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1. INTRODUCTION

The aim of this paper is to investigate the existence of periodic solutions of several
boundary-value problems (with homogeneous boundary conditions) for the bihar-
monic wave equation in some bounded domain in E,, i.e. for the equation

(LY) w1, x) + A%u(t, x) + cu(t, x) + u(t, x) + uft, x) |u(t, x)| = £(t, %),

where f(t, x) is a given function, periodic in the variable ¢, and x e Q, where
Q < Ey is a bounded domain in Euklidean space Ej.

This original problem is solved in a somewhat more general form. The existence of
periodic solutions of a homogeneous boundary-value problems for the equation

(1,2) u(t, x) + Au(t, x) + uft, x) + u(t, x) |u(t, x)| = £(t, x)

is investigated, where A is a elliptic differential operator of the order 2k, k-natural,
of the form
(1.3) Au(x) = 3 (=1)" D¥(a;(x) D7 u(x)) .

lil. il sk

Thus a similar problem for the wave equation (i.e. A = —4), which has been
solved by G. PROUSE in the paper [8], is included here. The technique of Prouse’s
work has become the base of the present paper. A similar problem for the wave
equation, but with more general non-linear term, is solved also by G. PropI1 (in the
paper [7]). '

We shall consider weak solutions of the equation (1,2) which satisfy the boundary
conditions in some generalized sense. The precise formulation of these concepts will
be given in the sequel. The periodic solutions of our problems will be constructed
with help of the Galerkin approximation procedure often used in such cases.

After necessary mathematical preliminaries (section 2), section 3 contains a precise
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formulation of the given problem, i.e. the definition of a weak periodic solution of the
boundary-value problem for the equation (1,2). The existence theorem is formulated
in section 4. In section 5, the demonstration of the existence of the Galerkin approxi-
mations is presented. The estimates of these approximations and the proof of the
convergence of a certain subsequence of the approximative solutions are contained in
sections 6 and 7. In section 8 the uniqueness of the solution is established. Even-
tually, some special problems for the wave and the biharmonic wave equations are
studied as examples.

Because of application of imbedding theorems in the proof of the existence of the
solution, the dimension of the space Ey, in which the problem is considered, is
limited. We shall be-able to prove the existence and the uniqueness of the solution in
the space E; for the second-order operator and in the space E5 (maximally) for the
operator of the order 2k, k = 2.

2. PRELIMINARIES

First, we shall recall definitions and basic properties of some well-known function
spaces. Further, the definition of the spaces of functions which are Bochner integra-
ble, the differentiability in these spaces and some necessary theorems for these spaces
will be presented.

We denote by Ey the N-dimensional real Euklidean space. All functions, if not said
otherwise, will be considered as real-valued ones. Let Q be a bounded domain in Ey;
2(Q) is a space of functions, which have all derivatives in Q, with a compact support.
As usual, we denote by LP(Q), 1 £ p < o0, the space of all functions v, Lebesgue
measurable in Q and such, that Lebesgue integral [, |v(x)|”dx is convergent.
L,(Q) is a separable Banach space with norm [v|z,) = ([ [v(x)|” dx)'/?. The space
L,(Q) is a Hilbert space with inner product

(u, V)1y00) = f u(x) v(x) dx .
2
Let o = (04, ..., oy) be N-dimensional vector with o; > 0 integer for i = 1,2, ...
N
.., N. Let us set ]ot| = Z o;; we shall use notation
i=1

oy

Dﬂu = '—a—"""T .
1 N
0x7' ... Oxy

As usual, the function v is called the generalized a-derivative of u, if the relation

L} u(x) D* p(x) dx = (— 1)l f v(x) p(x) dx

Q

holds for all functions ¢ € 2(Q). We denote v = D*u again.
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The space W(Q) (k non-negative integer, p = 1) is the linear space of all functions

u € L,() having the generalized derivative D%u € L,(Q)for || £ k. The space W ()

is a reflexive Banach space with norm |uly @) = (Y. |Du|l,0))'/". We shall use
la] Sk .

notation W;(Q) = H,(Q) (for p = 2). The spaces Hk(Q_) are separable Hilbert spaces
with inner product

(0w = T [ 0709 Do x.
al £ Q

Norm in the space H,(Q) will be denoted by |.|g,0)-

The space W¥(Q) is the closure of 2(Q) under norm of the space W,”(Q). We
shall denote W{(Q) = H,; it holds Ho(Q) = Ho(Q) = L,(@), and for k = 1 the
space H,(Q) is the proper subspace of H(Q).

Let us recall three of the known imbedding theorems (see, for example, [5]).

Theorem 2.1. Let Q < Ey be a bounded domain with lipschitz boundary, p = 1,
k.p<N,1/qg = 1[p — kIN. Then W?(Q) = L(Q) in algebraic and topological
sense. Further, if 1 2 1/q > 1]p — k[N, the identical transformation from W"(Q)
into L,(Q) is compact. ,

Theorem 2.2. Let Q@ = Ey be a bounded domain with lipschitz boundary,
p=1, k.p=N. Then W(Q) = L(Q) for all q = 1 (algebraically and topolo-
gically). The identical transformation from W*(Q) into L(Q) is compact.

Theorem 2.3. Let Q — Ey be a bounded domain with lipschitz boundary, p = 1,
kp>N. Set p =k — N|p for k—N[p<1 and let p <1 for k —N[p=1
and p =1 for k — N[p > 1. Then, W*(Q) = C*(Q) algebraically and topo-
logically. Further, the identical transformation from W{(Q) into C(Q) is compact.

(Here, C(*(Q) denotes the space of functions u(x), which are continuous on &
and such, that there exists a constant ¢ > 0 such, that |u(x) — u(y)| < c|x — y|*
for all x, ye Q.)

Now, all linear normed spaces will be considered over the field of real numbers.
Let H be a separable Hilbert space with inner product {., .), and with norm || o
If M < E,, we denote by u : M — H a function which is defined on the set M and
values of which are in the space H. Continuity and strong derivative of such function
are defined by the same way as in the case of real-valued function (see, for example,
[3]) Let I be an interval in E;. We introduce the following notation:

d®y . .
CH®(1, H) = {u; u:l - H, v is continuous in I} s
t

CP(I, H) = {u; ue C®(I, H) and supp u is compact in I°} ,
C(T,H) = {u:E,— H,uis continuous in E, and T-periodic} .
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Now set I = (a,b), —o0 = a <b = +o. We denote by L'(I, H) the space of
functions u : I — H which are strongly measurable and Bochner integrable on I; it
is a separable Banach space with norm

b
[u]escrmy = J |u(t)] s dt .
a

Further, we denote by LZ(I, H) the space, consisting of strongly measurable func-

tions u :I - H with [} |u(t)|f dt < oo; it is a Hilbert space with inner product

(u, v)pacr,my = [4(u(t), o(t))y dr. Finally, the space L”(I, H) consists of functions

u : I — H which are strongly measurable and such that supess [u(t)[ u < o0. The space
tel

L*(I, H) is a Banach space with norm [u|,»(r,u) = supess |u(t)|4.
. tel

Let T > 0. A function u, defined a.e. in E, with values in H, is called T-periodic, if
the following holds: if u is defined for ¢ € E,, it is defined also for ¢ + kT, k integer,
and u(f) = u(t + kT). We denote by I’(T, H) (p = 1, 2, o) the space of T-periodic
functions u such, that u € I?((0, T), H). (T-periodic function means the equivalence
class of functions, which is represented by any T-periodic function (in the sense
above).)

