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INTRODUCTION

Let D be an arbitrary open set in R™, the Euclidean m-space, and suppose that its
boundary B is compact and non-void. Fix T}, T, € R, T, < T,, and let

C=Bx(T,T,), E=Dx (T, T,).

By the term measure we shall usually mean a finite signed Borel measure in some
Euclidean space. If 1t is a measure and M is a Borel set in the domain of y, then || (M)
will denote the variation of u on M. Let #'(T,, T,) = #’ stand for the class of all
measures Ji in R™* ! with

lu| (R™*1\C) = 0.

With each p e 4’ we associate the corresponding thermal potential

U pu(z) = ‘[G(z —{)du((), zeE,

where G(z) = 0 for z = [z, ..., Z,4,] With z,4, < 0, while for z,,,,; > 0

m

G(z) = z,, "2 exp (= Y. 25424 1) -

j=1

Writing 0; for the derivative with respect to the j-th variable one easily verifies that
d;Up are integrable over E for j = 1, ..., m. This makes it possible to introduce the
functional Hy over the class 2, of all infinitely differentiable functions with compact
support in R"*' n {z; z,,, < T} defining

(o, Hp = J ([Z0 42)- 250(E)] = U b(a) -ty 0(2)} di
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Hp will be termed the heat flow associated with u. The reason for the terminology
lies in the fact that, in the special case when the boundary B of D is a smooth hyper-
surface in R™ with the exterior normal n(x) = [n,(x), ..., n,(x)] and the derivatives
0;Up extend from E to continuous functions u; on the closure of E, (¢, Hu}) trans-
forms into

T2 m

[ ] ot TR o ) aont e

T, B j=1
where doy is the area element on B (and, of course, [x, f] stands for [xy, ..., X, ]
whenever x = [x,,...,x,]€R™ and t€R"'). In general there is no measure v,
representing Hy over 9 r,. In order to be able to formulate geometric conditions on D
guaranteeing the existence of such a v, for each pe %’ we adopt the following
terminology introduced in [10]: Given x e R", » > Oand e I' = R™ n {6; |6| = 1},
we call y € S,(0, x) = {x + 00; 0 < ¢ < r} a hit of S5,(6, x) on D provided each ball

Q) =R"n{v;|v—y| < g}

meets both S,(6, x)\ D and S,(0, x) n D in a set of positive linear measure. (Note
that Q,(y) n S,(0, x) N D is open in S,(6, x); consequently, it is either void or it has
a positive linear measure.) The number (possibly infinite) of all the hits of S,(6, x)
on D will be denoted by n,(6, x). For fixed r > 0 and x € R™, n,(6, x) is a Baire
function of the variable 6 on I' (see [10], proposition 1.6) and one may put

o (x) = j n,(0, x) dor(6)
r
If M &+ 0is a subset of B we let

Vo(M) = lim sup v,(x);

r—>0+ xeM

finally, put ¥,(0) = 0. With this notation we have now the following

Theorem 1. In order that Hu be representable by means of a measure for each
we R it is necessary and sufficient that

(1) Vo(B) < +0.

In what follows we always assume (1). For each e &' there is a uniquely deter-
mined measure v, satisfying the following conditions (i), (ii):

(i) peDr,={p,Hp) = |pdv,,
(ii) [va| (R™ x (T;, +0)) = 0.
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It is easily seen that the support of v, is contained in B x (T, T,); in other words,
v, € B' for each p e #'. Let us agree to write simply v, = Hu and equip #’ with the
norm

lul = |1 (R™**) = ]4|(C).

Then H : p — Hyp is a bounded operator on the Banach space 4. Let us also quote
here that (1) implies

sup {v,(x); xe R"} < + 0.

Another consequence of (1) is the existence of the density

do() = Tim volume (2,(x) N D)
e»0+  volume (2,(x))

at any x € R™.

Let now #(T,, T,) = % be the Banach space of all continuous functions f on B x
x {Ty, T,) such that f(B x {T,}) = {0}, with the norm

[£]l = sup {|f(z)]; ze B x (T}, T} .

We shall introduce an operator W, on % whose dualis H : Wy = H. For this purpose
we recall the following notation introduced in [10]. Given x € B and € I' we put
forr>0

s(r; x,0) =¢ (= 1)

if there is a & > 0 such that
x+(r+e)0eD, x+(r—e)deR"\D

for almost every g € (0, 8); otherwise we set s(r; x, 0) = 0. With each fe &, te
€ (T, T,) and n > 0 we associate the sum

Zf(x +r0,t + 55) s(r; x, 0) = X;([x, £]; 1, 0)

extended over r € (0, 2[5(T, — ¢)]*/?) (consequently, 2r([x, s n, 0) =0ift = T,).
For fixed n > 0 and z = [x, t] e B x (T, T,), Zf(z 31, 0) is defined almost every-
where and integrable do,(6) on I and the integral

Wi(z) = j ey [ j Tz 0 dar(f))] dn

is convergent. Writing 2 = [z,, ..., z,,] foreach z = (265 o) Zy Zw+1)] € R™* ! we are
now able to formulate the following
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Theorem 2. For each f € # define

Wo f(z) = 2" "MW f(z) + 2n™2dp(2) f(z)], zeB x Ty, Ty);
then Wyf € 8. The operator W, : f — W,f is bounded on # and H is dual to W,
Let I stand for the identity operator on # and consider the operators
W, = W, — 2"n™?al , aeR'\{0}.
It is useful to evaluate the quantity
oW, = inf |[W, — T| ,

T ranging over all compact operators acting on 2. In particular, in view of the
equality

H = 2"zl + W),

it is important to know conditions on D guaranteeing the validity of the following
estimate for g(x) = wW,/|o| 2"n™/:

() a =inf{g(a);xe R*\{0}} < 1.
They read as follows.
Theorem 3. Let

B, = Bn{x;dp(x) =1}, B, = Bn{x;dpy(x) =1}
and write

A = 2n"%[[(3m)
for the area of the unit m-sphere I'. Then (2) holds if and only if
(3) Vo(By) < A and Vy(B,) <14.
If these condition are fulfilled then vy yielding

a =g(y)

is uniquely determined and one of the following cases (1) —(iil) must occur:
(i) B, =0,
(if) B, = 0 or Vo(B,) = Vo(B,) + 14,
(iii) By * 0 # B, and |Vo(B,) — Vo(B,)| < 34.
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The corresponding values of a and y are then given as follows:
(i) = Aa = 2Vy(B,), y = 4,
(ii) = Aa = VO(BI), y =1,

(i) a= Vo(B1) + Vo(B,) + %A, _ Vo(B1) — Vo(B,) L3
Vo(B1) — Vo(B2) + 34 24 4

Since the equation
(@mam2BI + W) f =0

has only trivial solution in % provided 2"'n"'/2|ﬁ] > wW,, the last theorem implies
the following corollary:

Theorem 4. If D fulfils (3) then H has a bounded inverse on 4.

As a by-product one obtains also a theorem on integral representation of solutions
of the first problem of Fourier for the equation

L 2
Oju + 0pyypu =0
i=1

(see theorem 3.11 below).

CHAPTER 1

In this chapter we shall prove several results related to theorem 1 announced in the
introduction.

1.1. Notation. N is the set of all positive integers. If M is a subset in some
Euclidean space (whose dimension will always be clear from the context) then the
symbols cl M, int M, fr M and diam M will denote the closure, interior, boundary
and diameter of M, respectively. Further let H,M stand for the outer Hausdorff
k-dimensional measure of M defined by

4) HM = 27%o(k)lim inf ) (diam M,)*,
e~0+ n

where
a(k) = n"’Z/F(l + %k)

is the volume of the unit k-ball and the infimum in (4) is taken over all sequences
{M,},en of sets M, with UM, = M such that diam M, < e for all ne N.If M = R*

n
(= the Euclidean k-space), then H,M coincides with the outer Lebesgue measure
of M. The support of a function f (with domain in some Euclidean space) will be
denoted by spt f.
The following simple remarks will be useful below.
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1.2. Remarks. Fix an infinitely differentiable function w in R! with sptw <
< (-1, 1) such that

J< wdH, =1, o(-r)=o(r), reR".
R!
For each locally integrable function g in R and each n € N define

A, g(t) = nf

R

1g(t — r)o(nr)dr.

