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In a recent paper we have introduced and discussed the notion of orthogonality
for pairs of subspaces of a locally convex space. There are many ways of character-
izing this notion; these have been discussed at some length in [3]. For our purposes
and for the particular case of Fréchet spaces, the following two will be sufficient.

Let Y and R be two closed subspaces of a Fréchet space E. We shall say that Y
and R are orthogonal if one of the following two equivalent conditions is satisfied:

1° the natural mapping of R @ Y onto R + Y is open,

2° given two continuous linear functionals on Y and R which coincide on R N Y,
there exists a continuous linear functional on E which is their common extension.

Clearly the relation of orthogonality is symmetric; we shall write simply Y.L R
orRLY.

In the present note we intend to introduce, for LF-spaces, a notion which describes
the position of 'a subspace with respect to the spaces of a defining sequence. If R is
a sequentially closed subspace of an LF-space F such that — roughly speaking — R is
orthogonal to each element of a defining sequence for F, it turns out that R has many
nice properties. In particular, this notion enables us to formulate a simple condition
for a sequentially open mapping to be open. This condition — given in section two —
is essentially equivalent to condition (4,4) of [2]. However, using the notion of ortho-
gonality, both the statement and the proof of the theorem become exceedingly simple
and transparent.

Some remarks concerning terminology and notation. If E is a locally convex space,
we denote by U(E) the system of all closed absolutely convex neighbourhoods of
zero in E. If Yis a subspace of E, we denote by P(Y) the operator which assigns to
each x’ € E’ its restriction to Y. If R is a subspace of an LF-space F, we say that R is
sequentially closed in F if x, € R and lim x, = x implies x € R. A continuous linear
mapping of an LF-space E into an LF-space F is said to be sequentially open if its
range is sequentially closed in F. For other equivalent descriptious of this notion see
Proposition (3,2) of [2].
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1. ORTHOGONAL SUBSPACES

(1,1) Proposition. If R is a sequentially closed subspace of an LF-space F, the
following conditions are equivalent:

1° there exists a defining sequence F; such that F; L (R n F,) for each k > j;

2° for each defining sequence F; there exists a sequence p(j) of natural numbers,
p(j) 2 j, with the following property: given k > p(j), y' € Fp;y and 1’ € (R n F)’
which coincide on R N F;,, there exists an x' € Fy, such that P(F;) x' = P(F;)y’
andPRNF)x' =1r1;

3° for each defining sequence F; there exists another defining sequence P; > F;
such that P; L (R n P,) for each k > j.

If one of these conditions is fulfilled we shall say that R is orthogonal in F.

Proof. Assume 1° and consider a defining sequence H;. Given j, there exist indices

m, r such that
H;c F,cH,.

Suppose that k > r and consider a ' € H, and an r’ € (R n H;)’ such that y’ and r’
coincide on R n H,.

Take an F; o H, so that s > m and consider an extension p’ of ' to RN F,.
Since F,, = H, the functionals P(F,)y" and p’ coincide on R n F,,. Condition 1°
being satisfied, there exists an x’ e F; such that P(F,)x’ = P(F,)y’ and

PRNF)x' =p'.
Put z’ = P(H,) x’ so that z’ € H;. Since H, < F, we have
P(RNH)z = PR H)P(H)x = PR H)x =
=P(RNH)P(RAF)x' = PRAH)p =7
on the other hand, since H; < F,, < H, |
P(H;)z' = P(H;) P(H,) x' = P(H)) x' = P(Hj) P(F,)x" =

= P(H,) P(F,) y' = P(H)) y'.

Hence it suffices to take p(j) = r and condition 2° is satisfied.
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Fig. 1.
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Suppose now that we are given a defining sequence F; which satisfies condition 2°.
Define first an increasing sequence of natural numbers z(n), n € N, as follows: z(1) =
= 1 and z(n + 1) = p(z(n)) + 1. It follows that z(n + 1) > z(n) and p(z(n + 1)) =
= z(n + 1) > p(z(n)). Define P; as the closure in F,;, of the space

Foy + (R0 Fpegy) s

it follows that

(1) Fjy © Pj & Fpiqy

f; () f)_o(z(/» f;(k) ";(z(k»

4 R

Fig. 2.

whence R N P; = R N Fp,;. Since, on the other hand, P; contains, by its defi-
nition, the intersection R N F,,;,, we have