Definition 2.1. A function ue I’(I, H), p = 1,2, © is called differentiable in
I7(I, H) with a derivative v e I(I, H), if the relation

j () (O dt = — j (0(0), o0
I 1
holds for each function ¢ € C§"(I, H).

Definition 2.2. A function u € I”(T, H), p = 1, 2, o is differentiable in (T, H)
with a derivative v € I’(T, H), if the relation

+ o0 + o0
[ oopman= - [ o
holds for each function ¢ € C{"(E,, H). (We shall denote this derivative by u')
Lemma 2.1. Let u € I*(T, H) be differentiable in I*(T, H). Then there exists a con-

tinuous T-periodic function @ : E; — H such, that u(t) = @(f) a.e.in E,, while
i(f) may be written in the form

(1) = a(0) + J"u’(r) dr

0

(the integral above is ment in the Bochner sense).
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Proof. According to Theorem 2.2 from [11] it holds: if I = (a,b), —0 S a <
< b £ 4+, ue I}(I, H) is differentiable in I*(I, H) with derivative u’, then

B

u(2) — u(B) = J u/(e)de

a

for almost all (further we use abbreviation a.a.) o, fel and u(r) is equivalent
in I*(1, H) to an absolutely continuous function

a(t) = di(e) + J‘u'(r) dr.

Now, let us consider the intervals I, = (—n, n)>, n natural. Then there exist a

set M, =1, p(M,) =0 and the function u,(f) = u,(0) + [§u'(t)dr such, that

u(t) = u,(t) for all tel, — M,. Evidently, u,(0) = u,(0) for all m, n; (namely, if

u,(0) * u,(0) for some m, n(m > n for instance), then there would be u,(f) *

+ u,(t) for all tel,, which is clearly impossible.) We denote M = U M,, (1) =
n=1

= u(0) + [§ u'(r) dr. Obviously, the function #(r) is continuous in E, (see, for
example, [3]). Further, u(M) = 0 and for all te E; — M there is u(t) = a(z). It
remains to prove that ﬁ(t) is a T-periodic function. But this fact follows easily by
continuity of #(x) and by the definition of T-periodicity of u(x).

We mention one another statement ([11], Theorem 2.3), which will be used later.

Lemma 2.2. Let I = (a,b), —0 < a < b < o, and let u,ve [*(I, H), respec-
tively, be differentiable in I?(I, H), with derivatives u’, v', respectively. Then

r(u’(t), o)) dt + r(u(t), o' (O)u dt = (u(b), o(b))w — (u(), o(@))n -

Proof. (We sketch it for completeness.) According to Theorem 2.2. from [11] the
functions u, v can be written as

u(i) = u(a) + f "w)dt, o) = ofa) + f'u'(f) de, tel.

It follows by properties of the Bochner integral, that u(z) or o({), respectively, have the
strong derivative u'(t) or v'(¢), respectively, a.e. in I; further, inner product (u(z), v(t))g
is a absolutely continuous real function in I and the derivative

& (0, o0 = (0, o)+ (). YO
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exists a.e. in I. Whence, the statement of this lemma follows easily (using well-known
properties of the Lebesgue integral).

From Lemma 1 and Lemma 2 this consequence results :

Lemma 2.3. Let u, ve L*(T, H) be differentiable in L*(T, H). Then

j :(u’(t), o) dt = — J :(u(t), V() dt .

3. FORMULATION OF PERIODIC BOUNDARY-VALUE PROBLEM

Let Q@ = Esfor k = 2integer and Q < E;, if k = 1, be a bounded domain with the
lipschitz boundary. Let a;;, |i|, |j| £ k be real-valued functions defined, measurable
and bounded on Q.

We consider the differential operator

(3.1) A= ¥ (=1 Diay(x) DY),

lil, lil =k

ijs

to which we associate the bilinear form
(3.2) (u, v)) = Y a;(x) D' o(x) DY u(x) dx,
o lil, il sk

which is defined and continuous on Hy(Q) x Hy(Q).

Let V, H(Q) = V < H(Q), be a linear subspace, closed in H,(®). (For brevity in
notation we shall use only H, instead of H,(<).)

Definition 3.1. Let f € I*(T, H,). A function u : E; —» V is called a weak solution

of the periodic boundary-value problem corresponding to the space V for the
equation

(33) u'(t) + Aut) + w'(@) + () [w(0) = f(2),

if ue L°(T, V), u is differentiable in L*(T, V) with the derivative u’ € L*(T, V), u’ is
differentiable in L*(T, H,) with the derivative u” € L*(T, H,), and the relation

6o ﬂwm&w+w@wW+wwwm+
-MﬂMﬂ%d%m=ﬂO@ﬂmm

holds for each function ¢ € I*((0, T), V). (We denote, for brevity, (., .) inner product
in H,, and |.|, norm of space L;.)
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We shall call this problem the periodic V boundary-value problem and we shall use
the notation 2(V, f) or briefly 2(V).

Remark 3.1. For a.a. t € E, there is u’(¢) € V, and therefore, according to Theorem
2.1 (imbedding theorem) u'(f) € L, for N < 4k; thus, the integral [g (u'(t) |u'(Y)],
¢(?)) dt is meaningful for the dimension, which we consider.

Remark 3.2. (The interpretation of a solution of 2(V).) Let u be a solution of the
problem 2(V). Let {v,},., be a dense countable subset in V (Vis a separable space).
Consider functions ¢(t) of the form ¢(t) = y(t) v,, where y(t) € C o.1y; then () e
e I*((0, T), V) and thus

(39) j :{(u"(o, o) + (@) v)) + (W) ) +
(W) O] o)} w(0) dr = j:mt), o) Y(1) dt

As the space Cqo,1y is dense in L,(0, T), there exists a set M, = <0, T, u(M,) = 0
such that for all t € (0, T) — M, there is

(3:6) (@), o) + ((u(®), v2)) + (W (0), ) + (WO [ (O)], va) = (£(2). v,)-

If we set M = U M,, then u(M) = 0 and (3.6) holds for t€ <0, T)> — M and n =
n=1

= 1,2, ... It results from the density of the set {v,},>, in ¥, that

(3.7) ((u(®), v)) = (=u()) = w() = w(®) [w ()] + f() v)

holds for allveVand t€ {0, T) — M.

There is a known fact, that we can associate to the form ((u, v)) the linear, in general
unbounded, operator 4, the domain of definition of which, D(4), consists of veV
for which the mapping

(3.8) 0= ((u,v))

is continuous in the topology of the space H, (see, for example [4]). The space V is
dense in H, obviously (because 2(Q) = Vand 2(Q) is dense in H,), and so the
mapping (3.8) may be extended for ve D(A) linearly and continuously onto the
whole space H,. Then the mapping (3.8) is continuous linear functional on H,, and
thus there exists an element, which we denote by 4u, Au € H,, such that ((u, v)) =
= (Au,v)forallveV.
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Let us show that the operator (3.1) corresponds to the form (3.2) in this sense. Let
ve 2(Q). Then

J. Yy a;DwDiudx = Y (=1)"! D(a;;D'u), vy,
olil,ljlsk lil,lil sk

where the derivatives D are derivatives in the sense of the theory of distributions.
But for u € D(4) the mapping v > ( Z (=1)"" D¥(a;;D’u), vy is continuous in

li],]Jj] Sk

the topology H,, and therefore

(=1)!" Di(a;;D’u) € H, .
lil.lil =k
Thus, if u € D(4), then A4u = Y. (—1)!I Di(a;;D’u) (in H,).
lil,1il sk