Then A,g is infinitely differentiable and for each integrable function y with compact
support in R!

j b at, = [ gayan,.
R! R1
Let now Z be a non-void set. For each function f on R* x Z and each z € Z define f,
on R! by
f()=f(tz), teR".
If f, happens to be locally integrable for each z e Z we define 4,f on R! x Z by

(Anf)z.':Aan’ ZEZ, neN.

If the derivative (f.) exists in R* for each z € Z then df will denote the corresponding
partial derivative in R x Z given by

@f). =(f.), zeZ.
It is easily seen that, for each n e N,
A, of = 0A,f

provided (f.) is locally integrable in R* for each z € Z.

Suppose now that A is a g-algebra of subsets in Z and denote by B the s-algebra of
all Borel sets in R. If h is B x A-measurable on R* x Z and h, is integrable for each
z € Z then the integral

j h(t, z) dH (1)
Rl
represents an A-measurable function of the variable z eZ Applying this to

h(t, zy, z,) = nf(z; — 1, z,) w(nt) (z,, te RY, z, € Z)

with Z replaced by R x Z, z replaced by [z,, z,]| and A replaced by B x A, one
easily obtains that A4,f is B x A-measurable provided fis a B x A-measurable func-
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tion on R* x Z such that f, is locally integrable for each z € Z. Consequently, for
such an f also 04,f is B x A-measurable.

1.3. Lemma. Let us keep the notation of 1.2 and let A = 0 be a measure on A.
For each k € N let ¥, be a class of B x A-measurable functions on R* x Z enjoying
the following properties:

(P,) ¥y = Wyy1, keN.
(P) Ye¥=> —ye¥,
(P3) For each y € ¥ = ) ¥, both 8y and  are integrable (H, x 1) and, for

keN
each z € Z, Y, is a continuously differentiable function with compact support in R*.

(P4) Given ke N, there is a n, € N such that
eV, nzn)=>Aye?.

(Ps) For each k there is a GyeB x A such that, for each bounded B x A-
measurable h on R x Z,

sup{j. hy d(H, x 2); t//eil’,,} =J‘ |n| d(H, x 2).
RixZ Gk

(Pe) If g is a bounded B-measurable function on R* then, for each zeZ and
keN,

SUP{J‘ gy.dH,; Y e Y’k} = [ lg| dH, ,
RY o Giz
where

Gi. = R' n{t; [t,z] € G} .

Suppose now that f is a bounded B x A-measurable function on R' x Z and let
F(z) = sup { foy), dH,; ll/eW} , z€eZ.
R1

Then F is a non-negative A-measurable function of the variable z € Z and

del:sup{f fazpd(H,xl);n//e‘I’}.

1xZ

Proof. Fix z € Z. In view of (P,), we have for ke N and n = n,

sup{ AW, dH,; ¥ e qv,‘} — Ful2) < F(2),

Rt
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whence it follows

Fi(z) = lim inf F,(z) < lim sup F,,(z) = Fi(z) < F(z) .

n—o n—+ow

In view of (Py)
(5) keN= Ek(z) =< £k+1(z) s F_k(z) = Fk+1(2)
and we conclude that

lim Fy(z) < F(z) .
k=

On the other hand, if ¢ < F(z), then there is a y € ¥ with
J £.(00). aH, > c.
R!

Noting that all the functions in {4,(0y).},.y have support in a fixed compact subset
of R! and converge uniformly to (8y), as n — oo (cf. (P3)) we get for k e N with
b PEY

F(2) zf fA00). dH, > c.
R!
We have thus proved
(6) F(z) = lim Fy(z) = lim Fy(z) .
k— o0 k= o
Employing the remarks in 1.2 we see that, for y € ¥, and n = n,,
| seaman <[ raon.am =~ Ean.am,
R! R! Rt

whence it follows by (Pg), (P,) for n = n,

™ Fi(2) = L |04.f).| dH, ,

which is an A-measurable function of z € Z. Consequently, also F, and F = lim F,
are A-measurable non-negative functions. It remains to verify koo

‘[Fdlgsup{ fél//d(Hlxl);I//e‘l’}=K,
z RIXZ '

because the opposite ine‘quality follows at once from the definition of F. We have

by (5), (6)

k= k= n-wo

I Fdi = lim J‘ F,dA < lim liminfj' FpdA.
z z z
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Employing (7) and (Ps) we get

X

JFk"dA = sup {j (04,.f) Y d(H, x 2); we‘l’k}.

Now it is sufficient to observe that, for y € ¥, and n = n,

J. (0A4,f) ¥ d(H, x 1) = —4[ foAwd(H, x J) < K

R'xZ

by 1.2, (P,) and (P,).

1.4. Remark. The above lemma, which is in fact an abstract version of lemma 1.10
in [10], is closely connected with investigations of functions whose partial derivatives
are measures; see [ 1], [6], [9], [12], [15], [16], [18].

1.5. Notation. As in the introduction, Q,(y) will denote the ball of center y and
radius ¢ in R™, and I = fr Q,(0). It is convenient to adopt the following terminology
introduced in [10], 1.5: If S is an open segment or half-line in R™ then y € S is termed
a hit of S on D provided

H{(2(y)nSAD)>0 and H(Sn Q(y)\D)> 0
for each ¢ > 0. The number of all hits of
S(x)={x+00;0<¢<r} (xeR", 0eT)

on D will be denoted by n,(6, x) (0 < n,(6, x) £ +o0). According to 1.6 in [10],
n,(f), x) is a Baire function of the variable 6 € I' and we let

(8) o %) = J (0.) ()

For the sake of brevity we shall sometimes write v,(x) instead of v(r; x).

2 will stand for the class of all infinitely differentiable functions with compact
support in R"**. For Te (—o0, +00) let

(9) Ry = R™ x {—w, T)

and denote by 2 the class of all ¢ € 2 with spt ¢ = Ry. The derivative with respect
to the j-th variable will be denoted by ;. The points z = [zy, ..., Z,4+,] € R"*!
will often be written in the form [2, z,,,,] with £ = [z,, ..., z,,] € R™. We shall write

V=1[01..00n]

564



The Euclidean norm is denoted by ]] As in the introduction, we denote by G the
well-known kernel connected with the heat equation, defining G = 0 on cl R, and
letting

G(x, 1) = t™™ % exp (— Ix[2/4t) for [x,t]eR™ x (0, +o0).
Simple calculation shows that for
Ry =Ry\NR,, —o0o<a<f < +x0,

the following estimates hold:

(10) j |0;G] dH sy < 2" " B — )]"?, 1Sj<m,
Rap

(11) j GdH,,, < 2" (B — a).
Rap

By the term measure we shall usually mean a finite signed Borel measure defined on
the g-algebra of all Borel subsets of a fixed Borel set in some Euclidean space. If u
is a measure and M is a Borel set in the domain of g, then [yl (M) denotes the variation
of u on M; spt u will denote the support of p.

Let D = R™ be an open set with a compact boundary B # 0. Fix now T, T,
—oo < Ty £T, £ 4+, and put

E=Dx (T, T,), C=Bx<(T,T,).
Denote by 4’ = %'(Ty, T,) the Banach space of all measures y in R™*! with
|u] (R™**\C) =0;
the norm in %’ is given by
Il = 1ul (€)-

With each p e %’ associate the potential
Uu(z) = |G(z = ) du), zeR™* N clC.

Then Uy is an infinitely differentiable function on R™** \ ¢l C satisfying there the
heat equation

(12) _Zlan/,t = 0,4+,Un.

