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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

ON THE TORSION OF SPACES WITH CONNECTION 

IVAN KOLAR, Brno 

(Received December 2, 1969) 

Generally speaking, this paper is intended to show that some properties of a space 
with connection (of the first order) are naturally expressed in terms of the prolonga
tion of its connection. (Some further results in this direction are outlined in [9].) 
EHRESMANN [6] has introduced higher order connections on a Lie groupoid and in 
the same situation he has defined the prolongation of a connection. This approach 
is really the most appropriate one from the conceptual view point, but it seems to be 
more convenient to replace Lie groupoids by principal fibre bundles in our investiga
tions. An equivalent definition of higher order connections on a principal fibre 
bundle P was given by CENKL [1] who has used the higher order contact elements 
on P. Nevertheless, in the first part of this paper we present another equivalent 
definition of higher order connections on P, dealing with the elements of the corres
ponding prolongation of P. According to our opinion, this approach is convenient 
especially for the study of the development of a jet by means of an element of con
nection as well as for the study of the prolongation of a connection; it can be 
illustrated by Propositions 7, 8, 9. 

In the second part of the paper, we show that the torsion form of a space with 
connection vanishes at a point if and only if the development of this space by means 
of the prolonged connection is holonomic. Further we treat a manifold with connec
tion (see § 9), we define its reduced torsion form and ve prove that this form vanishes 
at a point if and only if the contact element determined by the development of this 
manifold by means of the prolonged connection is holonomic. In these investigations, 
our main tool is the difference tensor of an arbitrary semi-holonomic 2-jet. We 
introduce this tensor in a formal way which is why we are often obhged to use direct 
computations in local coordinates even though the results are always invariant. We 
deduce that the curvature tensor of a connection of the first order coincides with the 
difference tensor of its prolongation. This assertion is very close to a theorem by 
Ehresmann [6]. To compare both points of view, we remark that our approach is 
formal; on the other hand, our consideration is direct, i.e. we do not use any auxiliary 
integrable connection. Then we show that the torsion tensor of a space with con-
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nection coincides in the main with the difference tensor of the development of this 
space by means of the prolonged connection and both above-mentioned results are 
simple consequences of this fact. Finally, we present a minor concrete example in 
§10. 

0« Our considerations are in the category C°°. A fibered manifold E with base В and 
projection p is denoted by (£, p, B); E^ is the fibre over xeB^E^ = p~^{x). J\E, p, B) 
or J\E, p, B) or J^E, p, B) means the r-th non-holonomic or semi-holonomic or 
holonomic prolongation of E respectively; we write also J'^E or ßE or УЕ if there is 
no danger of confusion. The standard notation of the theory of jets is used through
out the paper, see [3]. In addition, j ^ , r < s denotes the canonical projection of 5-jets 
into r-jets, so thaty^X is the r-th part (or the underlying r-jet) of an s-jetZ; naturally, 
f^X = ßX, Since the elements of J^E can be identified with some special elements 
of J\B, E), the canonical projection of J^E into J'*£, r < s will be denoted by the 
same symbol j ^ . If X e J^E, s > 1 then we use already j^X for the canonical image 
of X in J^E = E to avoid a possible obscurity whether ßX means jJ-^X or/fX. 

1. Let Ф be a Lie groupoid over В with projections a, b and let 1̂  denote the unit 
of Ф over X e JB, see [10]. The partial composition law in Ф will be denoted by a dot 
so that 0 ' . Ö is defined for every в\ в e Ф satisfying a(9') = Ь{в); then Ь(в' . в) = 
^ Ъ{в% а{в' . в) = а{0). Let i : 0 h> ö~^ be the inversion of Ф and let X be a non-
holonomic r-jet of a manifold F into Ф, then we define X"^ = iX. We put Ф^ = 
= a""-̂ (x) for every x e В and Ф^ will be considered as fibered manifold (Ф^, b, B) 
unless otherwise stated. 

Ehresmann [6] has introduced a (non-holonomic) element of connection of order r 
(shortly: an r-element of connection) on Ф at x G Б as a jet X G J^{B, Ф) satisfying 
aX = X, ßX = 1^, bX = j ^ (= fjdß), aX — f^x where x means the constant map
ping x(^) = X for every t E B.lt is easy to see (and we proved it in detail in [8]) that 
this definition is equivalent to the following one: a (non-holonomic) r-element of 
connection on Ф at x e В is гт element X G ^^{ФХ^ b, В) such that j^X = 1 .̂ An 
r-element of connection X at x G ß is said to be semi-holonomic or holonomic if 
X G 7'*Ф^ or X G ^Ф^ respectively. о''(Ф) or б'"(Ф) or ô'^(^) denotes the fibered 
manifold of all non-holonomic or semi-holonomic or holonomic r-elements of con
nection on Ф. A non-holonomic or semi-holonomic or holonomic connection of 
order r (shortly: an r-connection) on Ф is a global cross section С : В -^ ô (^) ^^ 
С : ß -> йХФ) or С : Б -> 0'{Ф) respectively. 

