Czechoslovak Mathematical Journal

Jin Bai Kim Mutants in the symmetric semigroups

Czechoslovak Mathematical Journal, Vol. 21 (1971), No. 3, 355-363

Persistent URL: http://dml.cz/dmlcz/101032

Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://dml.cz

MUTANTS IN THE SYMMETRIC SEMIGROUPS

JIN BAI KIM, Morgantown (Received September 23, 1969)

Let S_n be the symmetric (or full transformation) semigroup on n letters. A subset K of S_n is called a mutant if KK is contained in the complement of K in S_n . We shall give an explicit form of a maximal mutant of $T_{n-1} = S_n \backslash D_n$, where D_n denotes the D-class of rank n.

1. INTRODUCTION

KIM [6] has established a generalized Green's Lemma and a generalized Clifford and Miller's Theorem in S_n (and in the multiplicative semigroup $L_n(V)$ of all linear transformations of a finite dimensional vector space $V_n(F)$ over a finite field F [5]). In [3] Kim has proved that if T is a topological semigroup and a in T is not an idempotent, then there exists a maximal open mutant of T containing a. (This does not give any information about the actual form of a maximal mutant of a semigroup.) Using a generalized Clifford and Miller's Theorem for S_n , we shall give an explicit form of a maximal mutant of T_{n-1} . (This is the first time an application of a generalized Clifford and Miller's Theorem of S_n has appeared.) In section 2, we shall establish the rank theorem of S_n by modifying the rank theorem of matrices. In section 3, we shall introduce a generalized Clifford and Miller's Theorem and mention a part of a generalized Green's Lemma in S_n . Section 4 contains some basic results for mutants. From section 5 we shall discuss an explicit form of a mutant of S_n .

2. THE RANK THEOREM OF S_n

Let $S = S_n = S_X$ be the symmetric (or full transformation) semigroup on n letters $\{u_1, u_2, ..., u_n\} = X$. The basic results of S can be found in [1, pp. 51-57]. From now on S always denotes the symmetric semigroup on X. We may use the (classical) notation if $v_i \in X$ and $\alpha \in S$,

$$\alpha = \begin{pmatrix} u_1 & u_2 & \dots & u_n \\ v_1 & v_2 & \dots & v_n \end{pmatrix}$$

to mean that α is the mapping of X defined by $u_i\alpha = v_i$ (i = 1, 2, ..., n). With each element α in S we associate two sets: (1) the range $M(\alpha) = X\alpha$ of α , and (2) the partition $N(\alpha)$ corresponding to α . If $M(\alpha) = \{v_i : i = 1, 2, ..., r\}$ and if we define $v_i\alpha^{-1} = V_i = \{u\alpha = v_i\}$, then we may write $N(\alpha) = \{V_i : i = 1, 2, ..., r\}$; we can write

$$\alpha = \begin{pmatrix} V_1 & V_2 & \dots & V_r \\ v_1 & v_2 & \dots & v_r \end{pmatrix} = \begin{pmatrix} V_1, V_2, \dots, V_r; & v_1, v_2, \dots, v_r \end{pmatrix} = \begin{pmatrix} V_i, & v_i : i = 1, 2, \dots, r \end{pmatrix}.$$

 $|M(\alpha)| = r = \varphi(\alpha)$ is called the rank of α . The rank of the partition $N(\alpha)$ is defined by $r = \varphi(\alpha)$. The following is called the rank theorem of matrices [4].

Theorem A. Let α and β be two elements of the multiplicative semigroup $L_n(V)$ of all linear transformations of the n-dimensional vector space $V_n(F)$ over a field F. Let $\varphi(\alpha)$ denote the rank of α . Then $\varphi(\alpha\beta) = \varphi(\alpha) - \dim(M(\alpha) \cap N(\beta))$, where $M(\alpha)$ and $N(\beta)$ denote the range space of α and the null space of β , respectively.

Although we know that Theorem A is applicable in the semigroup S_n in view of Exercise 6-(e) of [1-I, p. 57], the meaning of dim $(M(\alpha) \cap N(\beta))$ is not so clear when α and β are members of S_n . To get the analogue of Theorem A in S_n we need:

Definition 1. Let α and β be elements of S_n and let $N(\beta) = \{V_1, V_2, ..., V_r\}$. Define

$$||M(\alpha) \cap V_i|| = \begin{cases} |M(\alpha) \cap V_i| - 1 & \text{if } |M(\alpha) \cap V_i| \ge 1, \\ 0 & \text{otherwise}; \end{cases}$$

and

$$||M(\alpha) \cap N(\beta)|| = \sum_{i=1}^{\mathbf{r}} ||M(\alpha) \cap V_i||$$
.