J

Employing (10), (11) one obtains at once for

Ey=En(R;\NR), —0o<a<B<+o0,
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that

I I e R TR ETELE
Eqp

(14) J |Un| dHo, < 272728 — o) ]
Eqp

Accordingly, we are justified to introduce the distribution Hy in Ry, defining for
peDr,

<@, Hpy = f (VUp. Vo — Up. 8ps19) dH,, 4, .
E

As it is usual in distribution theory [23], we shall say that Hpu is a measure provided
there is a measure v, in R™*1 such that

(15) <o, Hiiy = J'w dv,s 0eDy,.

It is easily seen that (15) together with

(16) [va (R™**\Ry,) = 0

determine v, uniquely and that each v, enjoying (15), (16) satisfies
(17) sptv, = clC.

Indeed, if ¢ € 21, and spt ¢ N ¢l C = 0, then there is a bounded open set D < R™
with ¢l D = D such that the boundary of D is a smooth hypersurface B and

Ensptoc D x (T,,T,) = E.

Taking into account (12) (note also that Uy vanishes on D x {T,} and ¢ vanishes
on D x {T,}) and writing 7 for the exterior normal of D we obtain by the Gauss-
Green theorem

(o, Hity = f (UK. 99 — Uk O 10) dHpr s =
E

T>
- j dt 'f o, 1) Ai(x) . VUA(x, 1) dH,,_,(x) = 0.
Ty B
We conclude from (16), (17) that v, € %'.

1.6. Lemma. Given { = [, 7] e R™*! and ¢ € D let

Wol(l) = I [V6(z - ) - Yo(z) = G(z = {) 0+ 10(2)] dz

566



and define S¢ on (0, + ) x (0, + ) x I' by

(18) So(o, 1, 0) = o(¢ + 00, © + @*/4n), o,ne(0, +), Oel.
If 1e(Ty, T;) then

Wo(() = —2"'—1jde_,(e)'f e'"nm/z‘ldnj d,So(e, n, 0) de,
Dy

r 0
where

(19) Dy = {0;0 < 0 < 2[n(T, — )], & + o0 D} .

Proof. Simple calculation yields

Wo(l) = — %jqz(t — Rt g(n)dt

where

A1) = f e~ XTED [(x — &) Yo(x, 1) + 2t — 1) Dy 10(x, 1)] dX -

D

Let us now introduce the variables r € (0, +o0) and 0 € I' by

x=¢&+70.

Then dx = r™~*dr dH,,_,(0) and #(¢) transforms into
j A(t, 0)dH,,_,(0) = #(t),
r
where #(t, ) denotes the integral extended over

Dy={r;r>0,¢+rbeD}
given by

3 t _
H(1,0) = J e rAG=D) |:,. dg(& + 0, 1) +2(t —7) w] et
Do

or ot
Consequently,

- 1 ,

Wo(l) = - ~I 2(6) dH,,-4(0),

2r

where

T2

£(0) =J‘ (t — ) ~"2~1 o (t,6) dt = H dr dt
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may be considered as a double integral extended over [r, t] € D, x (t, T;). Employing
the change of variables

we get after simple calculation

3(0) = 2mJ‘ e—nnmll—l dr,J\ 615(P(Q, ", 0) dg s
Dy

0

which completes the proof.

1.7. Remark. Let §, denote the unit point mass (= Dirac measure) concentrated
at {. Noting that

G(= - 1) = Usf2)
we observe that

(20) Wo(l) = (o, H3)
provided ¢ € Z1, and { e C.

1.8. Proposition. Let { = [, 7] e R"*L, T; < © < T,, fix R > 0, & > 0 and put
@)  2'=2n0{plel =1, spto = [2(ON{E] x (1.7 + 2)}
(22) r(n) = min {R, 2[# min (¢, T, — 7)]"?}, n>0.
Then

2”"1Jme"’n""“v(r(n); ¢)dn = sup (Wo(l): e 2'} .
)
Proof. We shall apply lemma 1.3. Define the measure u by
du(n) = 2m=te~"™2>~* dH (i)

and consider the product measure A = ¢ x H,,_; on the og-algebra of all Borel
subsets of Z = (0, c0) x I'. It is easily seen that the mapping

2
@:[g,q,@]—»[é+g@,t+g—]
4n

maps (0, ©) x (0, 00) x I' = (0, o) x Z homeomorphically onto

[R™~{€}] x (z, ).
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Let
¢c=min(e T, — 1), £ = [Q)N{&}] x (r, 7 + ¢),
define r(n) by (22) and put

G = (D—I(E)= {[Q,r]];n >0,0<p< r(r])} x I.
Fix a decreasing sequence of positive numbers {ak},‘f:l such that

2¢;, <R, limg =0
k- o

and define

1

Ge={lenln>ec ea<o<ry)—g} xTI.

Denote by ¥, the class of all functions y with domain X = R! x Z for which there
is a ¢ € 2' (depending on ) such that

sptS¢p = G,, ¥ =S¢ in G
and

WX G) = {0}

Then the class of all (point-wise) limits of sequences of elements of ¥ coincides with
the class of all the functions g of the first class of Baire on X such that,

lgf =1, X\G, =g '(0).

Hence we conclude that the conditions (Pg), (Ps) in 1.3 are satisfied. Fix now n,>g, '.
Ify e ¥, ¥ = S in Gand 4, with n = n, is defined by 1.2, then A4,J has a compact
support contained in G. Simple calculation shows that the value attained by (A4,¥) o
o ®~* (= the composite of ®~* and A,¥) at [x, t] e [R"\ {&}] x (, ) is given by
the integral

(23) j no(h(u, x) (x — &) + &, h*(u,x)(t — 1) + 1) o(nu) du,,
Rl
where o has the meaning described in 1.2 and

h(u, x) = Ix—l;——il—é_l—g .

Defining @(x, t) by (23) for [x, t] € E and letting

FR™ E) = (0}

we see that @ € 27,
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Consequently, 4, € ¥ = U ¥, and (P,) is verified. The conditions (P,), (P,), (P3)
k=1

being obviously fulfilled we are justified to apply 1.3 to the characteristic function f
of G. Employing 1.6 we get

sup (Wo((); o€ 2'} =

sup{J~ fowd(H, x A); l/lE'I’} =JFdl
X z

where, for fixed z = [n, 0] € Z,

F(z) = sup { j Fowan; e w} .

Note that {i,; ¥ € ¥} coincides with the class of all infinitely differentiable functions y
in R! with
| <1, spty =(0,r(n).

Taking into account that f, is the characteristic function of Dy N (0, r(n)), where D,
is defined by (19), we conclude from 1.9 in [10] that F(z) equals the number of hits
of (0, r(n)) on Dy. In other words, F(z) is the number of hits of

{€ + 00; 0 < @ < r(n)}
on D and, consequently,
J F(n, 0) dH,,—,(60) = v(r(n); ¢),
r
which completes the proof.

1.9. Lemma. Fix { = [¢; tleC.If Ho, is a measure then
(24) v,(8) < 0.

Conversely, if (24) holds, then H5, may be identified with an element of #' and its
norm admits the estimates

(25,) |H8| < 27 [0.,(&) T(3m) + 277] ,
(25,) |H| = 2m+ vw(é).[we-nnmlz-l dn.
where
_ (diam B)?
b= 4T, — 1)
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Proof. Let R = +oo = ¢ and define @' by (21) for this particular choice of R
and e. Suppose first that Ho, is a measure. Then H6, € B’ (see 1.5) and

|HS,| = sup {<o, HO; ¢ € D'} =

= 2m_1f e "2 (2[n(T, — )]V &) dn 2 2771 Dw(é)f e mi2-1dy,
0 b

because v,(¢) = v,,(¢) for ¢ > diam B.

Assume now (24) and consider ¢ € 9r,, |¢| < 1. Fix 6 T', n > 0 and define D,,
S¢ as in 1.6. We shall show that

(26)

J. aIS(p(Q> ?], 0) dQ‘ é 1 + nao(05 é) .
Dy

It is sufficient to consider the case when nw(B, f) < +o00. Let us agree to write
simply S(e) = So(e, 7, 0), so that S'(¢) = 3,S¢(e, n, ). Put r = 2[(T, — ©) n]*/?
and let ¢, < ... < g, be all the hits of (0, r) on D,. Further put g,4, =7, ¢ = 0.
Since D, is open and (g;_, ;) contains no hits on D,,

D; = Dy n(gi—y, 0;) is either void and j S'(e)de =0,
D;

or else Hy(D;) = ¢; — ¢;—;, in which case

f 5(0)de = 5(e) ~ S(or-1)

Noting that S(¢;) < 1 for 0 < i < n and S(g,+,) = 0, we conclude that

J RC dQ’ <ntl.

