphi(x ; h ; 0))=\Theta T_{x} h
\end{aligned}
$$

2. T_{x} is additive.

$$
\begin{gathered}
T_{x}\left(h_{1}+h_{2}\right)=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(x+\lambda h_{1}+\lambda h_{2}\right)-f(x)\right)= \\
=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(x+\lambda h_{1}+\lambda h_{2}\right)-f\left(x+\lambda h_{1}\right)\right)+\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(x+\lambda h_{1}\right)-f(x)\right)= \\
\left.=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(x+\lambda h_{2}\right)-f(x)\right)+\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(f\left(x+\lambda h_{1}\right)-f(x)\right)+\lim _{\lambda \rightarrow 0} \psi\left(x, \lambda, h_{1}, h_{2}\right)\right)= \\
=\varphi^{\prime}\left(x ; h_{2} ; 0\right)+\varphi^{\prime}\left(x ; h_{1} ; 0\right)+\lim _{\lambda \rightarrow 0} \psi\left(x, \lambda, h_{1}, h_{2}\right)=T_{x} h_{1}+T_{x} h_{2} .
\end{gathered}
$$

The last equality holds as

$$
\psi\left(x, \lambda, h_{1}, h_{2}\right)=\frac{1}{\lambda}\left(f\left(x+\lambda h_{1}+\lambda h_{2}\right)-f\left(x+\lambda h_{1}\right)-f\left(x+\lambda h_{2}\right)+f(x)\right)
$$

and by $(1,1)\left\|\psi\left(x, \lambda, h_{1}, h_{2}\right)\right\| \leqq\left\|h_{1}\right\| \omega\left(\left\|\lambda h_{2}\right\|\right)$. This proves that the operator T_{x} is linear. Theorem 1 is proved.
12. We have simultaneously proved

Theorem 2. Let the assumptions of Theorem 1 be fulfilled with exception of assumption (α) which is replaced by
$(\beta)\|f(x+\lambda h)\|$ is locally bounded in λ for every $x \in D, h \in S$ for which the carrier-interval of $H=\mathcal{O}(D \cap A(x ; h))$ containing 0 is nonempty,
then the statement of Theorem 1 is valid.
The proof of this Theorem follows the same lines as the proof of Theorem 1. We only start with Lemma 5 since assumption (β) and Lemma 1 makes possible its direct application.
13. In this paragraph we introduce some consequences of these Theorems.

Corollary 1. Let A be a linear set with a semi-norm, B a Banach space, D a region in A, f a transformation fulfilling $(1,1)$ on D. If assumption (α) or (β) is fulfilled, then f has the differential T_{x} at every point of D and $(11,1)$ holds.

This Corollary follows immediately from the fact that the region D has property (A).

Corollary 2. Let all assumptions of Theorem 1 be fulfilled except (α). If f is locally bounded in D, then f may be extended on a star-neighbourhood $L^{*}(D), D \subset L^{*}(D) \subset$ $\subset L(D)$ such that is locally Lipschitz continuous on $L^{*}(D)$, f has the differentials T_{x} at all points of D, the differentials T_{x} are continuous operators and $(11,1)$ is fulfilled.

Obviously, if f is locally bounded on D, then for every $x \in D$ there exists a neighbourhood $G_{x}, x \in G_{x} \subset A$ such that $\|f(y)\| \leqq N$ in G_{x}. Hence $\|f(x+\lambda h)\| \leqq N$ for $x+\lambda h \in G_{x}$. By Theorem 2 we know that there exists the differential T_{x}. With respect to Remark 1 the Lipschitz coefficient depends explicitly on N, i.e., all $\varphi(x ; h ; \lambda)=f(x+\lambda h)$ have the same Lipschitz coefficient. It implies $\left\|\varphi^{\prime}(x ; h ; 0)\right\| \leqq$ $\leqq L\|h\|$. By Definition $T_{x} h=\varphi^{\prime}(x ; h ; 0)$ so that T_{x} is a continuous operator. Put $G=\bigcup_{x \in D} G_{x}$ and $L^{*}(D)=L(D) \cap G . L^{*}(D)$ is obviously a star-neighbourhood of D. If $x \in L^{*}(D)$ then a point y exists, $y \in D, x \in G_{y}$. Since the extension of f is bounded in G_{y} and fulfils $(1,1)$ it is Lipschitz continuous in G_{y} by Lemma 5.

Corollary 3. Let the assumptions of Theorem 1 be fulfilled except (α) which is replaced by the assumption that f is locally bounded on D. If A is a Banach space, then f may be extended (uniquely as a continuous function) onto an open set G, $D \subset G \subset A$ such that f has the differentials T_{x} at every point of G, T_{x} are continuous operators fulfilling $(11,1)$ on G and f is locally Lipschitz continuous on G.