Suppose Ф is а groupoid of operators on a fibered manifold (£, p, B), see [5]. The 
action of Ф on £ will be denoted by a dot so that в . z is defined for every в e Ф and 
z e E satisfying a(9) = p(z); then в . z e E and р{в . z) = Ь(в). In particular, if 
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в е Фд., then ö~^ . z belongs to E^ for every ze E such that the product 9 ^ . z is 
defined. Let xeB, let F be a manifold, Z e Jl{V, E), p{ßZ) = x, and let X e 7;(Ф.„ b, 
ß), then the prolongation of the partial composition law (0, z) t* в , z defines 

(1) X-\Z) = {X-'PZ).ZBJI{V,E:), 

cf. [6]. If X 6 Öx(̂ )» then (1) will be called the development of Z into E^ by means 
ofXy cf. [9]. (Note that Ehresmann has used the term "the absolute differential of Z 
with respect to X" for (l).) In particular, if cr is a local cross section of (E, p, B), 
then we shall write only X~"̂ (cr) instead of X~^{jl(7) and X~\a) will be said to be 
the development of a into E^ by means ofX, — We shall rewrite (1) in a more detailed 
form. Let Z = f^ С{у) where ^(j) is a local cross section of {J''~^{V, E), a, V) and let 
X = jl ф(t) where \l/(t) is a local cross section of }'"~^{Ф^, b, ß), then 

(2) Х-Щ=П[ф-'{р{РС{у)))рС{у)^С{у)] for r > l , 

(3) X-^(Z) = Л[ф-'{р C{y)) . C(y)] for r = 1 . 

2. Let N = и /"(Ф^, Ь, ß), which is a fibered manifold {N, af^, B). Ф acts (on the 
XBB 

right) on N in the following way. Let 0 e Ф, b(ö) = x, a(ö) = f, then в determines 
a mapping of Ф̂  onto Ф,, { и̂  ^ . Ö, ^ e Ф .̂ Now, let X G /''(Ф^^» Ь, ß), then X . в 
will be the image of X by this mapping; X . Ö e 3\Фг, b, B), 

Let С : ß -^ б''(Ф) be an r-connection on Ф, then Ĉ  = j ^ С is a 1-connection on Ф. 
Consider a point x G ß, then Ci(x) = j i ^(t) where Q is a local cross section of (Ф .̂, Ь, 
ß), ^(x) = 1,. We define 

(4) C ' ( x ) = j ^ [ C ( 0 . ^ ) ] . 

Since C{t) . Q{t) is a local cross section of 3\Ф^, Ь, ß), it is C{x) e З'^^^Ф^у Ь, ß); 
further we have f,^^ C{x) = 1̂  so that C{x) e й1^\ФУ Thus, С : В-^ й'^^Ф) 
is an (r + l)-connection on Ф, which is called the prolongation of C, cf. [6]. The 
ЫЬ prolongation Ĉ*> of С is defined by iteration C(*> = C^*"̂ '̂ 

Having a fibered manifold (£, p, ß) and a manifold F, we define 

(5) F^{V,iE,p,B))=:U3XV,E,); 
xeB 

we shall also write '̂*(F, £) if there is no danger of confusion. In the semi-holonomic 
or holonomic case, we analogously define F\V, (£, p, ß)) or F''(F, (£, p, B)) respecti
vely. Let Ф be a groupoid of operators on E and let Ö e Ф, а{в) = x, b{9) = t. Let 
S G /""(F, E^) and let Ö. S be the image of S by the mapping в : E^-^ £,, then Ф 
becomes a groupoid of operators (on the left) on {F^V, É), pß, В). Further, let Z G 
G J'/^(F, £), p{ßZ) = X, then the development of Z by means of an element of the 
prolonged connection C'~^(x) (Z) G 3l^H^> ^x) can be also described in the following 
manner. It is Z = jl С{у) where С{у) is a local cross section of Finto 3'(V, E), Develop-
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ing each jet С{у) by means of the corresponding element of C, we get a local cross 
section C^r) of Finto Г{¥, £), C^'^y) = C-\p{ß C(j))) {^{y)). 

