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Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

ON ACCESSIBILITY OF BILINEAR SYSTEMS 

JAN KUCERA, Praha 

(Received May 14, 1969) 

In this paper we will present an expHcit formula for solutions of a bilinear system 

a ß 

(1) X = ( Z ^ t " / ) ^ + Y^bjVj, 
i=l j = l 

where Л,-, i = 1, 2, ..,, a, are п-Ъу-п matrices and bj, j — 1, 2, .... ß, are vectors 
(both independent on time), and w = (м, i;) = (w^, ..., w ,̂ î i, ..., i;̂ ) ranges the set W 
of all vector-functions which are measurable on [0, oo) and have values in an interval 
[ - 1 , 1 ] " ^ " c : £ , ^ , . 

Further, we will construct an involutive distribution F on £„ (using the terminology 
of [2]) and show that the set of all points accessible along solutions of (1), which 
fulfil an initial condition x(0) = со, is just the maximal integral manifold of F which 
passes through ш. 

Notations. We use Euclidean norm ||. || in £„. Dimension of a finite-dimensional 
vector space i^ is denoted by dim i^. Symbol [p e P\ P(p)} represents the set of all 
elements p e P with property P{p). Any solution x(.) of (1) corresponding to w e W 
and fufiUing an initial condition x(0) = со is denoted by x(. , w, со). Finally, by / we 
denote a unit matrix. 

A connected set S a E^ is called an r-dimensional manifold if for each x e S there 
is an open nonempty set G a E^. and an injection (p : G -^ S such that 

1. хеф(а), 
2. cp{G) is open in S, 
3. Jacobian DcpJDt is continuous on G and its rank is equal to r for all t e G. 

A set S cz E„ whxh contains only one element is called 0-dimensional manifold. 
The matrices A^, ..., A^, and the vectors bj, ..., bp, from (l) are fixed throughout 

the whole paper. We denote by 'ul the smallest linear space which contains the matrices 
/ l i , ..., A^, and which with any two matrices P, ß e^l contains also QP — PQ. In 
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other words, "̂Л is the smallest Lie algebra, with a bracket operation [P, Q] = QP — 
— Pg, which contains /1 , , ..., A^. Further, denote by ® the smallest linear space 
which contains all b^, ..., bß, and fulfils an implication A e *i?r, Ь e Ж => У4Ь e ^ . 

Distributional equation. Associate with each x e £„ a vector space V(x) = 
= {Ax + b; A е^Л, b e Щ. Such mapping is in [2] called distribution. Let us form 
an equation 

(2) A- e K(A-) 

and call it distributional equation corresponding to the bilinear system (I). 
Solution of (2) is any function x(.) absolutely continuous on an interval J a E^ 

which for almost a.l\ t e J fulfils x(t) e V(x[t)), Beside this type of solution we define 
a "global" solution of (2) as any manifold S c= E„ whose tangent space T(x) at each 
xe S equals to V{x). Such manifold is in [2] called integral manifold of К 

It is proved in [2] that if Kdoes not change its dimension in £„ then for any x e £„ 
there exists an integral manifold of F which contains x. This assumption is not neces
sarily true in our case. Nevertheless, we will prove that the statement of this theorem 
remains true for our distribution V. 

Lemma 1. Let AQ G "ul, b^ e Ъ, OJ e E„. Let x(.) be a solution of an equation 

(3) X = AQX + bf) , x(0) = CO . 

Then dim V{x{t)) = dim V{(JJ) for any t ^ 0. 

Proof. Take a / > 0. Then x{t) = е^"'(ш + /[> e^'^'^'ат b^). For arbitrary A е'П, 
b e Ъ, WC have 

e^^'\Ax{t) + /7) - e'-'^'^'Ae^''' Lo + e'-^^'dTbA + e 'b. 

If we define Q = A, Q + j = [/4^, Q ] , к = 0, 1, ..., then all Q e "î?l and hence 
e-^otAe^ot ^ ^ ( ф ! ) С ; , е ^ Л . Evidently 

k>0 

c'-''»'drbo = Z 
(-1)^^^' 

/ego {k + \] 
/ln/?n e iB 

and 

-Aol b = Y. (-o^., 
fc ^ 0 к ! 

Hence (?~"^°'(/l A-(/) + b) e У{(о) which implies dim V{x{i)) = dim {e ^^'(/1 x{t) + b)\ 
Ae% ЬеЩ й dimK(a;). 
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Similarly, if we start at the point x(t) and go back along x(.) we get dim V(co) ^ 
S dim V{x{t)). 