Now Theorem A takes the following form in S_n .

Theorem 1. Let α and β be two elements of the symmetric semigroup S_n . Then $\varphi(\alpha\beta) = \varphi(\alpha) - \|M(\alpha) \cap N(\beta)\|$.

The proof of Theorem 1 is not hard and shall be omitted.

3. A GENERALIZED CLIFFORD AND MILLER'S THEOREM AND GREEN'S LEMMA

Kim [6] has established the following and Theorem B is considered as a generalized Clifford and Miller's Theorem [1, Theorem 2.17].

Theorem B. (i) Let $\alpha \in S_n$ and H be an H-class. Then $\alpha H = \bigcup \{H_{\alpha \tau} : \tau \in H\}$.

- (ii) Let H_i (i = 1, 2) be two H-classes. $H_1H_2 = \bigcup \{H_{\alpha\beta} : \alpha \in H_1 \text{ and } \beta \in H_2\}$.
- (iii) $\alpha\beta \in D_r$ iff D_r is the D-class of the maximal rank such that $\beta S \cap S\alpha \cap D_i$ contains an idempotent, where $\beta \in S_n$.

Theorem C. Let α and β be elements of S_n such that $\alpha \in D_{n-1}$, $\beta \in D_{n-2}$ and $\beta = \gamma \alpha$.

- (i) Then the mapping $\tau \to \gamma \tau$ ($\tau \in H_{\alpha}$) is a one-to-one mapping from H_{α} onto γH_{α}
- (ii) $\gamma H_{\alpha} = \bigcup \{H_{\gamma\tau} : \tau \in H_{\alpha}\}$ and $\{H_{\gamma\tau} : \tau \in H_{\alpha}\}$ contains n-1 distinct H-classes of rank n-2.

Theorem C is taken from a generalized Green's Lemma in S_n [6]. To get a Theorem, which we shall need later, we introduce:

Definition 2. (i) $\pi(X)$ denotes the collection of all partitions on X and define $\pi_r(X) = \{N \in \pi(X): \text{ the rank of } N \text{ is } r\}.$

- (ii) p(X) denotes the collection of all non-empty subsets of X, and $p_r(X) = \{Y \in p(X) : |Y| = r\}$.
 - (iii) If $N = \{V_1, V_2, ..., V_r\} \in \pi_r(X)$, then V_i is called a block of N.
- (iv) Let $N_i \in \pi_r(X)$ (i = 1, 2). If for every block V of N_1 there is a block U of N_2 such that V is a subset of U, then we write $N_1 \subset N_2$.

Let $\alpha \in S$. By Lemmas 2.5, 2.6 and 2.7 in [1], if R_{α} , L_{α} , H_{α} , D_{α} denote, respectively, the R, L, H, D-class containing α , then we can write $N(\alpha) = N(H_{\alpha}) = N(R_{\alpha})$ and $M(\alpha) = M(H_{\alpha}) = M(L_{\alpha})$.

Lemma 1. $M(\alpha\beta) \subset M(\beta)$ and $N(\alpha) \subset N(\alpha\beta)$.

Theorem D. If H_i (i=1,2) are two H-classes of rank n-1 and if $H_1H_2 \subset D_{n-2}$, then $H_1H_2 = \bigcup\{H_{\alpha\beta}: \alpha \in H_1 \text{ and } \beta \in H_2\} = \bigcup F \text{ and } F \text{ contains } (n-1)^2$. (n-2)/2 H-classes such that if $N \in \pi_{n-2}(X)$ and $M \in p_{n-2}(X)$ with $M \subset M(H_2)$ and $N(H_1) \subset N$, then there is $H_{\alpha\beta}$ in F with $N(H_{\alpha\beta}) = N$ and $M(H_{\alpha\beta}) = M$.

The proof of Theorem D follows from applications of Theorems B, C and Lemma 1.

4. PRELIMINARY RESULTS

We rewrite Theorem 2.10-(i) of $\lceil 1 \rceil$ in the following:

Lemma 2. Let H be an H-class of rank r with $H = (V_i, v_i)$. Then H contains an idempotent iff $|V_i \cap M(H)| = 1$ for every V_i .

Definition 3. (i) Y in $p_r(X)$ is said to be a cross section of $N \in \pi_r(X)$, denoting by Y # N, if every block of N contains just one element of Y.