So, for u € D(A) there is ((u, v)) = ( Y (=1 Di(a;;Du), v) for each ve V.
lil,1il =k

According to (3.7), the mapping v — ((u(f), v)) is continuous in norm of H,
for t € <0, TY) — M; thus Au(t) € H, for these ¢ (the derivatives are considered in the
sense of distributions) and the equation (3.3) is satisfied in the sense of H, for te
€0, TS — M

The choice of the space V corresponds to the boundary conditions of considered
problem. Let us take, for instance, A = 42 and V = H,; by the definition (3.2), there is

(39) (w0) = L

@ iJ= 16x 6x 6x,.6xj

Using the Green theorem in (3.9) formally (n; denotes the i-th component of the
exterior normal in the boundary 0Q of Q), we have

n;dS —

F Y o % L 4o & Pu v
Jo ii=1 0x; 0x; " ox; 0x; og; ini=10%; 0x; 6x

S I AL M R i I
@ i.i=10x} 0x; 0x; a0 i=1 0X; 0X; 6x !

r N 4
Fu vn; dS + Y azuzvdx.
Joo ii= 1 0x? 0x; o bi=1 0X} 0x;]

The two area integrals vanish, because ve H,. Thus, here the boundary condi-
tion is determined only by the condition u € H,, which means, that u and dufon
vanish on dQ in some generalized sense. The choice ¥ = H, corresponds to the
Dirichlet problem for biharmonic operator.

Other examples will be treated (as application of the general theory) in the last
section of the paper.

|
M =z
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4. EXISTENCE THEOREM FOR PROBLEM Z(V)

Let us consider the problem 2(V) for the operator (3.1) with the corresponding
form (3.2) again. The existence of the weak solution of this problem is established in
the following theorem.

Theorem 1. Let I, = V = H,, V be a closed subspace of H,. Let for all u,veV

(4.1) ((u, 0)) = (v, w)) »

and let o > 0 exist such, that the inequality

(42) ((us w) 2 olulz,

holds for all u € V. Let f € C(T, H,), f be differentiable in [*(T, H,). Then there exists
a function u : E; >V, ue L*(T, V), u is differentiable in L*(T, V) with the deriva-
tive u', where u’ is differentiable in L*(T, H,) with the derivative u” such, that the
relation

j :«u"(t), o) + ((w(2) #(0) + (W (2) o(0) +
+ (@) [W ), o)} dr = j :(f(t), o(1)) di

holds for each function ¢ € L'((0, T), V), i.e. a weak solution of the problem #(V, f)
exists.

Remark 4.1. The form ((u, v)), which is defined in (3.2), defines (under the assump-
tion (4.1)) new inner product in V. If (4.2) holds, then norm | . |, which is determined
by this new inner product (i.e. |u| = (4, u))'/?), is equivalent to origin norm |. |4,
in V. Hence, the space ¥ with inner product ((., .)) is a separable Hilbert space again.

To prove Theorem 1, we use the Galerkin approximative procedure. Choosing
suitably a sequence {g;};~, < V, which spans V, we shall search for the m-th appro-

ximation u,(t) (m = 1,2,...) in the form u,(t) = Y o4,(t) g,,» where o,,(1) (k =
=1

=12,..., m) are T-periodic, twice continuously differentiable real-valued functions,
so that u,,,(t) may satisfy the system of the equations

(4.3) (n(®). 0,) + (unt). 9))) + (unl1). 95) +
+ (un(®) |un(®] 9,) = (F()r9)» (G =1,2,...,m).

Some estimates of these approximations u,,(t) enable us to establish the convergence
(in a certain sense) of a certain subsequence of sequence {u,,(t)} - to a weak solution
of our problem (V).
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We choose the system {g,} %, as the system of all eigen-functions of the boundary-
value problem, which is given by the operator 4 and the space V. (As usual, a number 4
is called the eigen-value of the boundary-value problem, which is given by the ope-
rator A and the space V, if there exists an element u € ¥, u # 0 such, that ((u, v)) =
= l(u, v) for all v € V. The function u is called eigen-function, corresponding to the
eigen-value A.) Under the assumptions (4.1) and (4.2) of the Theorem 1, the eigen-
values of the operator A constitute an infinite non-decreasing sequence {g,};%1,
where g, = Oand lim ¢, = + co. Further, there exists an orthogonal (with respect to

n—ow

inner product ((., .))) complete system of eigen-functions {v,};>, in V, where v,
corresponds to the eigen-value g,, such that

(v v) = Vej V(@) 3, (vjv) =0y

(see, for example, [5]). Then, we can put g, = v, (n = 1,2, ...).
To define the approximations u,,(t) in the form

(4.4) ) = 3 1) 91

where o,,,(t) are real-valued, T-periodic functions, so that the relation (4.2) may hold,
it is necessary, with regard to the previous choice of the base {g;};2,, to find a T-
periodic solution (ty,,(t), ..., &m(t)) of the system of ordinary differential equations

(45) ) + 00al) + 80al) + (£ 200 9, 20 0} 9 = 59

(k = 1,2,..., m), where f,(t) = (f(1), 9.)-
Before the investigation of the existence of a solution of the system (4.5), we shall
prove two easy assertions, which will be used later.

Lemma 4.1. Let fe C(T, Hy), f' € LX(T, Hy). Then the functions f,(t) = (f(¢), 9i)
(k = 1,2,...) are continuous, T-periodic and they have the derivative df(t)/dt =
= (f'(?), g) € L5(0, T) for almost all't € 0, T).

Proof. Continuty and T-periodicity of f,(r) follows immediately by the assumption
fe C(T, Hy). Further, from the existence f’ € I*(T, H,) it results (by the properties
of the Bochner integral) that f(t) is even an absolutely continuous function in <0, T
and that there exists a strong derivative f’(f) a.e. in <0, T). Hence, the function
(1) = (f(t), g.) is also absolutely continuous in <0, T) and it has the derivative
fit) = (f'(1), g) a.e. in E,. Evidently, (f'(t), g,) € L,(0, T).

Lemma 4.2. Let fe C(T, Hy), f' € I(T, Hy) and let {o;,(1)}7=1, where a,,(1)
(i=1,2,...,m) are twice continuously differentiable T-periodic real-valued
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functions, be a solution of the system (4.5). Then the functions o;,(t) (i =1, 2, ..., m)
have the third derivative ,,(t) for almost all t € 0, T and ©;,(t) € L,(0, T).

Proof. As
Sn(t) = fil) = San(t) — €in(?) — (.Zldjm(t) gjlzldjm(t) gil 94) »
j= Jj=
it will be sufficient to prove that there exists (at least a.e. in <0, T)
d & < .
— (X ;) gl 2 dnt) g, 9:) -
dt j=1 =1

It can be shown easily, that if there exists (), continuous in <0, T, then there
exists the derivative (d/df) (Ju(?)| u(t)) = 2 4(t) |u(?)|, continuous on <0, T). Thus,
for x e Q fixed, there is

2 (E0ml0) 09| £30 0,09 = 25 500 0/) | £ 0 09 -

There exists a constant K > 0 such, that |&;,(t)], |d.(t)] £ K for te {0, T) and
m

j=1,2,...,m. Then, because K*( Y. |g,(x)|)* |9x(x)| is integrable in Q (g; € L; by
J=1

the imbedding theorems), we have (using the known facts about the derivative of
a integral)

d &, © . < .. < .
ar (j;“im(‘) gilj;“fm(‘) gil 9) = 2(1_;“;'"(‘) g,~|j§1a,~m(t) gl 91) -
Evidently, %,,(f) € L,(0, T). This completes the proof.