Lemma 2. Let œ e E„. Take Р^е^Л, P /e ©, i = 1,2,.. . , A:, so that P ĉo + p,-, 
I == 1, 2, ..., /c, form a base of V(œ). Define a mapping cp : E,^ -^ E„ by 

(4) cpit,,...,t,) = e'^^^..,e'^^^œ + Y. 
0 

Then there exists a neighborhood G of origin in E^ such that (p(G) is an integral 
manifold of Vpassing through œ. 

Proof. Take an integer j \ 1 й j S k, and t e Ef.. Then the function Ф(т) == 
= (p[ti, ..., fy^i, T, 0, ..., 0) is a solution of (3), where ÄQ = Pj, b^ = pj, and the 
initial condition is Ф(0) = r/?(^i,..., ^y_i, 0 , . . . , 0). Hence according to Lemma 1 
for every t e E,,WQ have dim V{(p(t)) = dim 7(ш). 

(p is an entire function on Ej^, Let us write, for brevity, F^(t) = e^^^" . . . e^"*% 
t e Ef,, 1 ^ s ^ k, then 

= F,P,F;^ (F.CO + t^Fj Гe'''^^^ dtjp\ + F,^,p, = 

= F,P,F; ' (cp{t) - t F J Ге-''^'^ dz J p\ + F,H. .p,. 
\ J=^+i Jo / 

As F,P,F;'eSll and F,^,p, - F,P,F;' f Fj p^^-''^'^ dxj pj€^ we have got 
dq,{t)IÔt,eVi<p{t)). 

In particular ô(p{0)ldt^ = P^ ф(0) + p^ = PgCO + p^. Hence the Jacobian DcpJDt 
has at r = 0 rank equal to к and the existence of a set G follows from the continuity 
of derivatives dcpjdts, s = 1, 2, ..., /с. 

Lemma 3. Let S 1^2 be integral manifolds of V and S^ n S2 Ф 0. Then for any 
X e S^ n S2 it exists an integral manifold SofV which contains x and is contained 
in Si n 52-

P roo f can be found in [3], Lemma L4. 

Theorem 1. Through each x e E„ it passes an integral manifold S^ of V which is 
maximal in the sense that any manifold S of V containing x is a subset of S^, 
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Proof. According to Lemma 2 through each xe E„it passes an integral manifold 
of V. Fix this X and denote dim V{x) = r, Z = {y e £„; dim V(y) = r}. Let ZQ be the 
connected component of Z which contains x. Then thanks to Lemma 3 we can define 
a new topology in ZQ calHng open all subsets of ZQ wliich are representable as union 
of a family of integral manifolds of F. In this topology the connected component of ZQ 
which contains x is the sought maximal integral manifold S .̂. 

Theorem 2. For any œ G E„ the maximal integral manifold S^^ of V is a set of all 
points which can be linked with со by a solution of (2). 

Proof. It was shown in [3], Lemma L4, that all points on any solution of (2) 
which starts at со are contained in S^. On the other hand, take x e S^. Then there 
are integral manifolds S,-, i = 0, 1, 2 , . . . , Ic, given by formula (4), such that со e SQ, 
X e S}^, and S^_i n Ŝ  Ф 0, i = 1, 2 , . . . , k. It follows immediately from (4) that an 
arbitrary point x^ e SQ n S^ can be linked with со by a solution of (2). The mathe
matical induction completes the proof. 

Auxiliaries. We have defined a Lie algebra Ш, generated by matrices A^, ..., A^, 
and a linear space SB, generated by vectors fo^, ..., bß, which is closed with respect to 
multiphcation by elements from ^. We will call elementary any vector Ь e SB if there 
exist an index7, 1 S j S ß, and matrices Pi еШ, i = 1, ..., k, so that b — Р^Рк-1 • • • 
. . . Pibj. The index к will be called degree of b. Of course an elementary vector from SB 
can have different degrees. 

Let us repeat Lemma 2 from [4] as 

Lemma 4. For any Ae^ there exist an integer p > definite sequences Ö^, ..., a ,̂ 
a j , . . . , â , of positive numbers and a sequence i^, ..., f̂ , of integers from interval 
[1, a] such that 

(5) П exP Ы^'^'Л,^) =1 + At^ + 0{t''''') , t-^0. 
k=i 

We denote, for brevity, the matrix on the left-hand side of (5) by F^(r). 

Lemma 5. Be given АеЖ and an elementary vector Ь G SB. Then there exist an 
integer s > 0, a number T > 0, and a piecewise constant control w e W, such that 
for any XQ e E„ we have 

x{Tt, w{Tt), XQ) = XQ + (AXQ + b)t' + Oit'""') , r -> 0 . 

