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I. INTRODUCTION 

The characters of a topological groups are continuous complex-valued homo-
morphisms for the simple reason that no continuous non-trivial real-valued characters 
exist. In the case of a topological semigroup the situation is very different since there 
are semigroups for which no continuous non-trivial semicharacters exist. One 
approach is to consider equivalence classes of measurable complex-valued semi-
characters as was done in [1]. In this paper we show that by considering such equiva
lence classes for real-valued semicharacters a Pontrjagin type of duahty theorem can 
be obtained for a certain class of semigroups. 

A standard thread [2] is a compact semigroup S with a total order such that: 

i) the order topology is the given topology; 

ii) S is connected in the order topology; 

iii) S has a maximal element and it is an identity; 

iv) S has a minimal element and it is a zero. 

A nil thread [2] is a standard thread having no interior idempotent but at least one 
non-zero nilpotent element. A unit thread [2] is a standard thread with no interior 
idempotent element and no nilpotent element. With any thread S we associate its 
order dual S^ obtained from 5 by inverting the order relation. 

Suppose £ is a compact totally ordered set. We define two distinct points of E to 
be adjacent if there is no element of E between them. The lesser of two adjacent 
elements will be called an initial element; the greater a terminal element. An 

*) The author wishes to acknowledge the financial assistance of the National Science Founda
tion and the University of Delaware Research Foundation. 
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élément which is not an initial element will be called a limit element. With 
each initial element e of £ we associate a nil or unit thread S .̂ Identify e with 
the zero element of 5^ and let 5^ denote S^ with its identity deleted. If ^ is a limit point, 
define Sg = S'e = one point semigroup [e]. The ordinal sum of the semigroups 
{S'e} ee£ is denoted by Yu^e ^^^ is the semigroup S = \J S'^ where the product a о Ь of 

e eeE 
two elements in S is given by 

a о b = usual product in S^ if a, b e S^ ~ 

= ab = ba = a if a E S'^, b e Sf and e < f. 

The canonical representations in the following theorems are due to CLIFFORD [2] 
and form the basis for our work. 

Theorem. Every standard thread S is the ordinal sum of a compact totally ordered 
set of half open nil threads, half open unit threads, and one element semigroups. 

Theorem. Every unit thread is isomorphic to [0, 1] with ordinary multiplication, 
and every nil thread N is isomorphic to [ i , 1] with x о y = max {̂ , xy} for x, y e 
e[i , i] . 

II. THE REAL DUAL OF A STANDARD THREAD 

In order to investigate the nature of the real-valued semicharacters of a standard 
thread it suffices to examine the duals of the canonical elemenets. 

Proposition 1. Let S be the semigroup (0, 1) under ordinary multiplication and 
let iS* denote the semigroup of bounded real-valued non-constant semicharacters 
on S. 

Then S* is isomorphic to the order dual of the semi-group of positive real numbers 
under addition. 

Proof. The proof of this proposition, although very simple, is rather long and is 
broken down into six steps. 

i) Consider the possible zeros for an element т e S*: 
If T(X) = 0, then clearly т(у) = 0 for all у < x. Moreover, if т ф 0, then there 

exists a z such that T(Z) Ф 0 but z < 1 imphes that for some n we have z" < x 
so T(Z") = 0 = T(Z)". Hence т = 0 if it is zero at any point. 

ii) Every element of S* is order preserving: 
Suppose X < y. Then x = sy for some s e S hence т(х) = T(sy) = T(S) . т{у) 

but T(S) ^ 1 and thus т(х) ^ т{у), 
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iii) т G S* implies т(з;'") = {'^^{у)У for ̂^̂ У rational г > 0: 

iv) т G S* implies т is continuous in the order topology: 

As result of (ii), т is monotone and hence has only jump discontinuities. In 
particular, suppose 

т~(з;) = sup {T(X) : X < J;} < т{у) 

for some y. Pick an XQ < у and choose a rational r such that 

Then, from (iii), we have т"(у) < т(хо) < т(у) which is a contradiction. A similar 
argument is used for T ^ ( J ) = inf {т(х) : x > y}. 

v) If T G 5*, then T(X) = x"° for some ao G (0, oo): 
It is clear that т(х) = 1 for some x implies т = 1. If т ф 1, then т(^) = (i)"^ 

for some real number «o and it follows from (iii) and (iv) that т(х) = x"° for all 
X G (0, 1). 

vi) S* is isomorphic to {R^, + } ^ : 
Use the obvious mapping Ф : S* -> î "̂  by Ф : x̂ " -> a. 

Corollary 2. / / S is the semigroup (0, 1) under ordinary multiplication and S* 
is the semigroup of bounded real-valued non-constant semicharacters on S, then S** 
is isomorphic to S. 

Proof. Define the mapping ф : {R^f -^ {0, 1) by ф : a-^ ije^ 

Corollary 3. / / T is a unit thread, m is Lebesgue measure on T, and T* is the 
semigroup of equivalence classes of bounded, measurable, real-valued semicharac
ters on T, then T* IS isomorphic to the order dual of [0, oo] under addition and Г** 
is isomorphic to T. 