Proposition 1. h holds 

(6) Cl\x){jlü^'^) = C-\x){Z). 

Proof. It is Ci(x)=j ie(0 . C'-\x)=jl{C{i).Q{i)), so that C'-\x){Z) == 

=m{Q~'{m{y)))-c-\mmAm)->^{y)'\=ji{Q~\p{ßm)-c-\pßi{y))) 
РШ) • C(y)] = Jl\Q-\p{ß ^"\y))) • С̂ 'ХЗ')] = С-Л^) Ш'Л QED. 

Proposition 1 gives a very instructive description of the development by means of 
a prolonged connection when one develops a local cross section a of (E, p, B), i.e. 
Z = j;+^ a{i). Then (т(''>(г) = С-^г) {a) is a local cross section of {P\B, £), i?^, B) 
and the development of a into Ê , by means of С " ^(x) coincides with the development 
of o-̂ '"̂  by means of the element of the underlying 1-connection Cj^x). In particular, 
let С be a 1-connection on Ф and consider the sequence C, C\ ..., C '̂'̂  ... of its 
prolongations; С will be called iht fundamental connection of this sequence. If a is 
a local cross section of (£, ;?, B), then the local cross section cr̂ ''XO = C '̂'~^̂ "'̂ (̂ ) ((т) 
of P{B, (E, p, B)) can be called the r-th development of a. We have 

Corollary 1. The (r + \)-th development Ĉ '"̂ ~̂ (̂ ) ((т) of a local cross section a 
of (£, p, B) coincides with the development of the r-th development Ö^~^^~^{t) (a) 
by means of the fundamental connection C, 

3. We define a (non-holonomic) distribution 6 of order r (briefly: an r-distribu-
tion) on a fib er ed manifold (£, p, ß) as a global cross section of fibered manifold 
(J''E, j ^ , £), so that д assigns to every zeEzn element ö{z) e J^E such that j ^ ô{z) = 
= z. If Ô{E) C УЕ or Ô{E) CZ ГЕ, then 5 is said to be semi-holonomic or holonomic 
respectively. The prolongation à' of an redistribution ô can be introduced as follows. 
It is jl ô[z) e J^E, so that j^^ ô(z) = jl y{t) where y(t) is a local cross section of (£, p, 
B); then we define 

(7) S'{z)=^jXy{t)). 

As ô{y(t)) is a local cross section of {J^E, a, Б), it is ^'(z) e J'"^^£. Thus, ô' is an 
(r + l)-distribution on E. The s-th prolongation ô^^^ of 5 is defined by iteration ô^^^ = 

Proposition 2. Let ô be a semi-holonomic r-distributwn on E. If <5' is also semi-
holonomic, then 0^^^ is semi-holonomic for every s. 

Proof. Consider an element z e.E, p{z) = x. Let jl ô{z) = jl y(t), then ô'[z) = 
= jl ô{y{t)) and ô"{z) = jl S'{y{t)y If S' is semi-holonomic, then ô'{y{t)) is a local 
cross section of {Г^^Е, a, B) and it holds jljl^^ S'{y{t)) = jl ô{y(t)) = ô'{z) which 
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proves that ô"(z) e J'*+2£;. Xhus, ô" is semi-holonomic and by iterated application of 
this result we deduce that 3^^^ is semi-holonomic for every 5. 

Proposition 3. Let S be a distribution of the first order on (£, p, B), then ô^^^ is 
semi-holonomic for every s. 

Proof. We have only to prove that ô' is semi-holonomic. If ô[z) = j'l y{t), then 
Щ = jl ô{y{t)) шdjlß ô{y{t)) = jl y{t) = ô{z), which impHes ôXz)ePE. 

4. Let P[B, G) be a principal fibre bundle with base В and structure group G and 
let 71 : P -> Б be its projection. Suppose a left action of G on a manifold F is given, 
(g, a) h-y да, g e G, a e F, Consider the associated fibre bundle E(B, F, G, P) with 
standard fibre F and denote its projection by p, p : E -> B. Each element z e E is an 
equivalence class {(u, a)} with respect to the equivalence relation {ug~^, да) ^ (w, a), 
g eG. Every ueP can be considered as a diffeomorphism и : F -^ E^ defined by 
ti(a) = {(w, a)}, X = n(u). But и can also be interpreted as the inverse diffeomorphism 
u"^ : E^ -^ F. Under this interpretation, we shall write P"^ instead of P and w"^ . z 
instead of u~^(z). Further, let Ф be the groupoid associated with P, Ф = PP~^, 
see [6], [10], then Ф is a groupoid of operators on E as follows. If Ö = u'u~^ and 
z e E, then 9 , z = u'(u~^ . z). In particular, Ф is a groupoid of operators on P by 
в . и = (u'u~^). и = и'. 