Remark 4.2. In the proof of Lemma 4.2 we considered the vector-function
u,(t) : E; > Vas a function of variables t € E; and x € Q. Obviously, if u € L*(T, V),
then there exists a function U = U(t, x), defined a.e. in E; x Q such, that the vector-
-function i(f) : E; — V, d(f) = U(t, .) for almost all ¢ € E,, represents the function u.
Any use of this point of view will be clear from the context. We shall use the notation
u,, for both interpretations of the function u,,.

5. EXISTENCE OF GALERKIN APPROXIMATIONS
Now, let us proceed to the solving of the system (4.5) of the non-linear ordinary
differential equations, with help of which the Galerkin approximations are deter-
mined. Likewise in the paper of G. Prouse, it will be used the following theorem of

L. Amerio ([1]).
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Lemma 5.1. Let

(i) a matrix A = |a,| be a m x m matrix, symmetric and such, that the quadra-
tic form 'kilaikéiék is positiv definit;

(ii) the vector-valued function F(t) = (f(t), ..., fu(t)) be defined and continuous
on E, and T-periodic, while |F(t)|,, < M, M > 0 for t€ E,;

(iii) the vector-valued function ®(Y) = (¢1(y1s - Ym)s ---» P V15 - -+» Ym)) be con-

tinuous on the whole space E,, and

timint PO Ve _ o0 fiminf |65, > 2L .
i¥ig, o |D(Y)|g,. |Y]e. Y|, o h

Then the system of differential equations
X'(1) = —AX(1) - 2(X'(1)) + F(2)

(where X(t) = (x4(t), ..., x,(1))) has at least one T-periodic (classical) solution.
In our case the matrix A has the form

91505 70
A= 0’ QZ)~‘~’0

Since ¢; =2 0, > 0 (i =12,..., m), the matrix A is positiv definit. The function
F(t) = (fy(t), ..., £,,(t)) is continuous, T-periodic vector-valued function (by the
assumptions of Theorem 1). Further, at the system (4.5) there is @y, ..., V) =

=y, + (Z Vi I Z ykgk|, g,-) (i =12,..., m). Let us show that the function
k=1 k=1

DY) = (@1(y1s - Ym)s -5 @m(V15 - -» V), defined in this way, satisfies the assump-
tion (iii) of Lemma 5.1. The continuity of ¢(Y) on E,, follows from continuity of the

mapping Y — Z Vil Z ygi| from E,, to H, (for our dimension) immediately. We

can show by the same method as in the paper [8] that the two estimates of (iii) are
satisfied, too. For completeness, we shall repeat this proof once again.

There is, namely,

(CRY (@(Y), Y)e,, =

m

[ Z kgkl Zykgkl g)] yi =

I

n[\’]s TI'MS

+ 2( Zlykgklk;ykgkl, yigi) =
3

_ |Y|§M+J | S0 ax = V3 + ¥
Q=
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(As the mapping Y - Y’ y,g, is isometric and isomorphic, we denote )’ y;g; also
by Y.) Further, i=1 i=1

[0)s, = [V, + (5 (417} 0017

Applying the imbedding theorem 2.1 and the generalized Holder inequality, we
obtain

2 4/3 2/3
(YlYl,gozé(j I¥? lgildx> é(j |Y|3dx) (j |gi|3dx) Y a2
(2] 2 (93

Further (applying again Theorem 2.1), we have (for i = 1,2, ..., m)

|9ils < clgilm, < ¢fgi] = ¢ Voi < ¢ Jom,
and hence

(;}(Y[Yl, g2 < (;llyl‘; 922 < |3 (Z:lczgi)l/z S |Y3(m) . cfom-
Thus,
12(V)]e,, < [Y]5, + ¢ \/(men) [Y[3 = [Y], + ¢ /(men) [Y]3 -
From here and (5.1) it results '
@)V o PEE
12(V)ls,, Y]z, — (]2 + e /(mew) [Y[) [Y]: ~
S Y3 + |¥]3 > 1
T Y+ ¢ (men) [Y]3 T ¢ /(mew)

for all natural m such that, ¢’ \/(mg,) = 1. (Naturally, we consider |Y|g, + 0.)
Hence, there is

iminf -0 Ve, o !
1¥ig,~o |2(Y)|g,, [Y]e, ¢ (me,)

for these numbers m. Further,

lqs(y)'Em = sup (Q(Y)’ Z)Em > (d)(Y)I’ Y)Em = |Yl12‘3m + ‘Ylg > lylEm .
z1zo |Z]g, [Yle., |¥le.,

(We used (5.1) again.) From here we obtain that

=h>0

lim inf |&(Y)|g,, = + 0,

IY|g,,~©

i.e. the assumption (iii) is also fulfilled in our case.

387



Obviously, there exists a natural number m,, such, that the inequality ¢’ \/(mg,,) =
= 1 holds for all m = m,, m natural, and hence, for each m = m, there exists (by
the lemma 5.1) at least one T-periodic solution o,(f) = (0tyn(2), ..., %mm(t)) of the
system (4.5). Thus, the approximations (4.4) can be defined for all m = m.

6. ESTIMATES OF GALERKIN APPROXIMATIONS

In this section, all necessary estimates will be established, which enable us to find
a subsequence of the sequence of the Galerkin approximations {u,(t)}m-n, whose
limit will define a solution of our problem.

According to the definition, the functions u,,,(tj (m = mq, mg + 1, ...) fulfil the
system

(6.1) (), 9 + (D), 9)) + (it), 94) + (@) [un (D], 9) =
=(f(1) a0, (k=1,2..m).

Multiplying the k-th equation of the system (6.1) by the coefficient d,,(f) and adding
up all these equations, we obtain

(62) (un(®), wn®) + (un(0) w(B) + [un(®)]3 +
+ () [un(®)]s ua(9)) = (F(2), (1)) -

According to properties of the function u,(f), we obtain (from (6.2))

(63) S @ + JuaIP] + Ol + 02 =
= (0. 0) = Oz [0 -

By the integration of (6.3) from 0 to T, we obtain (with regard to T-periodicity and
continuity of u,(t), u,(f) and with help of the Schwarz inequality) the relation

(6.4) J?u,’,,(t)l% dt + ﬁu;,,(t)]g dt £ < J‘ :[ 3 dt)”2 <ﬂ|u,’,,(t)|§ dt>”z .

From here, it follows
T T

(63) [l ars [ 0B = x,
0 0

6.6) '[ )t < j :| FO)Rdt = K, .
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Multiplying the k-equation of the system (6.1) by the coefficient o,,(¢) and adding up
all m equations, it results

(6.7) (n(®)s un(©) + ((un8)s () + (ui(0)s ) +
+ (un(®) [un(0)], un(t)) = (F(8), (1)) -

From (6.7) we obtain (using T-periodicity and continuity of u,(?), u,(f) again)

(©.8) K”um(t)llz dt < (E\f(t)li dt>1/2 . < :lum(t)li dt)llz N
(st + [0, 0w

Now, according to Remark 4.2, we shall consider the vector-valued function u,(f) =
=Y o,(f) g« as a function u,, = u,(t, x) of the variables te E; and xe Q (we
k=1

denote by Q; the domain (0, T) x Q). Obviously, u,, € H,(Q2y). Then, by Theorem
2.1 u,, € L3(Qy) for our dimensions (N < 5) and there exists a constant ¢ > 0 such,
that

(6.9) [t Laory S ltmlmom =

<o) (]

As u,(t) e Vfor every t € €0, T, it holds by (4.2) the inequality

(6-10) |tm(B)]a, < e1]Jun()], e >0.