By Corollary $2 f$ may be extended onto the star-neighbourhood $L^{*}(D)$ so that f is locally Lipschitz continuous there. Let x be a given point, $x \in D$. Since $L^{*}(D)$ is the star-neighbourhood of D there exists a function $\eta(x, h)>0$ such that $Q=\{y: y=$ $=x+\lambda h, \quad\|\lambda h\|<\eta(x, h)\} \subset L^{*}(D)$. We denote $Q_{k}=\{z: z=x+k(y-x)$, $y \in Q\}$ for any nonnegative integer k. Obviously $\bigcup_{k} Q_{k}=A$. Recalling Bair Theorem Q cannot be a thin set. Hence an open set G_{x}^{1} exists, $x \in G_{x}^{1} \subset A$, such that Q is dense in G_{x}^{1}. Since the extension of f is locally Lipschitz continuous in $L^{*}(D)$ (cf. Corollary 2) an open set $G_{x}^{2}, x \in G_{x}^{2}$ exists such that f is Lipschitz continuous in G_{x}^{2}. Put $G_{x}^{3}=G_{x}^{1} \cap G_{x}^{2}$. We shall extend f onto G_{x}^{3}. Let $y \in G_{x}^{3}$. Since $L^{*}(D)$ is dense in G_{x}^{3} a sequence $x_{n}, x_{n} \rightarrow$ $\rightarrow y, x_{n} \in L^{*}(D)$ exists. As f is Lipschitz continuous in G_{x}^{3} and B is complete there exists $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and we put $f(y)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$. Put $G=\bigcup_{x \in D} G_{x}^{3}$. Obviously inequality $(1,1)$ holds on G. Since the extension is locally bounded on G (the extension is

Lipschitz continuous on every G_{x}^{3}), Corollaries 1 and 2 imply Corollary 3 if these Corollaries are applied on the extension of f on G.

Corollary 4. Let A be a Euclidean space, B a Banach space, G a region in $A, D \subset$ $\subset G, D$ be a.e. in G and let f be a transformation $f: D \rightarrow B$ fulfilling $(1,1)$ on D. If $\|f(x)\|$ is measurable on D, then f can be uniquely extended on G so that the statement of Corollary 3 is valid.

Since A is a Euclidean space, we consider an orthonormal basis h_{1}, \ldots, h_{n}. Let $x_{0} \in G, \delta>0$ be given such that $\left[x_{0}+\lambda h_{i}\right] \in D$ for almost all $\lambda,|\lambda|<\delta$ and let $\left\|f\left(x_{0}+\lambda h_{i}\right)\right\|$ be measurable for $|\lambda|<\delta$. Using Theorem 1 we obtain that $f\left(x_{0}+\lambda h_{i}\right)$ is locally Lipschitz continuous and with respect to $(1,1) f\left(x+\lambda h_{i}\right)$ is locally Lipschitz continuous in λ for all $x \in G$. Since A is finite dimensional $f(x)$ is locally bounded and $G \subset L(D)$. If we used Corollary 2 on the extension of $f(x)$ onto $L(D)$ (i.e. onto G) we obtain the statement of Corollary 4.

Corollary 5. Let the assumptions of Corollary 4 be fulfilled and let B be a Euclidean space, then the extension f on G has continuous partial derivatives in G. The function ω (from $(1,1))$ is the modulus of continuity of all partial derivatives.

This is an obvious consequence of Corollary 4 and of Definition 7.
14. We shall show that under some additional assumption the converse result is valid.

Theorem 3. Let A, B be linear sets with semi-norms. Let $D \subset A$ be convex and let f be a transformation $f: D \rightarrow B$ which has the differential T_{x} at every point x of D fulfilling

$$
\begin{equation*}
\left\|T_{x} h-T_{y} h\right\| \leqq\|h\| \omega(\|x-y\|) \quad \text { for } \quad x, y \in D, \quad h \in A \tag{14,1}
\end{equation*}
$$

where $\omega(\eta)$ is defined and continuous for $\eta \geqq 0, \omega(0)=0$. Then the transformation f fulfils $(1,1)$ on D.

Proof. Assume x, y, z to be given such that $x \in D, x+y \in D, x+z \in D, x+$ $+y+z \in D$. Let ε be a positive number. Recalling the definition of the differential (Definition 7) there exists a positive function $\delta(\mu)$ for every $\mu, 0 \leqq \mu \leqq 1$ such that

$$
\begin{gathered}
\left\|f(x+\mu z+v z)-f(x+\mu z)-v T_{x+\mu z} z\right\|<|v| \varepsilon \\
\left\|f(x+y+\mu z+v z)-f(x+y+\mu z)-v T_{x+y+\mu z} z\right\|<|v| \varepsilon \text { for }|v|<\delta(\mu) .
\end{gathered}
$$