Let Ye J\P, n, B), aY = xJ^Y = u. Denote by Ум"^ the image of Fby the mapping 
u~^ :Р-^Ф^,и' и-w'w~\ then Ум ~ 4 s an element of 7^(Ф^, Ь, P) such that J^YM"^ = 
= 1 ,̂ i.e. Yu"^ e 6^(Ф). Further, it holds {Yg^J^ngy^ = :Ум"\ g ^G where Yg means 
the image of jet У by the mapping g : P -^ P. Conversely, let X e б^(Ф) and let X . м 
denote the image of Z by the mapping и : Ф^-^ P, 0 h> 0 , u, thenZ . и e J^(P, n, P), 
j^X . и = u. We shall say that X . w is the représentant of X e бх(^) at ueP. Ob
viously, it holds X . (ug) = [X . u) g. 

Let Ф be a mapping of P^ into Jx{P, TI, B) such that f^ (p{u) = и for every ueP^ 
and such that (p{ug) = (p{u) g for every w e P, g eG. Then <p(P )̂ will be called an 
invariant system of elements of J''P along P^. We have deduced. 

Proposition 4. An element of connection X e 0^(Ф) /5 equivalent to an invariant 
system of elements of J^P along P^. 

Further, let Ye J^'P, aY = x. If we consider P as P~^, then we write Y~^ instead 
of У Let Z e J'Jy, E), p(ßZ) = x, then the prolongation of the partial composition 
law (u, z) \-^ u~^ . z determines the product 

(8) Y-\Z) = {Y-'pZ).ZeJXV.F) 

which will be called the development of Z into F by means of У In particular, if a is 
a local cross section of (E, p, P), then we shall write only У~^((т) instead of Y~^(f^a) 
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and Y ^(a) will be said to be the development of a into F by means of Y. Now, we 
can state two obvious propositions. 

Proposition 5. Let У ,̂ Yi be two représentants of the same element of connection, 
Yi = 2̂6̂ » ^^^^ ^̂  ^^ giX\^{^)) = Y2^{Z) where g{Y{'^{Z)) means the image of jet 
Y^^{Z) by the mapping g : F -^ F. 

Proposition 6. Let X e б^(Ф), Z e J'(V, £), и e P^ and letY=X,u, then it holds 
uiY-^{Z))=X-\Z). 

We underline that X ^(Z) is an r-jet of F into E^, while Y ^(Z) is an r-jet of F into 
the standard fibre F. 

An r-distribution S on principal fibre bundle P is said to be invariant, if its restric
tion to every fibre is an invariant system. Let С : В -> 0,''{Ф) be an r-connection on Ф, 
then the set of all représentants of the elements of С fs an invariant r-distribution 
on P which will be called the représentant of connection C. Conversely, every 
invariant r-distribution on P represents a connection on Ф which is why we may also 
say that an invariant r-distribution Г : P -^ J^'P is an r-connection on P. 

Proposition 7. If an r-distribution Г on P represents an r-connection С on Ф, then 
the prolongation F' of F represents the prolongation С of C. 

Proof. Let и G P^, F{u) = C{x). w, then jl F{u) = {jl C{x)). w. If jl C(x) = 
= jl Q{t), then jl F(u) = ji{Q(t). u) and it holds C{x). и = jl[C(t). Q{t)] . и = 
- jl[C{t). {Q{t). u)] = jlF{Q{t). u) = r{u), QED. 

From Propositions 2 and 7 we obtain directly 

Proposition 8. Let С be a semi-holonomic r-connection on Ф. If С is also semi-
holonomic, then C^^^ is semi-holonomic for every s. 

From Propositions 3 and 7 one can deduce again the well-known result by Ehres-
mann [6] that all prolongations of a connection of the first order are semi-holonomic. 

The following assertion is a direct analogy of Proposition 1. 

Proposition 9. Let Г : P -> J^P be an r-connection on P and let jl F(u) = jl y{t) 
where y(t) is a local cross section of P. Further, let Z e Jl^^(y, E), p{ßZ) = x, 
^ = jl C{y) where С{у) is a local cross section of J''(V, É). If we develop every C(^y) 
by means of the corresponding element of F along the local cross section y, then we 
get a local cross section of J^(y, F) which determines r'~^(w) (Z), i.e. 