Using the Holder inequality (¢, = 3, ¢, = 3), we get

610 [0, b0l ma@) o < ( a0l O

< kP [K}/Z ‘e (ﬂuum(t)nz dt>”2],

by (6.5), (6.6), (6.9) and (6-10). Now, from (4.2), (6.5), (6.8) and (6.11) it follows
easily, that

) | a0 = (j:num(ouz a)” ekt + (I 1P dt)”z] ¥

+ K, + cK}PK}/*.
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Solving the inequality above (that is the inequality of the form x? < Ax +
+ B, x, A, B > 0), we obtain immediately, that there exists a constant K, > 0 such,
that

(6.13) 'E“u,,,(t)uz dt £K,.

\

We know (see Lemma 4.2) that for almost all ¢ € €0, T there exists %,() and G,

€ Ly(0, T). If we put u,,(t) = Y %n(t) gi» the function u,(¢) fulfils the identity (as it
was mentioned above) k=t
(6.14) (wn(®) 9) + (n(1): 94)) + (un(0). 94) +

+ 20000 [0 9) = (LD, 9 (& = 1.2, m).

Let us multiply the k-th equation of (6.14) by the function &,(t) (k = 1,2, ..., m)
and add up all obtained equations. We get

(6.15) (n(®), un(0) + (un(8), wn(1) + [un()]z +
+ 2up(?) [un(D)], un(9) = (£(1), un(?) -
Using the properties of u,,(t), we get from (6.15)

1d

el Ilt 2 +
2 dt [Iu'n()ll

un ] + [un(®fz + 2040 [ (O] (1)) = (F'(2), un(®))

(6.16)
Integrating (6.16) from 0 to T and using T-periodicity of u,(f), u,(t) again, we obtain

(6.17) [zt an + 2 [[) oc00), iy o <

<([rone)” (o)

Since the two terms on the left-hand side of (6.17) are non-negative, it holds

: T AT
(6.19) j Ol a5 | @ ae = &,

and

(619) [ el ey e ] [ropa - x..
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Now, let us multiply the k-th equation (k = 1,2, ..., m) of the system (6.14) by
im(?) and add up all the equations again. We obtain

(6.20) (un(®), @) + [un(O]? + (un(2), un() +
+ 20up(0) |un(@)], un(t) = (1), w, (1))
and hence

(6.21) a‘l—t(uﬁ;(t), () = [un ()3 + [un()]* + %% lunt)]3 +

+ 20up(t) unB)], 1)) = (f(2), (1)) -

By the integration of (6.21) from 0 to T'we have
T T 1/2 T 1/2
(6.22) J (]2 dr < ( J 172 dt) . (j (02 dt) n
4] 0 0
T T
o [ ot e 2 [ 20 0 i) o
0 ]

Evidently, to estimate the integral [ ”u,’,,(t)“2 dt, it suffices to estimate only
Jo](un(2) |un(2)], un(2))] dt; consider again u,(f) as a function u,, = u,(t, x) of the
variables t € E; and x € Q. Then

T T
[ e ol e s [ | ot 0] e O e O aear.
0 0J Q2
Using the Holder inequality (9, = g, = 2), we have
(6.23) j ' f ] g7 a7 e dt <
0JQ
T 172 T 1/2
< q J. unlt, E)|? |un(t, €)| A& dt) <j I |un(t, ) & dt) < VK, . JK,
0J Q2 0J Q2
by (6.6) and (6.19). Then, according to (6.23), (6.22), (6.18) and (6.5) we get
T T 1/2
(6.24) I [un(®)||? dt = ( J l7@)\3 dt) VK + K3 + 2 J(KKy) = K5 .
0 0

It follows by the inequalities (6.5), (6.13), (6.18) and (6.24), that there exists a constant
K¢ > 0, not depending on m, such that

(10800 + 101 + B + ] et < o
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Obviously, then there exists ¢, € {0, T) for each m = my, my + 1, ... such that the
following inequality holds

Ks

=K.

(6.25) lun(tn)l + Jun(t)]® + [unlta)lz + Ju(t)]* =

Now, let t €0, T) be arbitrary but fixed for a moment, and let m = m,. If we
integrate the identity (6.3) from ¢,, to t, we obtain (using continuity of the function

[un®]” + T O13)

@3 + )] = Junta)lz = Junltn)]z +

T t
+ ZJ {lun(@)3 + |un(®)|3} dr = 2‘[ (f(2), up(v)) dr .
tm tm
Hence, according to the previous results, the following inequality holds

(6.26) a2 + [unD]* < [tz + [unlta)]* +
T T 12 spT 172
12 f (@) + ()] de + zq {f(t)lgdt> ( ‘f ()3 dt) <
0 0 0
T 1/2
<K, +4K, + Z(j‘ [£(0)]3 dt) K12 = K, .
0
The integration of the identity (6.16) from t,, to t yields

(627) @z + Jun®)® = Jun(tn)lz = [un(ea)] +

+2 f (O de + 4 j (o) ul (), (o)) de = 2 f " (), @) de

and hence, with help of the previous results, we get
(6:28) @1 + Jun()* = fun(en)ls + Jun(ea)]* +

42 J :|u;;(z)|§ dr 4+ 4 ‘f :(u;,(t) (0 us(9) dt +

2 ( f :| £ dt)m . ( f Ju;(t)|§ at)”z <

; ( (T, \1/2 ‘
< K; + 2K, + 4K, + 2“ |7 (03 dt) JKY? =K.
0
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Thereby, we have proved

Lemma 6.1. There exists a constant M > O such that for m < mo, Mo + 1, ...
and all te 0, T)

(6:29) faa < M. [0 < M. Ol < M

Le. |um]L°°(T,V) =M, lurlnlL‘”(T,V) = M and |u:;lL°°(T,H0) =M

7. CONVERGENCE OF GALERKIN APPROXIMATIONS

To prove the existence of a subsequence of the sequence of the Galerkin approxi-
mations which converges in the weak* topology in L*(T, V) to a weak solution of the
problem Z(V), we use the following well-known theorem (see, e.g., [5])- .

Theorem. Let X be a separable Banach space. Then for each bounded sequence
{xx} = X* there exists a subsequence {x,} which is convergent in the weak*
topology in X*, i.e. there exists an element x* € X* such that lim x,.(x) = x*(x)
for all xe X. koo

If H is a Hilbert space, then the adjoint space (L'((0, T), H))* to the space
L'((0, T), H) is isometric and isomorphic to the space L*((0, T), H) (see [10]). If
fe(Ly((0, T), H))*, then there exists a unique element F e L*((0, T), H) such that
If|Lico,m,mys = |FlLeqo,my.m and f(u) = [§ (F(2), u(t))x dt for each u € L'((0, T), H).
Further, if H is a separable space, the space L!((0, T), H) is separable, too.

Applying the theorem above, we prove

Lemma 7.1. There exist a subsequence {u,,};", of the sequence of the Galerkin
approximations {u,}m-n, and a vector-valued function u e L*(T,V) which is dif-
ferentiable in L*(T,V) with derivative u’ € L*(T,V), where u’ is differentiable
in L*(T, H,) with the derivative u” € L°(T, H,) such, that

Uy, > u  weakly* in L*((0, T),V),

k

u,, —u  weakly* in L*((0, T), Ho),

and

Uy, = u" weakly* in L*((0, T), Hy),
i.e.

tim [ (un ). () 0 - [[(w otm
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for each function ¢ € L'((0, T), V) and
tim | (v 8t = [ ) ve0) .

iim [ 0900 = [ @, v o

for each function Y € L'((0, T), H).