The inequality (26) together with 1.6, 1.7 yields

sup {<o, H3;>; ¢ € D, || < 1} £ 2"~ 222 + T(3m) vo(£)]

and the proof is complete.

1.10. Remark. If p € 3’ and ¢ € Dr,, then

(27) Co Hu = J' Cov HE du(l)
C
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. Proof. Taking into account (10), (11) and applying Fubini’s theorem to
[ P . .
f j [96(z — £). 99(2) — G(z — ) e, 9(2)] dHim1(2) ()
ExC ]

one obtains (27) (see also 1.7, 1.6).

A reasoning similar to that used in the proof of theorem 1.13 in [10] permits now
to establish the following

.11, Theorem. Hy is a measure for each p e #' if and only if
(28) V = sup {v,(¢); £€eB} < 0.

If (28) holds then, for ea¢ch p e #B', Hu may be identified with a uniquely determined
element of &', the operator H : u — Hp is bounded on #' and

[H] < 2~[rGm) v + 20m7].
f’rdof. Fof each (pe D1, define the functional L, on £’ by
{4, Ly =@, Hu), ueA'.

Let spt ¢ = Ry\R,, —00 < a < B < o and put
m+1
¢ = 2" max (2" 4B — ]2, 7B — @)}, Kg) = esup Y. [o,p].
i=1

We get from the definition of {¢, Hu) and (13), (14)
L] = o) I

so that each functiopal L, is bounded on #'.
Let 1 REENERRDEY SR PE A I AN 3
A =D, 0 {g;|o| £ 1} .
H

If Hu is measure for each ue %', then the class of functionals {L,} pews 1s pointwise
bounded on #'. Hence it follows by the uniform boundedness principle

. sup {|L|; e} =K < +0.
i .J;\_f,.‘},;‘r‘a;‘ .

4 A
In particular, foP each (e C,
[HS|| = sup {<6,, L,>; p e} < K.
Consider now an arbitrary ¢ € B and let:{ = [f, Tl] € C. Defining

b.FM
STy, B
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we obtain from (25,)

© -1
v (6) <247 (f e mymiT1 dr)) .Ki
b

and (28) is verified. Conversely, if (28) holds, then 1.10 and 1.9 imply | ; -

_ i TR }
sup {[<o, HW|; ¢ e &/} < 2" *[VI(3m) + 22" | u] |
for each p e #’. This completes the proof. ' o -

Remark. In connection with the above reasonings we wish to mention here the
work of G. FicHERA [5] on applications of functional analysis to boundary value
problems.

CHAPTER 2 )

We are now going to investigate more closely the function W which has appeare&
in 1.6, 1.7 for the special case when ¢ € Zr,.

2.1. Lemma. Fix ¢ e R™ with v,(¢) < +o0 and define s(g; &, 0) for ¢ > 0 and
0 €T as follows (compare 2.4 in [10]):

s(0; & 0) = o(= *1)
if there is a 6 > 0 such that
E+(o+ou)0eD, &+ (¢—ou)feR"\D B

for almost every u € (0, §); otherwise we set s(g; &, 0) = 0. Further fix t € (Ty, T}
put { = [¢&, ©] and associate with each bounded Baire function f on C the function
Y /(&5 n, 6) defined for @€ T and n > 0 as follows: If n(6, &) < + oo then

W R

YAGn 0) = Zf(é + 00,7 + )s(g, g, 0)

the sum on the right — hand side being extended over @ satlsfymg‘

0 <o <2[n(T, — )], s(e;&6) F0; e ¢
if ny(6, &) = +o0, we set

PR

Y A6, 0)=0.
Then Y. ({5 1, 0) is integrable dH,,_ ,(0) over I' for each n > 0. Besides that,

VAGn) =, I G, 00, (0) .
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is a bounded Baire function of the variable n > 0. We are thus justified to define

Wf() = Zm"lre_”’}((: n) ">t dy.

(1]

Remark. If F is a function whose domain contains C, then WF is taken to mean
Wf, where f is the restriction of F to C.

Proof of lemma 2.1. Denote by K, the set of those 0 € I', for which there is an
¢ = &(0) > 0 such that

H({¢ +00; 0 <o <e}\D)=0,
and éonsider first
(29) 0eK:, ny(0,¢) < +ow.

Fix n > 0, put

r(n) = 2[n(T, — )]
and define
Dy = {0;0 <o <r(n), £ + g0 eD}.

If o, < ... < g, are all the hits of (0, 7)) on D,, then
(30) s(0j+13 ¢ 0) = —s(e;;¢,0) for 1<j<n,
(31) s(e38,0) = 1.

Letting 0o = 0 we conclude for

S(e) = So(e, 1, 0)

defined by (18) that
[ s@de=3-17"500) = =00 - im0
We have thus shown for 0 satisfying (29) that
[ 2o n 0= -g0) - S tn.0).

A similar reasoning shows for 0 satisfying

(32) 0e\Ke, n.(0, &) < + o
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that
'[ 0;S¢(e,n,0)do = =Y (L5, 6).
D*
Clearly,
[ZolC5 1 0)] = n(6.€) - sup o] .

Let us recall that K, is measurable (H,,_,) by 2.6 in [10]. Noting that 3,S¢(g, 1, 6)
is a continuous function on (0, o) x (0, o) x I' and taking into account that

Hm—l(r N {0> }100(9, é) = +w}) =0
we conclude that Y ,((; 1, 6) is measurable (H,,_,) on I' and

(33) Vo(sm) = =) Hu-1(Ke) —f

r

de—x(G)j 3, S, (e, n, 0)de
D‘

is a Baire function of the variable # > 0 satisfying the inequality

VoG m)| < 0.,(€) sup || -

Consider now the class & of all bounded Baire functions f on C for which Y {(; #, )
is integrable dH,,_,(0) over I' for each 7 > 0 and V/({; 1) is a bounded Baire function
of n > 0. We have just seen that & contains restriction to C of any ¢ € Dr,. If
{fi}i=1 is a sequence of elements of # with

lim fy, = f

k- o

such that, for suitable K € R,

SuplfkléK’ kGN,
then

lim $,(0:7.0) = £(C: 7, )
and

125 (En, 0)] = Kno(0:€)

for all k € N. By the Lebesgue dominated convergence theorem also
(34) ’}lm ka(cf ’1) = VI(C’ r’) .

Since
[V(C, m)| < Kvy(),

we see that f € #. Consequently, & contains all bounded Baire functions on C and
the proof is complete.
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2.2. Corollary. Let { = [, t] € Ry, \ Ry, (see (9)) and denote by dy(¢) the m-
dimensional density of D at £. Let ¢ € 9, and define W ¢({) by 1.6. Then

Wo(L) = Wo(l) — 2mn™ dp(€) #(0) -

Proof. Let us keep the notation from the above proof. According to 2.6 in [10]
(35) H,_(K;) = dp(&) 2n™?/F(3m) .
Now it is sufficient to employ (33) and 1.6.

The following corollary was actually proved in the course of the proof of lemma 2.1.

2.3. Corollary. Let { = [¢, ©] € Ry, \ Ry, and suppose that

V(&) < +o0.

If F is a bounded Baire function on C then
(36) |[WF()| < 2" I(3m) v,,() . sup |F] .

If { fi} is a pointwise convergent sequence of bounded Baire functions on C such that
for suitable K € R?,

keN=|f] £K
and

limfy, = f,

k= o
then
klim Wfk(C) =Wwf().