(9) Г'-\и) (Z) = jl[r-^{y{p{ß Ciy)))) m)} e J':\V, F). 

_ r'~^ 
Proof. Let F represent an r-connection С on Ф, then it is u{F' ^(м) (Z)) = 
C~^{x) (Z) by Propositions 6 and 7. It is evident that j ^Г represents j^С, so that 
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jl C{x) = jl Q(^t) where Q(t) = y{t) и ^. Then и = Q ^(t) . y(t) and we further get 
(the second or third equality is based on Proposition 6 or 1 respectively) 

ujiir-\y{pißc{ymm)'] = 
=JiQ-Mß m ) . y{p{ß m) ir-\y{p{ß m)) mm = 
=Jie'Mß m) • c-\Piß m) ш) = c'-\x) (z), 

which is equivalent to our assertion. 
In what follows we shall use the following special case of Proposition 9. 

Corollary 2. Let Г be a connection of the first order on P and let y{t) be a local 
cross section of P such that Г(и) = jl y(t). Let a be a local cross section of E, then 
r~^(y(t)) (a) is a local cross section of J^{B, F) which determines Г'^^^и) (a), i.e. 

(10) r-\u) {a) = jllr-^yit)) ( .)] e Щв, F). 

II 

5. Consider the set L,̂  „, of all semi-holonomic 2-jets of R'" into R" with source 0 
and target 0. The usual coordinates in L^^, [4], determine every element X e L^^ by 
means of real numbers x ,̂ x̂ ^ 

(11) X = (x], x]j), r, s = 1, ..., П , I, j = 1, ..., m , 

and X is holonomic if and only if x]j = Xĵ -. Further, let Ye L^ „, Y = ' ( j j , y^^), then 
the product Z = YX has the following coordinates, [4], 

(12) Z = (>'Jx; y;^x] + ytxg , { = 1,^.., p . 
Proposition 10. Let V, W be two manifolds and let X e ß{y, W), aX = v, ßX = w. 

Let h^ or /12 be a holonomic 2-frame on Vor W at v or w respectively and let x ,̂ x^j 
be the coordinates of X in these frames, i.e. the coordinates of h2^Xhi e L^„^. Then 

(13) x[,,, = ЦхГ. - X},) 

are coordinates of a tensor. 

Proof. Let AeLl, В e L^, A = (a)]', 0Q, В = {bU bl^j), a[l,^ = 0, b/,.,.,3 = 0 
and let Äh2^XhiB = (x^', x '̂̂ ^). Using (12), one finds easily xll'j^j = а''^'х[щЬ1Ь^г, 
QED. 

Tensor (13) will be called the difference tensor of semiholonomic l-jet X and will 
be denoted by A{X). It is A{X) e T^{W) ® Д^ T,%V) and A{X) = 0 if and only if X 
is holonomic. -

Suppose m < n. Let X be regular and let T(X) be the m-dimensional subspace 
of T^{W) determined ЪуйХ. Let ф : T^{W) -^ T^{W)jT(X) be the canonical projec-

130 



tion, then ф{Л{Х)) e (ТДЖ)/Т(Х)) (g) A^T,''{V) will be called the reduced difference 
tensor of X. On the other hand, the contact element k[X) determined by X is the 
set XhLl^ where h is a 2-frame at v eV. The contact element k{X) will be called 
holonomic if it contains a holonomic jet, cf. [9]. 

Proposition 11. Let X be a regular semi-holonomic 2-jet, then its reduced difference 
tensor vanishes if and only if k{X) is holonomic. 

Proof. Let % = m + 1, ..., п. One can choose such coordinates in Tj^W) that 
T{X) satisfies x"" = 0, i.e. X = (xj, 0; x'y), \xj\ ф 0. Suppose x^^^ = 0. Consider the 
jet XQ = {X),X)I,)ELI and let Xô^ = {a], a)j,) be its inverse. For У = XXÖ^ = 
= (у}, Уд) we obtain 3;̂ ^ = О, у^щ = x^j,i-^a\aj — О, so that Y is holonomic. The 
converse assertion can be proved by the converse computation. 

6. Let M be a parallelizable manifold and let 

(14) œl a , /? , . . . = 1, . . . , r = dim M , 

be a basis of Т'^{М). Consider the trivial fibered manifold £ = M x R"* with base R'"; 
the elements of R'" will be denoted by (^\ ..., Г) . Then 

(15) со'' = pfjcoj , dt' = pr* d^' (no danger of confusion) 

is a basis of Г*(£). Every element Ye J^E, ßY = z can be identified with a subspace 
of T^{E) determined by 

(16) {œ% = A%dt% . 