@ RN P;=R0Fyu -
Let k > j and consider a pair of functionals y’ € P} and ' € (R n P,)’ such that
(3 PRNP)y =PRANP)r.
Since P; < F ), there exists a u’ < F ;) such that P(P;)u’ = y’. We have
p(z(k)) > p(z(j)) and two functionals u’ € Fp(,;y, and ' € (R 0 P,)’ = (R 0 Fyaqy)’
which coincide on R n P; = R N F,;). It follows from condition 2° that there
exists an x’ € F,,,, with the following properties
@ P(F,) X' = P(F, ) u'
©) P(RO Fpgp) X =71
Since Py, < F ., We may form z’ = P(P,) x' € P,. According to (4), we have
P(F,p) 2’ = P(F.;) P(Pi) X' = P(F,;)) x' = P(F,;) u' =
= P(F,;) P(P) v’ = P(F,;) ¥ -
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1t follows from (5) and (3) that
P(R 0 Fyo) 2 = P(R 0 Fppg) X' = P(R 0 Fpp() 4 =
=PRnP)r=PRnP)y.
It follows that z’ € P, coincides with y’ on F,;, + (R 0 Fp((;,)) and hence on P;.
Further, again by (5),
P(RNP)z =PRAFpppy)x' =71

This completes the proof of the orthogonality of P; and (R N P,). Since 3° implies 1°
immediately, the proof is complete.
We shall need the following simple lemma.

(1,2) Let H be an absolutely convex neighbourhood of zero in a locally convex
space E.If0 < & < 1, then ¢H < H.

Proof. If x € ¢H, the set x + (1 — &) H is a neighbourhood of x and hence inter-
sects £H. It follows that x + (1 - 5) hy = Eh, for suitable hy, h, € H. The set H
being absolutely convex, h; = —hy € H so that x = &h, + (1 — &) hy e H.

2. OPEN MAPPINGS

(2,1) Theorem. Let E and F be two LF-spaces and let T be a continuous linear
mapping of E into F. Suppose that the following two conditions are satisfied:

1° the mapping T is sequentially open,
2° the range of T is orthogonal in F,
Then T is open.

Proof. Denote by R the range of T'so that R is sequentially closed by proposition
(3,2) of [2]. Let U e U(E) and let us show that there exists a Ve U(F) such that
VAR < TU. We shall apply lemma (4,2) of [2]. Since R is orthogonal in F there
exists, by (1,1), a defining sequence F; of F such that F; 1 R, for each k > j where
R, = R n F,. Since T'is sequentially open, there exists, by (3,2) of [2], for each n
aH,c U(F) such that H, n R, = TU. Suppose now we are given j, , V; with the
following properties: 0 <& < 1, V¢ U(F) and V;n R; =« TU. We mtend to con-
struct a V41 € U(F) such that

1) ' Vis1 O Rjyy = TU
@ (1-g¥nF)<=V,

Take a Hj+1 € U(F) such that H;, N R;;y = TU. Since F; L R;,,, the mapping
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F; ®R;,; » F; + R;, is open so that (V;F,) + (H;+; 0 R;1;) is a neigh-
bourhood of zero in F; + R;. ;. Accordingly, there exists a We U(F) such that
©) Wo(F;+ Rjyy) < (V0 Fj) + (Hjsg 0 Ryyy) -
With ¢ = 4¢ define
H = conv (1 — o) (V; 0 F)), oW).

Let us show now that H n R;,; < TU. Suppose that pe H n R;, so that p may
be written in the form
p=dow+(1-2)(1-0)z

with0 £ 41 = 1,weW,zernFj.Ifl=0,wehavep=(1 —-a)zeVJ-nFj and
peR sothat pe V; n R; « TU. Hence we may suppose 4 > 0. It follows that
low=—(1—-2)(1—=0)z+peF; + Rj.y
whence w e F; + R;,, so that, according to (3), the vector w may be written in the
form w = zy + Tu, for a suitable zoe V; n F; and uy,e U. Since 0 <& < 1, we
have 0 < o/(1 — ¢) < Lsothatzyo = [6/(1 — 0)] zo € V; 0 F; as well. We have thus
p=00=-2(1—-0)z+ Aozo + AoTu, =
=1 =21 -0)z+ Ml —0)ze + A6Tug = (1 — 6) 9o + AT,
with zg90 € V; 0 F;. It follows that
Zgo0 € V;n F; n R = TU so that zgg9 = Tu for some ueU.

Hence
p=T[(l —0)u+ cluy|eTU.

This proves the inclusion H N R;,; = TU.
To sum up: we have constructed an absolutely convex set H with the following
properties: :

(4) H is a neighbourhood of zero if F (since H > aW)
©) (L-a)nF)cH.
(6) _ HAR,,, c TU

We intend to show now that it suffices to take V;,; = ¢H where & = (1 — ¢)/(1 — o).
First of all, the inclusion ¥}, € U(F) is obvious. Since V;.; = ¢H < H, we have
VisinRjyy c HnRjyy = TU and

M-e)(V;nF)=t1—-0)(V;nF;) clHclH="V,.
The proof is complete.

(2,2) Corollary. Let F; be an increasing sequence of Fréchet spaces such that
the topology of F;., induces the topology of F; on F;. Let (F, u) be the inductive
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limit of the sequence F;. Let R be a sequentially closed subspace of F. Let (R, v)
be the inductive limit of the sequence R N F; so that v is finer than the restriction ug
of u to R. If R is orthogonal in F then v = ug.
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