(ii) Let $N \in \pi(X)$ and $M \in p(X)$. A pair [N, M] is called a partition range, $\pi_r x p_s(X) = \{[N, M] : N \in \pi_r(X) \text{ and } M \in p_s(X)\}.$

- (iii) Let $[N, M] \in \pi_t x p_s(X)$. $[N, M] (D_t) = \{ \beta \in D_t : M(\beta) \subset M \text{ and } N \subset N(\beta) \}$.
- (iv) A non-empty subset A of $\pi_r x p_r(X)$ is called a section (of $\pi_r x p_r(X)$) if there are two sets I and J such that $A = \{ [N_j, M_i] : j \in J \text{ and } i \in I \}$.
- (v) A section A as in the above (iv) is said to be idempotent free if non $N_j(j \in J)$ is a cross section of $M_i(i \in I)$.
- (vi) Two sections A_1 and A_2 in $\pi_r x p_r(X)$ are said to be orthogonal if $N_j \neq N_t$ and $M_i \neq M_s$ for all elements $[N_j, M_i]$ of A_1 and all elements $[N_t, M_s]$ of A_2 .
- (vii) Two sections A_1 and A_2 are said to be parallel if for each $[N_j, M_i]$ in A_1 there is $[N_t, M_s]$ in A_2 such that $M_i = M_s$ and vice versa.
- (viii) A collection $F = \{A_i \in \pi_r \times p_r(X)\}$ of sections A_i is said to be orthoparallel if any two distinct elements A_i and A_j in F are either orthogonal or parallel and if there are no partition ranges [N, M] in A_i and [N', M'] in A_i with N = N' for $i \neq j$.

Definition 4. A subset K of a semigroup S is called a mutant if $KK \subset S \setminus K$.

- **Lemma 3.** Let $F = \{A_i \in \pi_r x p_r(X)\}$ be a collection of orthoparallel and idempotent free sections. Then $F(D_r) = \{\alpha \in D_r : [N(\alpha), M(\alpha)] \in \bigcup \{A_i \in F\}\}$ is a mutant.
- Proof. (1) Let $A_i \in F$ and let α and β be elements of $A_i(D_r)$. Since A_i is idempotent free, there is a block V of $N(\beta)$ such that V contains at least two elements of $M(\alpha)$ and hence $||M(\alpha) \cap N(\beta)|| \ge 1$. By Theorem 1, $\varphi(\alpha\beta) = \varphi(\alpha) ||M(\alpha) \cap N(\beta)|| < r$, and hence $\alpha\beta \notin F(D_r)$.
- (2) Let A_i and A_j be elements of F. Let $\alpha \in A_i(D_r)$ and $\beta \in A_j(D_r)$. If A_i and A_j are parallel, then $A_i \cup A_j$ is a section. By (1), $\alpha\beta \notin F(D_r)$. If A_i and A_j are orthogonal, then we have that either $\varphi(\alpha\beta) = r$ or $\varphi(\alpha\beta) < r$; the latter case we have $\alpha\beta \notin F(D_r)$. If $\varphi(\alpha\beta) = r$, then, by Theorem 2.17 of [1], $H_\alpha H_\beta = H_{\alpha\beta}$. From $N(\alpha) = N(H_{\alpha\beta})$ and $M(\beta) = M(H_{\alpha\beta})$, it follows that $[N(\alpha), M(\beta)] \notin (\bigcup \{A_i \in F\})$, whence $\alpha\beta \notin F(D_r)$. Thus $F(D_r)$ is a mutant of S_n .
- **Lemma 4.** Let $A_1 = \{[N_j, M] \in \pi_r x p_r(X) : j \in J\}, A_2 = \{[N, M_i] \in \pi_r x p_r(X) : i \in I\}$ and $A_3 = \{[N_j, M_i] \in \pi_r x p_r(X) : j \in J \text{ and } i \in I\}.$ If M is a cross section of N, then $A_1(D_r) A_2(D_r)$ contains $A_3(D_r)$.
- Proof. Let $H = (N_j, M_i) \in A_3(D_r)$ be an H-class determined by N_j and M_i . Choosing two H-classes $H_1 = (N_j, M) \in A_1(D_r)$ and $H_2 = (N, M_i) \in A_2(D_r)$, we have that $H_1H_2 = H$ by Theorem 2.17 of [1]. This completes the proof.
- **Definition 5.** (i) Let $A_1 = \{[N_j, M_i] \in \pi_r x p_r(X) : j \in J_1 \text{ and } i \in I_1\}$ and $A_2 = \{[N_i, M_i] \in \pi_r x p_r(X) : j \in J_2 \text{ and } i \in I_2\}$ be two orthogonal sections. Then $A_3 = \{[N_j, M_i] : j \in J_1 \text{ and } i \in I_2\}$ and $A_4 = \{[N_j, M_i] : j \in J_2 \text{ and } i \in I_1\}$ are called the right and left complementary sections of A_3 and A_4 , respectively.