Thus, A] are some functions on J^E which introduce coordinates on J^E in the fol
lowing sense. Every Ye J^E is uniquely determined by the point ßYe E and by real 
numbers A°l(Y) given by (16). 

Let X e J^E; X = /0^ where ^ is a local cross section of J^E. The local cross 
section Q is uniquely determined by the local cross section ßq of E and by the functions 
A%Q{t)\ We define A^lX) by 

(17) àA%Q{0)) = A]lX)àt^ 

and we put A%X) = A%Q{0)). 

Now, we shall express the difference tensor A{X) e T,{E) ® A^To*(R'"), z == ßX, 
by means of A^^X) and A°lj(X). Choose some coordinates z'^ in a coordinate neigh
bourhood и of the point pr^z e M and consider the coordinates z*̂ , f' on Î7 x R"*. 
In this coordinate system, the element YGJ^(U X R'") has some coordinates a^(F), 
a1j{Y) where a] or a'^^j can be considered as some functions on P(U x R'") determined 
by dz"" = a1 dt' analogously to (16) or by da^ = a^j dt^' analogously to (17) respec
tively. Since A% A]j are given by of = A\ dt\ dA^ = Ä\j dt\ we can find the transfor
mation formulae between both coordinate systems. Let of = B^ dz^, dBß = Б^^ dz^ 
and let 5 ; B ^ = ô^^,, then â  = B^ßA^ and the differentiation gives a^- dt^' = da'l = 
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= dS^^f + Bl d^f. Further, a standard computation yields al- = -BßB^yöФ^j + 
+ B^ßA^ij. Now, let iC ŷ = -K'^ß be the functions determined by 

(18) dco^ = K ; X Л a ) ^ 

then iC^, = -Blss^B'ßB'^ and we get finally â ,̂ .̂  = B'^K'ß^Ä^^A} + В^Л? .̂ Thus, the 
coordinates of A(X) in the basis (d^*)o and in the basis dual to {co'^)z, (d^% are 

(19) Al,j,{X) + K^A^iX) A]{X) . 

7. Consider a principal fibre bundle P(P, G) with projection тг, dim G = r, and 
denote by g the Lie algebra of G. Let Г : P -> J^P be a connection of the first order 
on P and let Q be its curvature form, see [7]. Since ß is a g-valued tensorial 2-form, 
(0)„ can be considered as a tensor of g ® Д^Т/(Б), и e P,x = n{u). Then the relation 
between the difference tensor of the prolonged connection А(Г'(и)) e T^{Px) ® 
® A^T^{B) and {QX is described by 

Proposition 12. The difference tensor Л[Г'(и)) coincides with the image of the 
curvature tensor {Q\ by the canonical mapping и : G -> P^, g и> ид. 

Proof. Since our problem is local, we may suppose that we consider the trivial 
fibre bundle P = G x R'" in a neighbourhood of 0 E R'". Let e^ be a basis of g and 
let coo be the dual basis, then 

(20) dcoS = Щ^о^1 A col . 

Analogously to (15), we set 

(21) ш^ = 17г>5, dt' = prldt' 

and E^, Ti will denote the dual basis to (21). It is easy to see that E^ is the fundamental 
vector field on P corresponding to e^ e g, see [7], p. 51. According to § 6, an arbitrary 
1-distribution on P is given by œ"^ = Г*̂  d̂ * where Г°1 are some functions on P. This 
1-distribution is invariant if and only if Г^ are constant along each fibre. Thus, 
consider a connection Г on P given by 

(22) CO" == rj(r) dt'. 

To construct the fundamental g-valued form œ of Г, we must take the vertical com
ponent vX of a vector X e T(P) and then find that element of g whose fundamental 
vector field contains vX. This implies that the fundamental form œ of (22) is 

(23) CO = {œ^ - r%t) df) ® e^ 

and its curvature form Q is given by 

(24) Q=: Dœ = {ЩуГ^гГ] + d^jn^ df л dt^ ® e, . 

On the other hand, the difference tensor Л{Г'{и)) can be constructed by Proposi
tion 7 as follows. Let y(t), y{p) = w be a local cross section of P such that jl y(t) = 
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= Г(м), then Г{и) = j j r{y{t)). Since П depends only on t, it is dn(y(r)) = 
= c5/^(f) df̂ '. Applying (19) we obtain 

(25) A{r{u)) = (а^,Пз + icl^r'.n) dé A dt^' ® £ , . 