Proof. The described subsequence is obtained after several refinements of the
original sequence; for brevity in notation, all subsequences are still denoted by {u,,}.
The sequence {u,} is bounded in the space L*(T, H,) (Lemma 6.1) and thus (all
assumptions of the previous theorem are fulfilled for {u,,} and L*((0, T), H,)) there
exist a subsequence {u,,} and an element w e L((0, T), H,) such, that

(1) * un— w weakly* in L*((0, T), H,) .

Obviously, we may extend this function w from the interval (0, T) onto E, to be
T-periodic (in our sense). We denote the extension of w by w. (If # € L*((0, T), H),
H is a Hilbert space, we choose some representative 7,(t) of the class #(t); the function
7,(t) is defined on <0, T) — M, p(M) = 0. We set v,(t + kT) = i,(t) for each k
integer and ¢ e (0, T) — M. The class v, which is represented by v,, will be called
a T-periodic extension of the function # onto E,. Obviously, ve L*(T, H).)

Further, it is evident, that there exist the derivatives (d/d?) (u,(t), v) and (d?/ds?) .
. (u,(2), v) for all v e H and that (d/d¢) (u,(2), v) = (u,(t), v) and (d2/d#*) (u,(2), v) =
= (up(t), v). This both derivatives are real-valued functions, continuous on E,.
Hence, we may express (u,,(t), v) and (u,(t), v) (v € Hy, t € E,) as follows:

(), 9) = (un(0), 0) + (uL(0), v) - t + J 0 J‘ ;(u;;(n), v)dn de
(uai) ©) = (u(0). v) + j ;('u.’.’,(n), o) dn.

As the sequences {u,(0)} and {u,,(0)} are bounded in H,, there exist a subsequence
of {u,} and elements u,, u; € H, such that

(7.2) u,(0) > uo, u,(0) > u, weaklyin H,.

Now, let ¢ € Ey; then (according to (7.1))

(7.3) tim [ (ul(e), v) dv = J ;(w(‘t), v)dr.

m=w Jo
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Further, we can prove without any difficulty (using (7.1) and boundedness of {u;,}
in L2(T, H,)) that

m-— o

t T t T
(7.4) lim J‘ f (up(n), v) dn dr = J J (w(n), v)dn dr.
0J0O 0JO
Hence, according to (7.1) +(7.3), there exist the limits
lim (u,,(1), v) = (uo, v) + t(uy, v) + J j (w(n), v) dn dr,
m-— o 0 0
t
lim (u,(t), v) = (uq, v) + J (w(z), v) dr,
m-— oo 0

and they are continuous functionals on the space H,. So, there exist elements u(t),
v(f) € H, such that

&) tim (1,0, 0) = (u(0).

and

(7.6) lim (u,(1), v) = (v(t), v)
for each v e H,, i.e. the sequences {u,(t)} and {u, (1)} are weakly convergent in H,.

To prove a weak convergence of the sequences {u,(t)} and {u,(f)} in the space
V, we use the following lemma (see [6], Lemma 1).

Lemma 7.2. Let u, € Hy, |u,|g, < ¢ (n = 1,2,...) and let u, - u weakly in H,.
Then, u € Hy and also D’u, — D’u weakly in Hy(|j| £ k).

Lemma 7.2 is analogous to Lemma 1 of [6] and it may be proved easily from this
lemma by mathematical induction with respect to k. (The space H, is taken instead
of the space H, in the Nierenberg lemma.)

As the sequences {u,,(t)}, {u,(f)} are bounded in the space H, and they are weakly
convergent in Ho, it holds even u(t), v(f) € H, and for |j| £ k

(7.7) D/ up(f) - D u(t), DI ul(f) — DI oft)

weakly in Ho. Hence, u,(t) — u(t) weakly in H,, and up(t) - v(f) weakly in H, as
well. But u(t), v(f) € V, because Vis a closed subspace of H,.
Further, using (7.7), we obtain immediately, that the relations

08 im0 0) = (@O0, lim (@00 0) = (0 0)
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hold for each v eV, i.e. u,(t) - u(f) weakly in ¥, and also u,(f) - v(t) weakly in V.
Then,

(7.9) Ju(®)]| < liminf |u,(0)]| £ M, [o(t)] < liminf |u,(2)] < M.
We get from here (using the T-periodicity of u,(f) and u,(t)), that u, ve L*(T, V).
Now it may be shown easily, that u,, > u, u,, - v weakly* in L*((0, T), H,), and

U, = u, u,, > v weakly* also in L°((0, T), V). Let ¢ € L'((0, T), V). Then, ¢(t)eV
for almost all t € {0, T') and thus, for these ¢, there is

tim (). 0(0) = (@) 9(0).

Further, |((u.(2), 9())| £ |ua(t)]| [|0(9)] = M |]<p(t)|] Hence (using well-known
properties of Lebesgue integral)

iim j :«um(t), o(1) dt = j :«ua), o) dt

which is one part of the statement; remaining one can be proved quite analogously.

To complete the proof of Lemma 7.1, it remains to prove the function u to be
differentiable in L*(T, V), the function v to be differentiable in L*(T, H,) and the
following relations to be valid: u’ = v and u” = w. Let us prove, for instance, the
differentiability of the function u.

Let ¢ € C{V(E,, V). Then (using the periodicity of u,(f) and results proved relative
to the convergence of {u,}) it may be easily shown that

[0 oo a=im [~ e@nar

Since the functions u,(t), ¢(t) are differentiable in I*(supp @, V), it holds (according
to Lemma 2.2)

+ + o
|t g ar= - j (), 9(2)) 0
and thus
+ o0 . + 0 +
[t o ar= ~ 1m [ (@ o=~ [0 o) e
So we proved, that u’ = v in L*(T, V).
Evidently, we may obtain the second part of the statement quite analogously. This

completes the proof of Lemma 7.1.
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Lemma 7.3. Let ¢ : {0, T) — V be a vector-valued function of the form ¢(t) =
=Y Vi) g, ¥)eCeory (j = 1,2,...,7), and let {u,} be a subsequence, which
j=1

we obtained in Lemma 7.1. Then,
T T
ﬁmJ@MM%demm=j@ﬁHAMW®NL

Proof. Let us consider the functions u,, and ¢ as the functions of N + 1 variables
te<0,T) and x€ Q. It can be shown easily, that u,(t, x), u'(t, x) € H,(Q7) and
u,, — u' weakly in H,(Qr). As the imbedding of H,(Qy) into L,(Qr) is completely
continuous, there is
(7.10) limu, =u' in L,(Q).

m=*

Further,

(7.11)

f:(tt;(t) |un(?)], @(2)) dt — J:(u’(t) (o)), (1) de| <
[ ok = 9] Qi 9] + 1 ) ) s

The functions u,(t,x) (m =1,2,...) and u'(t, x) are elements of H,(Qr); hence
(by Theorem 2.1) u,,, u’ € L3(Q,) and

|u'/"|L3(QT) = C|“rlanme) < 3cT'’M =K,

and, analogously, |u[ Ly = K. Further, if k =1 (it means, that the operator A is
of the order 2), there is g; € Ly(Q) (for N < 3) and if k = 2, then there is g; € Ls(2)
(for N < 5); then

(7] Jote e axar)™ s er([ S o ) < o

(because | (1)| £ ¢,j = 1,2, ..., rfor some ¢ > 0). Applying the generalized Holder
inequality (with q; = 2, ¢, = 3, q3 = 6) in (7.11), we obtain