(ii) If $A_3(A_4)$ has an element [N, M] with M # N, then we shall say that the right (left) complementary section of A_1 and A_2 has a cross section. If A_3 and A_4 have cross sections then we shall say that the complementary sections of A_1 and A_2 have cross sections.

Lemma 5. If A_i (i = 1, 2) are orthogonal in $\pi_r x p_r(X)$ and if the left (right) complementary section $A_4(A_3)$ of A_1 and A_2 has a cross section, then $A_1(D_r)$ $A_2(D_r)$ ($A_2(D_r)$ $A_1(D_r)$) contains $A_3(D_r)$ ($A_4(D_r)$).

The proof of the lemma follows from Lemma 4.

5. MUTANTS IN S.

To get an explicit form of a mutant of T_{n-1} , we introduce:

Definition 6. (i) Define $M_i = X \setminus u_i$. N_{ij} denotes a partition of rank n-1 having one block consisting of two elements u_i and u_i (i < j). \overline{m} denotes the set $\{1, 2, ..., m\}$.

- (ii) (ij) denotes a sequence from the set \bar{n} with i < j. Let (ij) and (st) be two distinct sequences from the set \bar{n} . (ij) < (st) if either j < t or j = t and i < s. Letting $(n_1 n_2) < (m_1 m_2)$, define $[n_1 n_2, m_1 m_2] = \{N_{ij} \in \pi_{n-1}(X) : (n_1 n_2) \le (ij) \le (m_1 m_2)\}$.
- (iii) Let $t_1, t_2 \in \overline{n}$ with $t_1 < \overline{t_2}$. Define $[t_1 t_2] = \{M_i \in p_{n-1}(X) : i = t_1, t_1 + 1, \dots, t_2\}$.
- $\begin{array}{ll} \text{(iv)} \ \left[n_{1}n_{2},\,m_{1}m_{2}\right]\left[t_{1}\right] = \left\{\left[N_{ij},\,M_{t_{1}}\right]:N_{ij} \in \left[n_{1}n_{2},\,m_{1}m_{2}\right]\right\}, & \left[n_{1}n_{2}\right]\left[t_{1},\,t_{2}\right] = \\ = \left\{\left[N_{n_{1}n_{2}},\,M_{t}\right]:M_{t} \in \left[t_{1},\,t_{2}\right]\right\}, & \text{and} & \left[n_{1}n_{2},\,m_{1}m_{2}\right]\left[t_{1},\,t_{2}\right] = \left\{\left[N_{ij},\,M_{t}\right]:N_{ij} \in \left[n_{1}n_{2},\,m_{1}m_{2}\right] \text{ and } M_{t} \in \left[t_{1},\,t_{2}\right]\right\}. \end{array}$
- (v) $K_3 = \{[N_{12}, M_3], [N_{13}, M_2], [N_{23}, M_1]\}, K_4 = \{[12, 23] [4] \cup [14, 24] .$. [3] \cup [34] [1, 2].
 - (vi) $K_5 = \bigcup_{i=1}^{4} A_{5i}$, $A_{51} = \begin{bmatrix} 12, 24 \end{bmatrix} \begin{bmatrix} 4, 5 \end{bmatrix}$, $A_{52} = \begin{bmatrix} 14 \end{bmatrix} \begin{bmatrix} 2, 3 \end{bmatrix} \cup \begin{bmatrix} 15 \end{bmatrix} \begin{bmatrix} 2, 3 \end{bmatrix}$, $A_{53} = \begin{bmatrix} 24, 24 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix}$ and $A_{51} = \begin{bmatrix} 25, 45 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix}$ $K_{51} = \begin{bmatrix} 4, 4 \end{bmatrix}$
- = $\begin{bmatrix} 24, 34 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$, and $A_{54} = \begin{bmatrix} 25, 45 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$. $K_t = \bigcup_{i=1}^4 A_{ti} (t = 6, 7, 8), A_{61} = \begin{bmatrix} 12, 34 \end{bmatrix}$.
- . [5, 6], $A_{62} = [15, 25] [3, 4]$, $A_{63} = [35, 16] [2]$, $A_{64} = [26, 56] [1]$, $A_{71} = [12, 45] [6, 7]$, $A_{72} = [16, 36] [4, 5]$, $A_{73} = [46, 17] [2, 3]$, $A_{74} = [27, 67] [1]$, $A_{81} = [12, 56] [7, 8]$, $A_{82} = [17, 47] [5, 6]$, $A_{83} = [57, 28] [3, 4]$ and $A_{84} = [38, 78] [1, 2]$.
- $= \begin{bmatrix} 38, 78 \end{bmatrix} \begin{bmatrix} 1, 2 \end{bmatrix}.$ (vii) For $9 \ge n$, $A(n) = \bigcup_{i=1}^{4} A_{ni}$, $A_{n1} = \begin{bmatrix} 1 & n-3, & n-3 & n-2 \end{bmatrix} \begin{bmatrix} n-1, & n \end{bmatrix}$, $A_{n2} = \begin{bmatrix} 1 & n-1, & n-4 & n-1 \end{bmatrix} \begin{bmatrix} n-3, & n-2 \end{bmatrix}$, $A_{n3} = \begin{bmatrix} n-3 & n-1, & n-6 & n \end{bmatrix} \begin{bmatrix} n-5, & n-4 \end{bmatrix}$, and $A_{n4} = \begin{bmatrix} n-5 & n, & n-1 & n \end{bmatrix} \begin{bmatrix} n-7, & n-6 \end{bmatrix}$.
- (viii) $K_n(n = 5, 6, 7, 8)$ and A(n) are called ladders. A_{ni} is called the ith step of the ladder A(n) or K_n .
- (ix) If n takes the form n = 4m + 4 + i for $1 \le i \le 4$, then we define $K_n = A(n) \cup A(n-4) \cup \ldots \cup A(n-(m-1)4) \cup K_{4+i}$.