Comparing (24) and (25) we get Proposition 12. 

8. Let Я be a closed subgroup of G, let F = GJH be the corresponding homoge
neous space and let с be its natural centre which corresponds to subgroup H,c = {H}. 
Consider the associated fibre bundle E{B, F, G, P) with standard fibre P, then the 
groupoid Ф = PP~^ associated with P is a groupoid of operators on E, A space 
with connection (of the first order) is a quintuple 6^ = У(Р, Ф, E, a, C) where a is 
a global cross section of E and С is a connection of the first order on Ф. If Г is the 
représentant of С on P, then У can also be considered as the quintuple 6^[B, P, £ , 
(T, Г). Cross section a determines a reduction R of principal fibre bundle P to Я с G 
by 

(26) P = {w 6 P; u{c) = <х(7г(м))} , 

the converse assertion being also true. Thus, the quintuple У(Р, P, P, (т, Г) is equi
valent to 6^(3, P, Я, R, Г), which shows that our definition of a space with connection 
is equivalent to the corresponding definition by SVEC, [12]. 

Let jÂQ : G -^ F = GJH be the canonical projection and let /ZQ* * 9 -^ Tc{F) = g/I) 
be its differential. Svec [12] defined the torsion form of .9̂  at w G P as the projection 

(27) /Xo*(ß)„ 

of the curvature form. Since (27) is a tensorial form, it can be considered as an element 
of TXF) ® A^r / (P ) , X = 7r(w). We shall use the following equivalent form of this 
concept. It is easy to see that u^ ^o*(^)t/ is a 2-form with values in T^(^)(£^) which 
does not depend on the selection of w e R^. The corresponding tensor т(х) e T^(^)(P^) 0 
® A^T*(B) will be called the torsion tensor of ^ at XE B. On the other hand, 
consider the development of a by means of the prolonged connection C~^{x) (o) e 
G Jx{B, E^), ßC~^{x) (a) = CT{X), which can be called the second development of ^ 
at XEB, cf. § 2. 

Proposition 13. For every x E B, it holds 

- т (х ) = /1(С'-Чх)(а)) . 

Proof. First of all, we deduce a lemma. Let e be the unit of G. The associated 
fibre bundle P(P, G, G, P) is canonically identified with P if {(u, e)} is identified 
with u. Further, let e^ be a vector field on G defined by (é^)g = Rg^{e^)^ where Rg is 
the right translation determined by ^̂  G G. In particular, 

(28) {ëX = {eX' 
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In what follows, we shall also use the fact that every 1-jet X of F into W, ocX = v, 
ßX = wis canonically identified with a tensor of Tj^W) (x) T^^V), 

Consider the trivial fibre bundle P = G x W, Let и = (g, t)e P and let {g,t)E 
e P = P, then u~^[g, i) — g~^g e G, Further, consider on P the forms (21) and 
a connection Г (22). 

Lemma. Let e be the cross section of P given by e(t) = {e, t). Let (g, x) e P, then 
the development Г~^{д, x) (e) e Ji(R'", G) is determined by the tensor 

(29) ~n(x ) d̂ -̂ ® {ёХ^, e T^.,{G) ® T ; ( R - ) . 

Proof of Lemma. Let Г{д, x) = jl Q{t), pr^ Q{t) = y{t), y{x) = g, then j^e y{t) 
e Ji(R'", G) is determined by the tensor Г%х) dt^ ® (e^: Further we have 
r-^{g, x) (г) = jl Q-\t){8{t)) by (8) so that Г-\д, x) (e) = jl y-\t) and this jet is 
determined by (29) by virtue of the following assertion: Let x :R -^ G, x(0) = g Ы 
a curve on G, then the coordinates of its tangent vector at 0 with respect to the basis 
{e^ are opposite to the coordinates of the tangent vector of the curve x~^(s) at 0 with 
respect to the basis (^a)^-i. Indeed, if we put x{s) = g x{s), then x~^(s) = >c~^{s) g~^ 
and the curves x(s) and x~^{s) pass through e for s = 0. But it is well-known that their 
tangent vectors are opposite. 