}J’T(uln(t), lun()], () dt — ﬂ(u(t) W ()], (1)) dt

([ f=arsca [ e
<

=

+ <J': j e d dt>”3] . ( .[ : ‘Ll(p(t, 9)J° dx dt)”6

< um = '|Ly20y - 2K]0| Ly »

which (by 7.10) proves the statement of Lemma 7.3.
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Now it is easy to complete the proof of Theorem 1. Consider functions

(7.12) o.1) = Igll/fj(t) g (r=1,2..),

where ;€ Coo,ry (j = 1,2, ..., 7). It results from the construction of the Galerkin
approximations that

(7.13) (un(®): (1)) + ((un(?), @:(1)) + (ua1), @:(1)) +
+ () [un(®)], @,(1)) = (£(2), @,(1))

for m = r and hence also the relation
(7.14) j :{(u;xt), 2(0) + (alt), @,(0) + (uslt), 0,(0) +
+ () JusO] 0,00} dt = j :(f(,), p.(0) dt

holds (all inner products in (7.13) are continuous on {0, T). According to Lemma
7.1 and Lemma 7.2, there exists the limit of (7.14) for m — oo, and so we get

(715 j :«u"(r), 20) + (i 9.0)) + W (), 0,(0) +
W) [, o (0) de = j (), oe) dr .

Since the system of functions of the form (7.12) (r = 1,2, ...) is dense in the space
L'((0, T), H,), the validity of the equality (7.15) may be established for each function
¢ € L'((0, T), V). Further, according to Lemma 7.1, the function u = u(f) has all
properties from Theorem 1. So the proof of this theorem is completed.

8. UNIQUENESS OF SOLUTION OF PROBLEM Z(V)

The results, concerning the uniqueness of the solution of the problem 2(V), are
contained in the following theorem.

Theorem 2. Let u,v be solutions of the problem P(V,f), fe I’(T,H,), in the
sense of Definition 3.1. Let the assumptions (4.1) and (4.2) be fulﬁlled Then
|u = v|pwcryy =0, i.e.u = vin the space L*(T, V).
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Proof. Denote w = u — v. Then, according to Definition 3.1, w, w' € L°°(T, V),
w” € L*(T, H,) and

(5.) [0 0000 + 0. 000 + (0. 00 +
+ @ (@) [w@)] = v'(0) ()], @(1)} dt = 0
for each function ¢ € I2((0, T), V). First, let us set ¢(f) = w'(f). We get
(8-2) J:{(W"(t), w(1) + ((w(5), w() + [w(n)]z +
+ @@ (O] = (@) @], w() — V(@) dr = 0.

Since the function w'(¢) is differentiable in L*(T, H,) and w(t) is differentiable in
L*(T,V), we may consider the function w(t) or w'(), respectively, as a function
T-periodic in E; and absolutely continuous on <0, T) in norm of the space V or H,
respectively (Lemma 2.1). Using Lemma 2.3, we obtain immediately, that

J' :(w"(t), w(i)dt =0 and f :((w(t), W(i) dt = 0
and thus )
63 [ OB + @O WO - O ROk - O a =0.

The second term of (8.3) is non-negative. (There is (a|a| — b|b|) (a — b) = 0 for
arbitrary real numbers a, b, because (see [8])

(ala] — b[p]) (@ — b) = a?[a| + b?|b| — ab(la] + [b]) =

= a?|a| + b2|b|] — ¥(|a| + |b]) (a* + b?) = a? <|a| - li’|;r_‘l’l> +

#5214 - p e - 2 0.

2
Thus, it follows from (8.3)

(8:4) ﬂ|w'(t)|§ dr=0.
Now, let us set ¢(f) = w(f) in (8.1) (which is allowed ‘again). Then
(5:5) [0 w0 + O + (v ) +
+ @@ W@ = o) )], u(t) — o)} dt = 0,
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and using Lemma 2.3 again, we have (by (8.4))

J :(w”(t), w(t) dt = — j :|w'(t)|§ dt =0

and

[JECROrERS
The equality (8.5) takes the form
(5.) QMWHﬂ@wwwwww-wmﬂ-
Let us examine the second term of (8.6). There is

(5.7) [ @@ 0! - v ) w0 - )<

= 'E(lu'(t)l + Iv’(t)|) |u’(t) - u’(t)| . I“(t) _ v(t)] dar .

Let us consider the functions u, u’, v and v’ as functions of the variables ¢ € {0, T)
and x € Q again. As u'(t, x), v'(, x) € H,(Qy), there is u'(t, x), v'(t, x) € L3(Qy) for
our dimensions (Theorem 2.1); furthermore, it follows from the definition of the
solution easily (with help of the similar considerations as above), that

(8.8) lu,lLs(QT) = lflLZ(T,Ho)’ |U,IL3(-QT) = lf

L2(T,Hop) *

Further, we shall prove, that w e LG(QT) for our dimensions (i.e. N £5,if k = 2 and
N < 3for k= 1). If k = 2, there is w e H,(Q;) and we have we Ls(Qy) for N < 5
immediately (by Theorem 2.1). If k = 1, then w(t) € H,(Q) for all €0, T, and
hence w(t) € Lg(Q) for N < 3 (Theorem 2.1) and there exists a constant ¢ > 0 such,

that
w(©)ls = clw(®)|u, = ¢|w()] -

Then, it holds

(89) ( J : j e 9 dx«dt>1/16 < ( J :nw(t)HG dt>”6 <w,

because of we L*(T, V). Now, it may be used the generalized Hélder inequality
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(with g, = 3, g, = 2, g3 = 6) in the relation (8.7). This yields (with regard to the
previous results)

(8.10) j [ Qe+ e 9 e 9 e 9] x <

< (J.: L|u’(t, x)|* dx dt + f: le'(t, x)|* dx dt)u3
. (ﬁ Llw'(t, )P dx dt)llz . ( J : L Iw(t, %)|° dx dt>”6 .

Hence, in accordance with (8.4), it is
T
ICCIC RO ROEETS
o
We obtain from (8.6) that
T
(8.11) “w(t)nzdt -0,
0

and so |w(t)| = 0 for almost all t € (0, T); i.e. |u — v|pw(ry, = 0, which completes
the proof. '

Corollary. Let all assumptions of Theorem 1 be fulfilled. Then there exists exactly
one weak solution of the problem Z(V).

Remark 8.1. For N = 1 we can prove somewhat stronger result, namely the
continuous dependence of the solutions on the right-hand side of the equation in the
form

l“ - "|L°°(T,V> = C(Iflu(r,no), |g|L2(T,Ho)) |f - 9|L2(T,Ho)-

(We denote by u or v, respectively, the solution of the problem 2(V, f) or 2(V, g),
respectively.)

9. SOME EXAMPLES AND APPLICATIONS

We shall use previous results to examine several mechanical problems. We shall
prove the existence of a weak periodic solution of some boundary-value problems
for the wave equation (in the case N = dim Ey = 3) and for the biharmonic wave
equation (which describes the transverse vibrations of a plate approximately) for
dimension N = 2.

Let Q < E; be a bounded domain with lipschitz boundary. Let f = f(t, x),
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te E,, x € Q be a T-periodic in ¢, and let ¢ = 0. We shall investigate the existence
of T-periodic solutions of the equation

(9-1)  u,(t, x) — Au(t, x) + cu(t, x) + uft, x) + uft, x) |ut, x)| = f(t, x),

(where Adu = Z (6*u/ox})) on the domain €, with homogeneous boundary con-
ditions. =1

First, let us take V, = H,. If u is a solution of the problem Q’(VI) for the equation
(9.1), then u € L*(T, 1-011) and therefore u(f) € H, for almost all 7 € E,, i.e. for almost
all t € E; u(t) = 0 on 02 in the sense of traces. So, this choice of the space V' corres-
ponds to the Dirichlet boundary conditions u(z, x) = 0 for x € 09.