Proof. The inequality (36) follows from the estimate
(37) Vel m)| £ v (&)sup |F|, n>0.
Employing (37) with F = f, we get
Vellsm)| < Kog(E), n>0.

Now it is sufficient to use (34) and refer to the Lebesgue dominated convergence
theorem.

2.4. Remark. Let us recall that a unit vector 6 € I is called the exterior normal
of D at y e R™ in the sense of H. FEDERER provided the symmetric difference of D
and the half-space :

R"n{x;(x —y).0 <0}
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has m-dimensional density 0 at y. In what follows we shall put n(y) = 0 if 6 e I is
the exterior normal of D at y (which is easily seen to be uniquely determined) and we
denote by n(y) the zero vector if there is no exterior normal 6 € I' at y in the above
mentioned sense. The set B = R™ n {y; ]n(v)] # 0} will be termed the reduced
boundary of D.

The following assertion is a consequence of proposition 2.10 in [10] and results
of E. DE GIorGI and H. Federer (see [2], [3] and 2.11. in [10]):

Proposition. Suppose there is an (m + 1)-tuple of points x*,...,x"** e R™ in
general position (i.e., not situated on a single hyperplane) such that

m+1

Y v, (x) < 0.

i=1

Then H,_(B) < +o. If w = [wy,...,w,] is a vector-valued function with m
components w; € 9, then

(38) I w(y) n(y) dHy () = '[ div w(x) dx .
B D
In the rest of this chapter we shall always assume that
(39) sup {v,(y); yeB} =V < .
As shown in theorem 2.13 in [10], (39) implies
(40) sup {v,(x); xeR"} SV + H,,_,(I) .

Consequently, (38) is valid for each w satisfying the assumptions of the above proposi-
tion. This makes it possible to derive another useful integral representation for Wf.

2.5. Lemma. If f is a bounded Baire function on C then, for each { = [&, 1] e
€Rr,\ Ry,

@) WO = j :Zdt Lf(x, O n(x). 96(x — & t — 1) dHp-1(x).

where n(x) is the exterior normal of D at x as defined in 2.4.

Proof. Fix { = [¢, ] € Ry, \ Ry, and suppose first that f € Zr, and f vanishes in
some neighbourhood of {. Choose G € 9 so that

G(z) = G(z — C)

for all z in some neighborhood of spt f and fix t € (T;, T;). Then (38) applies to
w = [wy, ..., w,] defined by

wily) = f(v. 1) . 0,G(», 1)
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and we get for

1(t) = j f,t)n(y) . VG(y — &t — 1) dH,4(y) =

- .il [0,/(x 1) 9,G(x. 1) + f(x, 1) 2G(x, )] dx .

DJ=
Noting that
fz afG =fam+16
i=1

we obtain finally

J.TZI(t) dt = f TzdtJ. [Vf(x,1).VG(x — &t — 1) — G(x — &, t — T) 0y 1 f(x, 1)] dx =

= WF(Q) < W)
Letting

D' = Dr, 0 {f;|f| £ 1, { ¢sptf}

we conclude from proposition 1.8 that

42) ‘[ TTZdt L]n(x) G(x — & { = 1) dHypy(x) =

= sup {Wf({); fe 2*} < 2" T (3m) v, (&) < 0 .

We have so far verified that (41) is valid for f € 9, vanishing near {. Using corollary
2.3 and (42) one easily shows that (41) holds for an arbitrary bounded Baire function f
on C.

We shall now investigate the behavior of W f(z) for z approaching C. The following
result is an analogue of theorem 2.15 in [10].

2.6. Theorem. Let
D'=R"n{x;dp(x) =i}, i=0,1.
Fix { = [¢ 1] e Cand suppose that f is a bounded Baire function on C such that

(43) lim f(z) = «.
z={L
zeC

Then, fori = 0,1,
(44) (zeD' x (T, Ty), z = {) = Wf(z) > WS() + o[dp(&) — i] 2"a™>.
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Proof. We shall assume that T, = +oo (for we may always extend f to B x
x (T, +00) defining f(y,t) = 0 for te (T,, + ) and y € B). We are going to
evaluate Wf(() for any { = [¢, 7] € R™ x (Ty, +o0) assuming that

(45) f=1 on C=Bx<(Tj, +©0).
Define K, as in the proof of lemma 2.1. Fix 0 e I' with n (0, £) < + o0 and let
Dy ={0;0>0,¢ + gfeD}.

If o; < ... < g, are all the hits of (0, + ) on D,, then (30) holds. Besides that,

0eK;=s(0;;¢,0) = —1,
0eI'\K;=s(g;; ¢,0) =1

and s(g,; & 0) = —1 or s(g,; &, 0) = 1 according as D is bounded or not. We thus
conclude for bounded D

(0eKs n>0)=3;n0) =1,
(@elr\Ks, n>0)=Y,,n0) =0,

while for unbounded D

0eK, =Y, (;n,0 =0 forall >0,
0el\K;=Y,((;n,0) =1 forall n>0.

Employing (35) we obtain for bounded D
Wf(Q) = —2mdy(&) n™'?,
while for unbounded D
Wf({) = +2"[1 — dp(&)] =™/%.

Since & € R™ was arbitrary, we see that (44) holds with a = 1 for f satisfying (45).
It remains to verify (44) provided (43) holds with & = 0. We may clearly assume that
f(¢) = 0, too. Then, for any & > 0, there is a decomposition f = f, + g, such that g,
is a bounded Baire function vanishing in some nieghborhood of { in C and | fel <e¢

on C. It follows from lemma 2.5 that
il_{rgl W z) = Wg ().
On the other hand, (36) together with (40) imply
[Wf(z)| < 2"~ e[T(3m) V + 22™/%]
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for all ze R™ x (T, 4+ o). Since ¢ > 0 can be chosen as small as we want, we con-
clude that in this case

Wf(() =lim Wf(z), zeR™ x (T, +0),
z={
and the proof is complete.

2.7. Definition. Let —o0 < T; < T, < +o0 and denote by # = %(T,, T,) the
Banach space of all continuous functions on B x (T, T, vanishing on B x {T,},
equipped with the supremum norm. Given fe # and o€ R! define W,f on B x
x (Ty, T,) letting for ¢ € B

Wf(6,T) = 0,
W,f(E, ©) = WF(E, 7) + 2mn™2[dp(E) — 2] f(& 1), Ti<t<T,.
2.8. Lemma. Fix o € R*. lThen
feB=>W,feRB.
The operator W, : f — W, f is bounded on # and
(46) W] < [VrGm) + (1 + Jo) 2072] 277
If I' stands for the identity operator on %', then the operator
H,=H — 062'”7::"'/21'
(acting on #') is dual to W,.

Proof. Fix f € # and define F on B x (T}, +)so that F = fon B x Ty, T,),
F = 0on B x (T,, +o0). Then F is continuous on

C, =B x (T, +®).
According to theorem 2.6 (where now C is replaced by C,),
L(¢ ) = lim WF(x,t)(xe D, x > &t > Ty, t > 1)
is defined for [¢,7] € C,, and
WE(E, 1) + 2"n"2d,(8) F(, 1) = 2"n"F(¢, 7) + L(¢, 7)

is a continuous function of [£, t] € C,, vanishing on B x (T, + ). Noting that
for [¢,7]eB x (T}, T,) =cl C, W,f(é, 7) coincides with

WEF(&, ©) + 2"n™2[dp(&) — o] F(¢, 1),
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we conclude that W, f € %. The estimate (46) follows at once from the definition of W,
and (36).

If F is a function with domain containing cl C such that f = F | cl C (= the restric-
tion of F to cl C) belongs to 4, we agree to use W,F to denote W,f.

Consider now ¢ € Pr,. It follows from 2.7 and 2.2 that, for { € C,
W, () = Wo(l) — 2mn™ 20 ¢(() .
Employing (20) and (27) we conclude that
Wo0, 1) =L@, Hoptd, pe®, oer,.

If f € &, then there is a sequence ¢, € D1, (n = 1,2, ...) such that ¢, — f uniformly
on B x Ty, T,» as n — co. Hence it follows that

(ned', feB)= Wof 1y = (f. Hatd
and the proof is complete.