Proof. We let [0] denote the equivalence class containing the two semicharacters TQ 
and To where 

To(x) = 0 To(x) = 0 if 0 ^ X < 1 

= 1 if X = 1 

and similarly [1] denotes the equivalence class containing т^ and т[ where 

Ti(x) = 1 T;(X) - 0 if X = 0 

= 1 if 0 < X ^ 1 . 

Since any semicharacter has the value 0 or 1 at an idempotent and any non-
constant semicharacter must have values 0 at zero and 1 at the identity it follows 

169 



that Г* = S* и {[в]} и {[!]}. We can now map Г* directly onto [0, 1] by means 
of the function Я defined by 

Я(т) =;0 if т е [ 0 ] 
= 1/ê  if T = Л - x^ 
= 1 if T G [1] . 

From this it follows that T** is isomorphic to Г. 

Theorem 4. Let S be a standard thread with m the induced Lebesgue measure 
on S, and let S* be the semigroup of equivalence classes of bounded, measurable, 
real-valued semicharacters. 

Then S** is isomorphic to S if and only if S has no non-idempotent nilpotent 
elements. 

Proof. As an immediate consequence of CHfford's theorems, we infer that a stan
dard thread with no non-idempotent nilpotents is the ordinal sum S = J] S'^ where 

eeE 

{^'e}eeE ^^^ cithcr uuit thrcads or one element semigroups. We shall prove that the 
dual 5* of such an ordinal sum is the ordinal sum over the order dual, E^, of the duals 
(5^)*; that is, -S* = ^ {KY- The theorem then follows immediately from the pre-

eeEo 

ceding corollary and the trivial fact that (E^y = E. 
We begin by proving that any element of S* either belongs to the equivalence 

class of the characteristic function ^[e^e^] for some e^e E (where e^ denotes the 
maximal element of 5); or is a natural extension of an element of (5^)* for some 
^e + {^}- This is done in the following lemmas. 

Lemmi 5. If we fix a semicharacter фQ in the dual of S and define UII/Q = {e : eeE, 
Фо\К^ 0}, Ц/çy = {e:ee E, \l/o\S', = 0}, then {Ьфо, ифо} is a cut for E. 

Proof, i) Suppose e < f with / e Li/̂ o- For any element a e S'^ and b e S}, since 
ab = ba = a, we have Фо{^) = 0 which implies e e Ьфо. 

ii) Similarly if e e UIJ/Q w i th / > e one can s h o w / G ифд. 

Remark . It also follows from (ii) that if e,fe U\J/Q w i t h / > e, then (/̂ o | S^ = 1-

Lemma 6. / / {Ьф^, ифо] is the cut defined in Lemma 5, then {LIJ/Q, UIJ/Q} deter
mines a point e^^ of E. 

Proof. Case 1. Suppose U^Q has no least element. Then, from the remark above, 
it follows that \J/Q = \ on UII/Q. If we let e^ denote the greatest element of Ефо it 
follows that S'^^ = {e^} and hence фо = x(^a, e^). 

Case 2. Suppose Li/̂ o has no greatest element whence ифо has a least element Cß. 
This least element must then be a one element semigroup and thus фо = x[ep, ^ ^ ] . 
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Case 3. Suppose LXJ/Q and ифо have greatest and least elements e^ and Cß respec
tively. Then, since ij/oi^) = 0 for x ^ ê  and il/o{x) = Ifor x ^ ep we conclude that IJ/Q 
is the natural extension of a semicharacter т on S'^^. By natural extension we mean the 
semicharacter f on S obtained from т in the dual of Ŝ ^ by 

f (x) = 0 if X G S^ e < e^ 
= (x) if x e S ; ^ 
= 1 if X G S; e > e^. 

Combining the three cases we see that any element xj/ e S"^ can be identified via the 
cut {Ьф, иф} as belonging to the equivalence class of a characteristic function of the 
form X[e ,̂e^], or as being the natural extension of a semicharacter т on a thread 
associated with some initial point of E. 

We now return to the proof of Theorem 4. Suppose that ф^ and Ту are two elements 
of 5* where e.feE and ф^е(8'^у, т^ e (S})*. Then we can define the pointwise 
product фе о If as follows 

ф^oTf = usual product if e = f 
= ФeoTf = Tf офе = Tf if e < f. 

However, since 5* = (J (S^)* where Xie„,e.,^ is the only element of (S^J if Ŝ ^ = {e^} 
eeE 

we conclude that, as a semigroup, 5* is the ordinal sum over E^ of the duals (iS^)*; 
that is, 

eeE^ 

and thus 

ее(ЕО)0 

However, from Corollary 2 and the trivial relation (E^y = E it follows that 

S** = ^ (5;) = S . 
eeE 

The proof of the converse is much easier since the existence of a non-idempotent 
nilpotent implies the existence of a nil thread in the ordinal sum. Since the dual of 
a nil thread is a two point semigroup, it follows that the second dual is not isomorphic 
to the thread. 
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