Now, we are in a position to prove Proposition 13. Since our problem is local, we 
may consider the trivial fibre bundle P = G x R"" in a neighbourhood of 0 G R"". 
Then E = F X W" and we may suppose that a is the cross section t н> (с, г), so that 
the cross section e of P belongs to the reduction P of P determined by a. First of all, 
we shall find Л[Г'~^(и) (e)), м e P, pr2U = 0. Let y{t) be a local cross section of P 
such that j j y{t) = r(w), then Corollary 2 gives Г'~^(и) (e) = jl (p{t) where (p{t) = 
= r''\y{i)) (e) is a local cross section of J^R^", G). Denote by ml the basis of T\G) 
dual to ёд, then w% are Maurer-Cartan forms of the Lie group anti-isomorphic to G, 
which is why they satisfy 

(30) d4^= -~Щу<К<^ 
On G X R'", consider the forms 

(31) ш̂  = pr\wl, df = prl dt\ 

Since J^(R'", G) is canonically identified with J^(G x R'"), the section (p(t) is deter
mined by the functions ~Г^(г), see § 6. Now, (18), (19) and (30) give 

(32) A{jl Ф(0) = [-диП, - i^y^f^i] <^i' Л dr̂ - ® {eX • 
Further, let ju : P -^ E be the projection corresponding to /̂ o : G -> F, i.e. ц{д, x) = 
= {ßo9i )̂» then it is easy to see that 

lx,^A{r-\u) (s)) = A{r-\u) И ) = Л{Г'-\и) (a)) 
and the comparison of (24), (28) and (32) proves Proposition 13. 
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From Proposition 13 and from § 5 we deduce immediately 

Theorem 1. The torsion form of a space with connection 5^(J5, Ф, E, a, C) vanishes 
at a point x e В if and only if the second development C'~ ^(x) (a) of S^ is a holonomic 
jet. 

9. A space with connection 6^{B, Ф, E, a, C) will be called a manifold with con-
nection, if dim В < dim F and C~^(x) (o) is regular for every x G Б. It is easy to see 
that a manifold with connection is locally equivalent to a submanifold of a space with 
Cartan connection, [2]. 

Let Kx = r(C~^(x) (cr)) c: T^^^^(E^) be the subspace determined by C~^(x)[o), 
cf. § 5, and let ij/^ : T (̂̂ )(£ .̂) -> T^(^)(£^)/K^ be the canonical projection. The form 

(33) ФМ^)) e {т,иЕ.)Ю ® A' T:{B) 
will be called the reduced torsion form of .5^ at x e JB. From Proposition 11 and 13 
we get directly 

Theorem 2. The reduced torsion form of a manifold with connection 6^{B, Ф, E, a, 
C) vanishes at a point xe В if and only if the contact element /c(C'~^(x) (a)) deter
mined by the second development of ^ is holonomic. 

We shall also write the coordinate form of this condition. Let U be an open subset 
of JB, let Ф : Î7 -> jR be a cross section and let WQ = (̂ *со be the restriction of со to cp. 
Analogously we put QQ = (p*ß. Let the vectors 

(̂ я)е 5 Я = П + 1, ..., г , n = dim F 

belong to t). Then 

a>o = Шо ® e, + COQ ® Â 5 s == 1, ..., 71 

and there are n — m linear relations among œ%. We may suppose that OJQ are in
dependent, then the linear relations can be written in the form 

(34) COQ = Л с̂оо , Ï = 1, ..., m = dim Б , x = m + 1, . . . , « . 

Let QQ — Q% ® e^ + QQ ® e^, then we deduce from our previous considerations 
that the reduced torsion form of ^ vanishes over U if an only if the analogous rela
tions to (34) are satisfied for QQ, i.e. 

10. We conclude with a small concrete example. Let ^ be a surface with projective 
connection according to Svec [11], then the reduced torsion form of ^ vanishes if 
and only if ^ is without torsion in the Svec's terminology. Further, consider a con-
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gruence ^ with projective connection, [ И ] , then we have defined the reduced torsion 
form of S£. We can state a simple 

Proposition 14. Let ^ he a non-parabolic congruence with projective connection 

and let #"1, ß^2 be its focal surfaces, then the reduced torsion form of S£ vanishes 

if and only if both ^^ ^^^ ^ 1 ^^^ without torsion. 

Proof. Take the frame field of the first order of J^, see [11], p. 74, then A^, Ä2 are 

foci of ^ and it holds (we write col = œ^, CO2 = <̂ )̂ 

dA^ = a>lAi + O}\A2 + C0M3 , 

àA2 = 0^\A^ + C02^2 + (O^A^ , 

as well as 

àœ\ = со] A o)i + R{œ^ л œ^ . 

Thecomponentsof the reduced torsion form of i f are Ä2<̂ ^ л ш^, JRt<̂ ^ л co ,̂ while 
the reduced torsion form of {A^} or {^2} is jR ĉô  л cô  or Rlco^ л co^ respectively, 
which proves our assertion. 
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