Remark. Let us denote by I the identity operator acting on 4. It follows from 2.8
that the operator H is dual to

o 2" ™2 + W,.

Accordingly, the following simple result appears to be useful in connection with -
investigations of the range of H.

2.9. Proposition. Fix o, f € R" and denote by 8, the class of all f € # satisfying

(B1+W)f=0.

Then B, is a subspace of % which is either trivial (i.e., the function vanishing iden-
tically on cl C is the only element of B,) or infinite dimensional.

Proof. For ¢ = 0 and f € # define T*f as follows. Given £ € B, let £ = (T, T,)
and put

Tf(&,t) =0 for te (T, —¢ +o),
TS ) =f(Et+¢) for te fn(—0, T, —¢).

Clearly, T%(#) < % for each & > 0. It follows easily from the definition of W, and
2.5 (note also that G(z) = 0 for z e ¢l R,) that

W,Tf = T*'W.f, fe®.

Consequently, also %, is translation invariant in the sense that T‘(.é?,,,) < B,y for
each ¢ > 0. Now it is sufficient to employ the following elementary lemma:
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Let g be a continuous function on %, g(Tz) = 0, and define for each ¢ > 0
Tg(t) =0 for tef N<(T, —¢ +o),

Tog(t) = g(t +¢) for te Fn(—o0, T, —¢).
If
t=inf{t;te 7, g(t) = 0} > T,,

then, for each choice of n € N and ¢ > 0 with
T, +ne<rt,

the functions in {T®*~**g}}_, are linearly independent.
Indeed, for k = 1, ..., n, T® Y%g does not vanish identically on

e =<t — ke, — (k= 1)&),

while all T%*g with j = k do vanish on #,,. The rest is obvious.

CHAPTER 3

Unless the contrary is explicitly stated, in this chapter we always assume that
(47) sup {v,,(¢); E€eB} =V < +0.
We proceed to investigate the dual equations
Hyu =v (over B), W,f =g (over %)

associated with the Fourier problem. The methods usually used when B is a suf-
ficiently smooth hypersurface are no longer applicable under the general assumption
(47). (Under appropriate smoothness assumptions on B the resolvent of the resulting
integral equation can be evaluated in the form of a series; cf. [20], where also further
references to the work of E. HOLMGREN, E. Levi, M. GEVREY, H. MUNTZ, S. G.
MicHLIN, A. N. TicHONovV may be found. See also [7], [8], [11], [13], [14], [17].)

We consider the decompositions
H =2"g"?al' + H,, W, = _2"a"al + W,
and evaluate the Fredholm radius of W,, which is the reciprocal of the quantity
oW, = iIQlf [w- 9|,

where Q ranges over all compact operators acting on 4. It appears that oW, can be
expressed in geometric terms connected with D. This makes it possible to find the
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optimal value y of the parameter o in dependence on the shape of D and establish
conditions on D guaranteeing

oW, < 2"z"|y| .

The Riesz-Schauder theory together with proposition 2.9 then yield the desired result
concerning the Fourier problem.

Remark. We shall see that the optimal value of the parameter o, for which
wWJ|oc, attains its minimum, equals 1 if dD(x) = 4 for all x € B. This naturally occurs
if B is a smooth hypersurface. It is interesting to observe that under the assumption
(47) the optimal value of the parameter may be different from } (see 3.9 below).

It should be noted here that already J. RADON considered the quantity correspon-
ding to wW, for special choice of « in his investigations of the logarithmic potential;
he evaluated it for plane domains bounded by curves with bounded rotation (see
[21], [22]). Compare also [10], [24] treating boundary value problems for Newtonian
potentials in n-space.

3.1. Notation. Throughout this chapter we assume that —o0o < T; < T, <
< +o0. Given & > 0 and { = [¢,7] € B x Ty, T,) = cl C, we denote by y&
the characteristic function of

Me, 8) = R™1\[Q,¢) x (r — 6,7 + §)] .

B and n will denote the reduced boundary and exterior normal of D, respectively, as
defined in 2.4. For 0 < r < ¢ put

(48) q(r) = ilell};) H, {Bn[Q.,(x)NQ_(x)]}-

We define for each bounded Baire function f on ¢l C and { = [£, t]ecl C
T2
wef(() = J dtj 10, 1) f(x, ) n(x) . VG(x — &t — 1) dH,,_,(x).
T, B

3.2. Lemma. Fix ¢, 6 > 0. Then there is a positive constant ¢ € R* such that

(49) [we £(0) = w2 O < elad|t = &) + ¢ = ]
for each Baire function f satisfying

(50) sup {|f(z)]: zecl C} < 1

and each couple of points { = [&, 1], { = [€ 7] in cl C satisfying

(51) |6 —¢& <3e, [t—1 <15.
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Proof. It is easy to see that there is a ¢, € R! such that
WGI <c
in .
Mo(3e, 48) = {z; |zm+1| > 36} U {z; |2] > ¢}
and
[VG(u) — VG(i)| < cy|u — i
for each couple of points u, i in Mo(}e, 35). Consider now { = [¢, 7], { = [§, 7] e

e R™** satisfying (51) and suppose that f is a Baire function on cl C satisfying (50).
Writing z = [x, t],

Iy = f nd‘f 1) S(@) n(x) - [V6(z = ) = 96(z = D] dHu-(x)

J, = J " j [(e) = AL () 96 = a9,
we have
(52) W2 £(C) = W2 FQ)| < |J4] + |T2]-

If z is in M (e, 0) then, in view of (51), both z — { and z — { belong to M(4, 49),
so that

(53) [J:| £ e4|¢ = | Hpu-o(B) (T, — T7).

Put

R=a+|€—f, r=s~—[§—f‘.

Then the symmetric difference of M,(e, 5) and M;(, 6) is contained in the union of

[2x() N 2(e)] x R!

and

RPx {t;6—|[t—1 s|t—1<d+|t—1]}.
Hence it follows
(54) |72] < e1a|€ — &) (T2 = T)) + 4c,H,—y(B) |t — 7] .
Combining (52), (53) and (54) we get (49) with

¢ = max {¢,(T, — Ty), ¢;H,—(B)[(T, — T,) + 4]} .
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3.3. Lemma. Given ¢,0 > 0 and { = [¢,t] € R"*!, denote by x{’ the character-
istic function of
Q&) x (1,7 + 9)
and define

W(0) = J "t f 000 96— &1 = a9,

If M < C is dense in C, then
(55) oW, < sup {2"n"2|dy(0) — of + v*(()} =
LeM

= sup {2'"7:'”/2|dD(Z) — oz| + v*({)}
4
for all e R' and ¢,5 > 0.

Proof. Fix « € R" and ¢, & > 0. Noting that v*({) is a non-decreasing function
of the variable ¢ > 0, we may assume for the proof of (55) that

(56) xeB=H,_[BnfrQ(x)]=0.

Indeed, the set of those ¢ > 0 for which (56) is violated is at most countable, because

H, (BnS)<H, (B)< +w
i=1

i

for each choice of spheres S; = fr @, (x') with mutually different radii e, > ... > ¢
and arbitrary n € N.

Defining ¢, by (48) we conclude from (56) that
lim q(r) = 0.

r—0+

n

It follows from lemma 3.2 that all the functions in

(57) wefsfea. |f] = 1}

are equicontinuous on cl C. Employing (36) one easily sees that (57) is contained in
2 {g; g £ 2" I'(3m) V} (see also (47)). Consequently, W®: f — W* isa com-
pact operator on # and

(58) oW, £ |W, — w?|.

Noting that G vanishes on cl R, we get from (41) for f € Band { = [¢,7]eclC
(We = W) f(0) = 2"n"2[dp(&) — «] F(0) +
T2
+ j dt f £ 1) 22x, 1) n(x) . VG(x — & 1 — 1) dHy_ (),
T B
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whence it follows that

2"7m2dp(0) — of + v*(0) =

= sup {(W, — W) f((): fe &, |f] <1}
is a lower-semicontinuous function of { € ¢l C and
|W, — w*| = sup {ZMnM/ZIdD(Z) —of + ()} =
LeM
= sup {2"n"2|d}(0) — of + v*(()} .