Moreover, w can be taken so that each vv̂ , 1 ^ i ^ a + ß, have only values equal 
a + ß 

to —1,0, 1, and Y, \^i\ = 1-

163 



Proof. As Ь e ^ is elementary there are matrices Р^е^Л, i = 1, ..., k, and an 
index;, 1 й j è ß, such that Ь = P^,... Pibj. To each P^ there corresponds a matrix 
function Pp., which we will in this proof denote simply by Fi, and an integer pi > 0 
such that P-(r) - / + FitP' + 0(r^'^^), t -^ 0. 

Now we distinguish two cases: 1. Assume Ä = 0. Put / I ( T , Г, XQ) = F^it). 
• (^ГЧО -̂ 'o + ^j'̂ ) "~ bß = '̂ 0 + (^i(0 — ^) ^j'^- Having defined, by mathematical 
induction, Д т , f, XQ) = XQ + {Fi{t) - / ) . . . (Pi(r) - / ) bjX, i = 1, 2, ..., s - 1, we 
put / , ( T , r, Xo) = / . - i ( - T , t, P , ( 0 / S - I ( T , ,̂ ^ ; 4 0 ^o)) = F,{t)f,_,{T, f, P ; ^ (0 Xo) -
- {F,_,it) - / ) . . . (Pi(0 - / ) bjT = Xo + (P,(0 - i ) . . . (Pi(0 - / ) b,T. 

If we denote P = YJPI ^^^ дь(^, ^o) = Л(^? ^̂  ^o) then we get 

(6) g,{t, Xo) = Xo + bt^ + OitP"-') , r -^ 0 

2. Let Ä e 'ï̂ l be arbitrary. Then there exists an integer ^ > 0 such that Fjt) = 
= I + At^ + 0(>^'^^), t -^ 0. Put s == max (p, q). Then there exist a number T > 0 
and a control w e W, fulfilhng all restriction on its range, so that 

x(Tr, w{Ttl Xo) = F^{t^^^) g,{fl\ Xo) = 

== (/ + ^ f + Oif-')) (xo + bf + 0{f^')) = 

= Xo + (Лхо + Ь) f + 0{f''') , r -> 0 . 

Lemma 6. Be given Л e Л an J ал elementary b еЪ, Then for any г > 0, Я e (0, 1], 
and CO e E„ there exist w e W and T > 0 so that 

x(r, w, œ) - e^^ ( <̂  + I ^~^' d^ Ь j < e . 

Moreover, the control w can be taken so that it is piecewise constant and its coordi-
a + ß 

nates w ,̂ 1 ^ f ^ a + ß, have only values ~ 1 , 0, 1, and ^ |wf| = 1. 

Proof. Take an integer m > 0 and put Xo = ĵ o =" <̂ ? 

f*A/m "("-^r di Ь I, f = 1, 2, ..., m , 

У1 = {I + ~-л]у1^1 + —b , Ï = 1,2, ..., m , 
m / m 

X = max 
f€[0.1] !r drfe 
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Then 

||y, - x,l| u(l+^ lA\\\ ||з^._, - x , _ , | + {~Y \\A\\ ^(^""»"^"(ll^li X + ||b||) 

This imphes 

II У _ X II < ( -— I 11Л11 P^^^' \\-Ут mil = \ I N^^il t: 
ЛИ i = i \ m / 

m m 
where 

С = (|U|| X + 1|Ь||)е^ 

There are matrix function F^ and a vector function '̂ь and indices p, q, correspond
ing to A and b. Put 5 = max(/7, g) and /i(r, x) = F^(t^^'^) g^{t^^^, x) and define 
points ZQ = CO, Zi = h{Xlm, 2^_^), i = 1, ..., m. Then there exists a constant К > 0, 
which depends only on A and b, such that for all /, I ^ i ^ m, we have 

Further, 

m / m 

l|z,.| ^ K ( l + l|z,_J 

T \ 1 + 1 /S 

^iC(l + | |z,_, |)(A^ 

!/, I(' 
\^i-

+ 

- l | 

Я 
m 

+ 

\ 
') 
X 

z 

(1 

• - 1 

b\ 

+ 

+ 

^ J 
— ь 
m j 

к). 
Hence 

liz,|l ^f l + (̂11^1 +A-)Y||cü|| +i(||b|| +K)t f l+-( |H| | +K) 
m J m j=-i\ m 

1̂1 + К 

< 

For any / = 1,2,..., 77t, we have 

I + ±A)z,_,+^b-(l + ^A]y,_,-^b 
m I m \ m I m + 

^ T \ 1 + 1 /s m / 2 , , 

Л - , +^^Ь 
Я\>+'/^ 

m 

" m/ 
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Finally, 

2 — Y "^ 7 i; 4_ Il V V 
[|-m -^m|| = W^m Ут\\ ^ \\Ут ^n < 

й AKLê """ [Щ'^ + C-==K, f^Y^ 
m J m 

It remains to take m so that Ki(A/m)^^^ < £. 