Second, let be V, = H,. If u e L*(T, H,) is a solution of the problem (V) for
the equation (9.1), then (by Remark 3.2) there is

(9.2) Z u(t x) ofx) dx = J‘ l3 6u(t x) 6v(x)d

o i=1 axi

for a.a. t€ E, and each v e H,. Using the Green theorem on the left-hand side of
(9.2) (formally), we have (n = (n,, n,, n3) denotes the vector of the exterior normal,
which exists for a.a. x € 0Q)

©3) j £, P i a f(z 2 1) o) s -

= i=1 6x,
3
_J 5 ou(t, x) dv(x) dx
oi=1 0x; 0x;

So, we find, that the space V, corresponds to the Neumann boundary condition
(6ufon) (¢, x) = 0 for x € 0.

Third, let I' = 9Q, u(I') + 0, (02 — I') # 0. Let us set V; = {u € &(Q), u(x) = 0
for x e I'}"'. If u € L*(T, V) is a solution of the problem 2(V;), then (by (9.2) and
(9.3)), we obtain (quite analogously as in the previous case), that this choice of the
space V describes the boundary conditions u(t, x) = 0for x e I and (0u/dn) (t, x) = 0
forxedQ —T.

Now, let f : E, — H, fulfils the assumptions of Theorem 1. Evidently, the form

((u,v)) = Z au(x) av(x) dx + cf u(x) v(x) dx ,

9;16x X

corresponding to the operator 4 = —4 + ¢ (by (3.2)), satisfies (4.1). In the case
V, = H,, the condition (4.2) is fulfilled according to the Friedrichs inequality

ngu(x)lzdx < cL ii

i
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which holds for u € H,. In the case V, = H,, the inequality (4.2) is satisfied obviously,

only for ¢ > 0. And, in the case V = V;, the assumption (4.2) is satlsﬁed forallc = Q

again, because of validity of the following theorem (see [5]): If Qis a bounded domain

in Ey with lipschitz boundary and I' = 9Q, j(I') + 0, then there exists a conéfant

¢ > 0 such, that the inequality o [
0 : W

|ulg, < ¢ (j |u(x)|* dS + j ; dx).”'z

holds for all u e H,. But, if ueV,, then [, [u(x)|2 dS = 0; our statement follows
from this immediately.

— (X)

The previous results may be summed up as follows:

Theorem 9.1. Let fe C(T, H,) be differentiable in I*(T, H,). Then:there exists
a unique weak solution of the problem P(Vy, f) and P(Vs, f) for each ¢ Z 0, and if
¢ > 0, then there exists a unique weak solution of the problem ?(V,, f).

Further, we shall study several boundary-value problems for the blharmomc wave
equation

(94)  u, (1, x) + A%u(t, x) + cu(t, x) + ut, x) + ult, x) Ju(t, x)| = £(t, x)

for te E; and x € Q, where Q is a bounded domain in E, with lip'schitz boundary
and f is T-periodic in t. :
The operator 42 may be also expressed as follows

0% (0% 0? 0?
05 4= (2 )+ (2( — ) ) LA <oc———2) +
ox2 \ox3 axl 0x, 6x, 0x, axi \  0x3,

az az 62 az
+—(e=)+—(—),
6x§< Bxf) ox2 <6x§>
a-real number. Then, the bilinear form associated to the operator 4 = 4% + ¢ by
(3.2), has the form

9.6) ((u,0) = j ("’ ”( )2 (x) "

X1

(x) + (X) () (X) (X) +

0%
+ 2(1 — «) (x)
Ox, 0%, 0%, 6x2

(x) (x)) dx + ¢ J Qu(x) ox) dx .

Here, we choose o = o, o being the Poisson coefficient (0 < ¢ < 1 for most of ma-
terials; this 0 < ¢ < 1 we shall consider further). Let I°{2_ <V < H,, V be closed
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in H,.'Again'by Remark 3.2, ifu e L*(T, V) is a solution of the problem 2(V), then
for a.a'te E|

©7 . (Au(t), v) = ((u(t), v)) for veV.

Now, using the Green theorem for [, Au(t, x) v(x) dx formally, we obtain
f Au(t, %) o(x) dx = ((u(t), v)) — J (Tu) (1, x) o{x) dS —
° o0
- -[ (M) (1, %) 22 (%) ds,
o0 on

where

2 2 2
Mu = ¢4u + (1 — o) a—l:nf—}-2~—g—u——n1n2+—‘?—Eng

ox} 0x, 0x, ox3

and , "

i) 0 [0*u 0*u 0%u
Tu=— —(du) + (1 — o) —(—n,n, — n? —n?) — —nn
an( )+ ( )6s<6xf 2 ax, 6x2( ! 2) axz ! 2)

(n = (n 1 nz) denotes the vector of exterior normal, which is defined a.a. in 0Q2 again,
and 9/ds denotes the derivative by the curve of the boundary). The expression Mu
corresponds to the moment of deflection on the boundary of a plate; the term
— (9/on) (4u) describes the transverse force on the boundary of a plate and the
remaining terms of Tu corresponds to the moment of torsion on the boundary.

We shall mention here three boundary-value problems for the equation (9.4).

First, let V; = {u€ &(Q), u(x) = (oufon) (x) = 0 for x € 9Q}"* (=H,). This choice
of the space ¥V corresponds to the cramped boundary of a vibrating plate.

Second, let us set V, = {u € &(Q), u(x) = 0 for x € 0Q}". This space V, describes
free supporting of the boundary of a plate: if u € L*(T, V,) is a solution of the problem
P(V,), we get from the definition of the space V,, that u(f) = 0 on 02 for a.a. t€ E,
in the sense of traces. Further, in order (9.7) may hold, it has to be Mu(t) = 0 on 9,
i.e. the moment of deflection is vanished. on the boundary.

Third, let us take V; = H,, then, any geometric conditions do not follow from the
definition of V3, but two dynamics conditions Mu(f) = 0 and Tu(f) = 0 must hold
for a.a. t € E,, in order (9.7) to be satisfied for a solution u € L*(T, V) of the problem
2(Vs). So, this choice of ¥ corresponds to a plate with the free boundary.

Let us examine now, under which conditions the form (9.6) satisfies the assumptions
of Theorem 1. Evidently, as above, the form (9.6) fulfils (4.1). So, it remains to study
the validity of (4.2). It is known (see [5]), that

(9.8) < j (o as + j RO dx>”2
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defines norm in H,, which is equivalent to origin one. Obviously, there is

ozt [(0] (2 (g o o

using the relations (9.9) and (9.8), the validity of (4.2) m ay be established for the form
(9.6) for all ¢ = 0 in the case V' =V, and V = V,. As :

( j o s + J T oo dx)l/z

is also norm, which is equivalent to origin one in H,, (4.2) holds in the case V = V,
for ¢ > 0.
So, we obtained:

Theorem 9.2. Let fe C(T, Hy) be differentiable in I*(T, H,). Then there exists
a unique weak solution of the problems 2(Vy, f) and P(V,, f) for ¢ 2 0. If ¢ > 0,
then there exist a unique weak solution also for the problem P(Vs, f).

The author wishes to express her sincere gratitude to O. VESVODA and J. KOPACEK
for their valuable suggestions and comments.
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