(Since the set D is convex the points $x+\mu z$ and $x+y+\mu z$ belong to D for $0 \leqq$ $\leqq \mu \leqq 1$.) We can construct a finite sequence: $0=\mu_{0}<\zeta_{0}<\mu_{1}<\zeta_{1}<\ldots$
$\ldots<\mu_{n-1}<\zeta_{n-1}<\mu_{n}=1$ such that $\mu_{i+1}-\mu_{i}<\delta\left(\zeta_{i}\right)$. By means of the above inequalities we obtain

$$
\begin{gathered}
\|f(x+z)-f(x)-f(x+y+z)+f(x+y)\| \leqq \\
\leqq \sum_{i=0}^{n-1}\left\|f\left(x+\mu_{i+1} z\right)-f\left(x+\mu_{i} z\right)-f\left(x+y+\mu_{i+1} z\right)+f\left(x+y+\mu_{i} z\right)\right\| \leqq \\
\leqq \sum_{i=0}^{n-1}\left(\mu_{i+1}-\mu_{i}\right)\left\|T_{x+\zeta_{i} z} z-T_{x+y+\zeta_{i} z} z\right\|+2 \varepsilon
\end{gathered}
$$

and using $(14,1)$ we obtain

$$
\begin{gathered}
\|f(x+z)-f(x)-f(x+y+z)+f(x+y)\| \leqq \\
\leqq \sum_{i=0}^{n-1}\left(\mu_{i+1}-\mu_{i}\right)\|z\| \omega(\|y\|)+2 \varepsilon \leqq\|z\| \omega(\|y\|)+2 \varepsilon .
\end{gathered}
$$

Since ε is an arbitrary number inequality $(1,1)$ is proved.
15. It can be shown that the convexity of D cannot be ommited. This is shown by the following

Example. We construct the region in the plane which consists from five parts:

$$
\begin{aligned}
& G_{1}=\left\{[x, y]:|x|<2,\left|y-\frac{5}{2}\right|<\frac{1}{2}\right\}, \\
& G_{2}=\left\{[x, y]:\left|x-\frac{3}{2}\right|<\frac{1}{2},\left|y-\frac{3}{2}\right| \leqq \frac{1}{2}\right\}, \\
& G_{3}=\left\{[x, y]:\left|x+\frac{3}{2}\right|<\frac{1}{2},\left|y-\frac{3}{2}\right| \leqq \frac{1}{2}\right\}, \\
& G_{4}=\{[x, y]: 0<x<2,0<y<1\}, \\
& G_{5}=\{[x, y]:-2<x<0,0<y<1\},
\end{aligned}
$$

$G=\bigcup_{i} G_{i}$. We define a function $f(x, y)$ on G :

$$
f(x, y)=0 \quad \text { on } \quad G_{1}, f(x, y)=1 \quad \text { on } \quad G_{4}, f(x, y)=-1 \quad \text { on } G_{5},
$$

$$
f(x, y)=(y-2)^{2}(2 y-1) \quad \text { on } \quad G_{2}, f(x, y)=-(y-2)^{2}(2 y-1) \quad \text { on } \quad G_{3} .
$$

We have $T_{[x, y]}(1,0)=\partial f / \partial x \equiv 0, \quad T_{[x, y]}(0,1)=(\partial f / \partial y)(x, y)$ and $T_{[x, y]} h=$ $=(\partial f / \partial y)(x, y) h_{2}$ where h_{2} is the second component of he vector h. Since $\left\|T_{[x, y]} h-T_{[u, v]} h\right\|=\left|h_{2}\right||(\partial f / \partial y)(x, y)-(\partial f / \partial y)(u, v)| \leqq\|h\| \mid(\partial f / \partial y)(x, y)-$ $(\partial f / \partial y)(u, v) \left\lvert\, \leqq\|h\|\left(6|y-v|+\frac{3}{2}|u-x|\right) \leqq 12\|h\| \times\|[x-u, y-v]\|\right.$, inequality $(14,1)$ is fulfilled with $\omega(\eta)=12 \eta$.

On the other side we choose points $\left[-3 \varepsilon, \frac{1}{2}\right],\left[-\varepsilon, \frac{1}{2}\right],\left[\varepsilon, \frac{1}{2}\right]$ for $\varepsilon<\frac{2}{3}$. Easily we obtain

$$
\left|f\left(-\varepsilon, \frac{1}{2}\right)-f\left(-3 \varepsilon, \frac{1}{2}\right)-f\left(\varepsilon, \frac{1}{2}\right)+f\left(-\varepsilon, \frac{1}{2}\right)\right|=2 .
$$

It means $(1,1)$ is not valid.
Conditions (α) or (β) in Theorems 1 and 2 , respectively are also necessary. It is a well known fact that an additive function $f(x)$ exists, $f(x+y)=f(x)+f(y)$ which is defined for all real x but is not continuous. Since additive functions obviously satisfy $(1,1)$ this function cannot be neither bounded nor measurable according to Theorems 1 and 2. The other assumptions (i.e., except (α) and (β), respectively) of Theorems 1 and 2 are fulfilled.

References

[1] Kurzweil J.: Exponentially Stable Integral Manifolds, Averaging Principle and Continuous Dependence on a Parameter. Czech. Math. J. 16 (91) 1966, 380-432.
[2] Yosida K.: Functional Analysis. Springer Verlag, Berlin 1965.

Author's address: Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