LeC

This together with (58) completes the proof.

The following slight modification of a known result due to J. RapoN will be
needed below.

3.4. Lemma. If Q is a compact operator on & then, for every ¢ > 0, there exist
Jir--nfs€B and py, ..., u e B' such that the operator

(59) 0.:f > Y (o fin fed,
satisfies
(60) lo-ol=e.

Proof. For z e cl C define &(z) € #' by
f, 0(2)) = Qf(2), fea.
Accordingly,
(zeclC, zyyy = T,) = [#(2)] = 0.
Since Q is a compact operator on %, @ is a continuous map on cl B to 8’ (compare
[22], chap. V, n°90, p. 218). Consequently, we may fix Te (T, T,) such that
(2€C, zpes > T) = [0(2)] < .

Further choose open sets Uy, ..., U with

s

CncRrcUU; =Ry,
i=1

such that, fori = 1, ..., s,
(z,ZeCnU)=|o(z) — o(2)| <e.
Put
Up=R""" n{z; 2y, > T},
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so that
(61) Uy Uss .. Ug

is an open covering of ¢l C. Associate with (61) the decomposition of unity formed
by continuous non-negative functions fo, f1s . --» fs on cl C such that

sptf; cU0<j£s), Lfj=1 on cC.
j=0

Fix z'e C n U, put y; = &(z°) (1 < i < s) and define Q, by (59). Consider now an
arbitrary f € # with | f|| < 1. We have

6) (@ Q) = U AN lE) + X 9E) — 6 A).
Since f, vanishes outside U, and |&(z)| < ¢ for z€ U, n cL.C, we have
(63) |<f, (2> fol2)| < &fo(2) -

Note that fi, ..., f, vanish outside u U,, while

i=1

|o(z) — ()] <

for z in

U;ncCo {zfi(z) +0}, i=1,..,s.
Consequently,
(64 | 5.¢f0(2) = 9 £(2)] < ot - £i2)].

Combining (64), (63) and (62) we get (60).

3.5. Lemma. Let us keep the notation from lemma 3.3. Then

oW, = lim sup {2"7"?|d,(0) — of + v*(()}

£,0-0+ leC
for every o € R,
Proof. Fix « € R! and let
(65) k> ow,.

According to lemma 3.4, there are f1,....f;€ # and pu,, ..., u,e B’ such that the
operator

0:f > fmd i, fea,
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satisfies
(66) k > [| W, — QH .

Writing c,, for the characteristic function of M we associate with each { = [¢, t]eC
the measure v, defined on the system of Borel sets M = R™*! by

v(M) = J‘Tzdtj‘ eulx, ) n(x) . VG(x — &t — 1) dH,,—4(x) .

Ty

Clearly, v, € %'. Denoting by 6, the Dirac measure (= unit point mass) concentrated
at { we have by (41)

W,f(0) = {f, v, + 2mam2[dp(Q) — o] 8>, (eC, feR.
Let ‘

Co= € v {6 X |u () = 0}
Clearly, C\ C, is at most countable. Consequently,

(67) [v] (CNCo) =0 = |v]|({{}) forevery (eC.

Fori = 1,..., s consider the decomposition

=+ p s
where
pi-uied,
(68) ze R"" = |ul| ({z}) = 0,
() 12](c0) = 0.

In view of (66)—(69) we have then for each { € C,
(10) k> [W= Q] > v+ 2w [dy(0) — 4] & — i{f<6>ufll =
= e = RAQ ] + 2w dn(t) — o +
S O R 2 = A ]+ 270 = ol

Put _
K = max {|f(z)|; zeclC, 1 £i <}
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and define »{’ as in lemma 3.3. For pe®', xue B is defined by {f,n{'nd
= {fu, u) (f € ), as usual. Then

I = L@ ml 2 1D - 27O 1l 2
2 st = K sup ([l Ceel ¢},
whence we conclude by (70)
k> sup (27 [ds(0) — o] + [y — K 3 sup (s tect €}

Noting that C, is dense in C and |»f’v,|| = v*({) as introduced in lemma 3.3, we
get by (55)

sup (272(d() = o] + |} = sup (2 1aD) = ] + )
€lo eC

Since cl C is compact, (68) implies

lim isup {#ut|; tecdC} =0.

£,0-0+ i=1
Consequently,
k= lim sup {2"7"?|dy(() — af + v*()},

£,020+ (leC

which completes the proof, because k was an arbitrary number satisfying (66).
Combining lemmas 3.3 and 3.5 we obtain at once the following

3.6. Proposition. If M < C is dense in C, then
oW, = lim sup {2'".7r'"/2|dl',(€) —of + ()} .

£,6-0+ leM

Remark. The above proposition (as well as its proof) is a complete analogue of
3.6 in [10].
The following lemma will enable us to derive a geometric expression for wW,.

3.7. Lemma. Define v(r; x) (r > 0, x € R™) by (8) and let for L< B, L # 0,
Vo(L) = lim sup v(r; x).
r-0+ xeL
Then ,
2" I(3m) Vo(L) = lim sup {v((); (e L x (T}, T»)},
£,6-0+

where v({) has the meaning described in 3.3.
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Proof. Fix L < B, L + 0. Note that v'*“(C) is a non-decreasing function of each of
the variables ¢, § > 0 separately and

sup {v"(¢, 7); 1€ (Ty, Ty)} = v*¥(¢, Ty), EeB.

Hence

(71) lim sup {v°(0); (e Lx (T, T)} =
li(r)r}r sup _{v”"(f, Ty); £eL, § = '} .

Put

r(n, &) = min (&, &% /n), 7 >0,
and consider ¢, J satisfying
0<e<[HT, — T, 6 =41,

Then

(72) (¢, Ty) = 2" _[ 7" 1(r(y, €); £) dry,
0

as it follows from (41), 2.2 and 1.8. Since

W(r; &) SV< 4+
for any ¢ € B and r > 0, we get

® ,
lim supJ‘ e ymat o(r(n, g);&)dn=0.
&0+ EeL JE™2 )

- Taking into account that (1, &) = &> \/ for 0'< 1 < &™2 we obtain

(73) © lim sup J’ ™™™ or(n, €); &) dy =

>0+ gL Jo

~ lim sup f &1 ofe () &) d
) ‘

e>0+ SeL

Note now that
n 28 2o )8 2 o 8),
nse 2 uo(e? J);E) S oes8).
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Hence we conclude

Vo(L) [(3m) = hm sup v(e3; &) -[ 2=t dy <
-2
s limsup [ e ol () ) dn 5
e=20+ &L
< lim sup o(e; é)j "2t dnp = V(L) I(3m) .
T es0+ &L

We see that

nmwr}wwﬂmwwﬁw=mmmm,
0

=0+ &eL
which together with (73), (72), (71) completes the proof.

Remark. It is useful to extend the definition of V,(L) letting V(0) = 0. Now we
are in position to evaluate wW, as follows.

3.8. Theorem. Put
B, = B {x;dpy(x) =1}, B, =R"n{x;dp(x) =1}

and write, for the sake of brevity,

oW,
Wy = ——————,
2"~ 1(4m)
(74) A = 27" (3m),
(75) Vi=VoB), i=12

(see also 3.7). Let us distinguish the following three cases:
() Bi=0orV, 234 +V,,
(i) By =0 or V, = 14 + Vs,
(iii) By + 0 + B, and |V, — V,| < 34.

Then
(76) w, = Alo — 3| + V, in the case (i),
(77) w, = Ale — 1| + V; in the case (ii),

while in the case (iii) _
(78) 0, = 34 + 3V, + Vo) + Ao — [} + (V, = B)24]| .-
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Proof. If x e B\ By, then dp(x) < 1 and each ball Q(x) (r > 0) meets R™\ D in
a set of positive m-measure; since D is open, also

H,(Q/(x)nD)>0.