Main result. Theorem 3. Given œeE„. Then the maximal integral manifold S^ ofV 
is equal to the set of all points in £„ which are accessible from œ along solutions of 
the bilinear system (l). 

Moreover, each x e E„ can be reached from œ along a solution x(. , w, œ), where w 
a + ß 

is piecewise constant, its coordinates have only values —1, 0, 1, and ^ |w |̂ = 1. 
i = 1 

Proof. Evidently all points on any solution x(. , w, со) are contained in S^. On the 
other hand take x e 5^. Then there exist integral manifolds cplp^, i = 0, 1, ..>., /c, 
which have form (4), such that со e фо(^о)' ^^Я^Арк)^ ^ i - i ( ^ i - i ) ^ (pii^i) + 0> 
i = 1, 2, . . . , /c . 

According to Lemma 6 a point x^ e (po{Go) «̂  ^ i ( ^ i ) ^^n be reached from со along 
a solution of (1) which corresponds to a piecewise constant control, satisfying restric
tions on its values. By mathematical induction we conclude that for any e > 0 there 
exists a piecewise constant control Wg, satisfying restrictions on its values, and 
a number T^ such that \\x[T^, Wg, со) — x|| < e. 

Let dim F(x) = k. We can choose matrices Pie^ and elementary vectors P/ e 95 
so that PiX + Pi, i = 1, 2, ..., k, form a base of V{x). According to Lemma 5 for 
any z = 1, 2, ..., k, there exist a matrix function Fp. and a vector function gp^, 
denote them for brevity F^ and gi, respectively, and indices qi, r^ such that 

h.{t, x) = Fit'f'^^) g{t'l'\ x) = X + (P,x + p,) t + O(r^^'0 ' ^ -^ Ö ' -̂f > 0 , 

i = 1,2, ..., /c. 

Now, define Hi(t^, x) = h^it^, x), t^ e E^, Hi(t^, ..., ti, x) = hi{ti, Hi_i(t^, . . . 
..., Г,._1, x)), (^1, ..., O e £ , . , i = 1, 2, ..., k. Then Я^(^ x) = Hj,t^,,.., t^, x) has all 
derivatives of the first order continuous on Ef^, H,,(0, x) = x, and dHi^(0, x)\dti = 
= PjX + Pi, i = 1, 2 , . . . , fc. Hence there exists a neighborhood G a E^ of origin 
such that Hilp, x) is an integral manifold of V. 

Each point in ЯДО, x) can be reached from x along a solution of (1), corresponding 
to a piecewise constant control w, which fulfils the restrictions on its values. But for 
sufficiently small e > 0 we have x(Tg, Wg, œ) e Hjlp, x). This completes the proof. 

We have actually proved a slightly more general 
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Theorem За. Let ^ÎQ be a set of n-by-n matrices and ©o a set of n-dimensional 
vectors with a property: 

1. O e ^ , O G » O . 

Let Ш; be the smallest Lie algebra containing ^ÏQ and ® the smallest linear space 
containing ©Q which with be^ contains also Ab for any АеШ. Put VQ[X) = 
= {Ax + b; AE 5IO, b G ^ Q } ' K ^ ) ^ (^-^ + b; Ae Ш, b еЩ and form an equation 

(7) xeVo{x). 

Then for any со e E^ the set of all points accessible from a> along solutions of (l) 
is equal to the maximal integral manifold S^ of (2). 

Example . Consider an equation 

(8) X = Ax + Bu , 

where A, В are constant matrices of type п-Ъу-п, п-Ъу-т, respectively, and и ranges 
the set of all vector functions, measurable on [0, oo), with values in [—1, 1]'^'. 

Then the set of all points accessible from 0 along solutions of (8) is contained in the 
maximal integral manifold of the distribution F which passes through 0, where F is 
generated by matrix A and columns bj, j = 1, 2, ..., m, of the matrix B. 

Hence a classical necessary condition for controllability of (8), see [6], which reads: 

(9) ' 'a matrix with columns A^bj, j = 1, ..., m, fe = 0, 1, ..., n, has rank n"; 

follows from Theorem 3. 
If we instead of (8) have an equation 

(10) X = xAx + Bu , 

where all symbols have the same meaning as in (8) and x ranges the set of all piecewise 
constant functions which assume only values — 1, 0, 1, then it follows from Theorem 3 
that (9) is also a sufficient condition for controllabihty of (10). 
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