Hence it follows by the relative isoperimetric inequality for sets with finite perimeter
(see Theorem (4.3) in [16] or isoperimetric inequalities for currents established in [4],
§ 6) that

H,_,(2(x)nB) >0,

where B = B, is the reduced boundary of D as defined in 2.4. In particular, x € cl B,.
We have thus shown that B; U B, is dense in B. Put L; = B; x (T}, T,), M =
= L, u L,, so that M is dense in C and we obtain from 3.6 that

(79) wW, = lim sup {2"72"2|dp(0) — o + v*(0)} .

£,020+ {eM
If B, = 0 then dy(() = 4 for each { € M = L, and 3.7 yields
oW, =2"n"?|} — a| + 2" I(3m)V,,

which is in accordance with (76). Similarly, B, = 0 implies that d,({) = 1 for each
{e M = L,, whence we conclude by 3.7

oW, = 2"n"? |1 — o + 2" I(34m) Vy,

which is the formula occuring in (77). Consider now the case when B; = 0 =+ B,
and let

m; = lim sup {2"n"/|d}(() — of + 0?(0)} s

£,0-0+ (eL;
so that (79) implies
oW, = max {m,, m,} .

Since dp({) = 2* 7/ for each { € L, (i = 1, 2), we have by 3.7
m; = 2"g"22t 7 = | + 2" "L T(3m)V;,
whence it follows after simple calculation that

_ max {m,, m,}
2" T(3m)

a

attains the value given by (76), (77) and (78), according as
V, 234 +V,, V234 +V, and |V, -V, <34,

respectively. This completes the proof.
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Remark. It would be interesting and useful to evaluate wW,, where W, is the
n-th power of the operator W, (see [25], chap. X).

In connection with the operator
H = (2"n"?al + W,)

it is important to investigate

oW, w,
80 =" _ & 0,
(80) g(e) zmnm/llal AM % *

and evaluate
(81) a =inf {g(«); « + 0} .

Indeed, the condition a < 1 permits to apply the Riesz-Schauder theory to H. The
above theorem enables us to establish the following corollary.

3.9. Theorem. Define a by (81), (80), A by (74) and V; by (75). Then
(82) a<1
holds if and only if
(83) Vi<A and V, < 3A.

If the conditions (83) are fulfilled then

(84) 9(r) = a
determines y uniquely and one of the following three cases must occur:
(i*) B, = 0,

(ii) B, =0orV, =34 + V,,
(i) By # 0 & B, and |V, — V,| £ 3A4.

The corresponding values of a and vy are then given as follows:
Aa =2V,, y=1% inthe case (i*),
Aa = Vy, y=1 in the case (ii),
while in the case (iii)

g VitVartd 3 V-V,
V,—V, + 34 4 24
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Proof. We shall distinguish the cases (i)—(iii) occuring in 3.8. Consider first the
case (i). According to 3.8 we have in this case :

(85) Ag(a):la)—"":A-FVz—A.for O<as<i,
o4
1
(36) Agla)= A — 242 gy <o,
— 1 ' :
(87) Ag(a)=A+K2~—"—-Ai for a=1%.
o4

Hence we see that @ < 1 implies V,' < 14, which together with (i) means that B; = 0
and V; = 0, so that (83), (i*) are fulfilled. Conversely, if (83) holds, then (85)—(87)
show that a ‘= 2V,/4 < 1 and a is attained by g at y = % only. Now we shall examine
the case (ii). As it follows from 3.8,

Ag(oc)=V1+A-A for 0<a=<1,
Ago) =4 -2 for w <o,
Ag(oc)=A+Vl_A'for a=1.

We see that in this case (82) holds if and only if ¥; < A, which is now just the same
as (83). If (83) holds, then a = V;/A4 is attained by g at y = 1 only. Finally, consider
the case (iii). Employing 3.8 we get

Ag(a):u-A for 0<a§V1—V2+§,
o 24 4
Ag)=a -4 for <o,
_1 _
Ag(a)=A+Kg——2£ for a2z -1 2y 3,
. 24 0 4

Hence we conclude after simple calculation that a < 1 if and only if V, < 14, which
is now equivalent with (83). If (83) holds, then g attains its minimum at

V] - V2>
‘24

+

Al

‘y=
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only and
1
g(y)=a= Vl + VZ + 2A.
Vi—V,+ 34

The proof is complete.

Now it is easy to prove the following theorem concerning the second Fourier
problem.

3.10. Theorem. Assume (83). Then for each v € %' there is a uniquely determined
we B such that Hu = v.

Proof. Fix y e R! satisfying (84) so that, by theorem 3.9,

W,
— i = <1.
22y s0)
Noting that

H = (2"n"*yI + W,)

(see 2.8, 2.7) and writing § = 2"z™?y we conclude by the Riesz-Schauder theory
that

BoA{S(BI + W) f =0} = B,
is finite dimensional and
H(#') = B 0 {v;{B,p v) =0}.

Since 4, is trivial by 2.9, the same must hold of #’ n {u; Hu = 0} and the proof is
complete.

Remark. We see that weak characterization of the normal derivative by means
of the functional H permits application of potentialtheoretic methods to the Fourier
problem for general domains satisfying (83). (Note that the boundary of such a domain
need not be a hypersurface.) As it is well known, weak characterizations of boundary
values occur frequently in the literature (see also [26], [10] for further references).
We wish to note here that already J. Radon [21] referred to a related concept termed
“Plemeljsche Randstrémung” when treating the boundary value problems for
logarithmic potentials in plane domains bounded by curves with bounded rotation.
‘Unfortunately, the corresponding work of Plemelj [19] has not been available to the
present’ author. Main results of this paper have been announced without proofs
in [11]. ,

Employing the integral representation derived in 2.5 one easily verifies that, for
every f € B, Wf = u satisfies the equation “

(88)

M=z

5,24«! + Ot =0
x L

i
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in R™*1\ cl C. By duality based on the Riesz-Schauder theory we obtain thus the
following result concerning the first problem of Fourier for the equation (88).

3.11. Theorem. Assume (83), define D° = R™ n {x; dp(x) = 0} and put E° =
= D° x (T, T,). Given h e % there is an f e % such that, for each { € C n ¢l E°,

h(¢) =lim Wf(z), z—>(, zeE°.
If B < cl D° then such an f is uniquely determined.

Proof. Define y by (84) and put f = 2™n™?y. As we have seen in the proof of 3.10,
A,y 1s trivial. Hence we conclude that, given h € 4, there is a uniquely determined
f e % such that

BIr+w)f=h.
Now it is sufficient to employ theorem 2.6 (see also 2.7) showing that for { € C n ¢l E°
B+ W) f(Q) =limWf(z), z—>(, zeE°.

Remark. It is easy to see that the assumption (47) introduced in the beginning of
this chapter is a consequence of the weaker assumption

(89) Vo(B) < + o0 .
Indeed, let us drop (47) and assume (89). Then there is an r > 0 with

(90) sup v(x) < + o0 .

xeB

Given x € B and ¢ = }r, there is a finite constant K such that

(91) J. divo(x)dx < K
DnRe(x)

for every vector-valued function v = [v;, ... U] with infinitely differentiable com-
ponents v; satisfying spt v; = Q(x) (j = 1, ..., m),

IIA

vy 1.

s

2
J

i

j=1

This is obvious if B n Qo(x) is contained in a hyperplane. In the opposite case one
may fix points x', ..., x"** € B n Q,(x) that are not situated on a single hyperplane
and employ the reasoning described in the proof of 2.10 in [10] to get a finite con-
stant K (depending on the quantities v,(x’) and on mutual position of the points
x%, ..., x™*1) such that (91) holds for all v described above (note also that Q,(x) =
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< Q(x%), 1 £j £ m + 1). Since B is compact, we conclude that D has finite peri-
meter and

v(x) = fBW(Vl)yE—m dH,_(y)
o) = f )0 = gy

v = "
(see 2.12 and 2.8 in [10]). Now it is easy to see that (90) implies (47).
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