Lemma 6. Let n = 4m + 4 + i $(1 \le i \le 4)$. K_n $(n \ge 5)$ is a union of orthoparallel and idempotent free sections A_{ij} (j = 1, 2, 3, 4) for $t \in \{n, n - 4, ..., n - (m-1)4\}$.

Proof. We can see that K_{4+i} (i=1,2,3,4) is a union of orthoparallel and idempotent free sections. We can also see that each A(n-4k) (k=0,1,...,m-1) is a union of orthoparallel and idempotent free sections by Definition 6-(vi). Now consider A(t) and A(t-4). The third step of the ladder A(t) is parallel to the first step of A(t-4) and the end of the first step of the ladder A(t) is touched at the top of the fourth step of the ladder A(t-4). This is true for t=n-4k. Let us consider A(n-(m-1)4) and A(t-4) by A(n-(m-1)4) and A(t-4) by A(n-(m-1)4) and A(t-4) by A(t-(m-1)4) is idempotent free by construction. This proves the lemma.

Lemma 7. (i) $K_n(D_{n-1})$ (n = 3, 4, 5, 6, 7, 8) is a mutant of S_n .

(ii) $K_n(D_{n-1})$ $(n \ge 9)$ is a mutant of S_n .

The proof follows from Lemmas 3 and 6.

6. $K_3(D_{3-1})$ IS A MAXIMAL MUTANT OF T_{3-1}

We see that

$$K_{3}(D_{3-1}) = \left\{ \begin{pmatrix} \{u_{1}, u_{2}\} & \{u_{3}\} \\ u_{1} & u_{2} \end{pmatrix}, \begin{pmatrix} \{u_{1}, u_{2}\} & \{u_{3}\} \\ u_{2} & u_{1} \end{pmatrix}, \begin{pmatrix} \{u_{1}, u_{3}\} & \{u_{2}\} \\ u_{1} & u_{3} \end{pmatrix}, \begin{pmatrix} \{u_{1}, u_{3}\} & \{u_{2}\} \\ u_{3} & u_{1} \end{pmatrix}, \begin{pmatrix} \{u_{1}\} & \{u_{2}, u_{3}\} \\ u_{2} & u_{3} \end{pmatrix}, \begin{pmatrix} \{u_{1}\} & \{u_{2}, u_{3}\} \\ u_{3} & u_{2} \end{pmatrix} \right\}$$

is a mutant of S_3 by Lemma 7-(i). Since D_{3-2} is the set of idempotents and D_{3-1} . $K_3(D_{3-1})$ is a union of *H*-classes each of which is a group, $K_3(D_{3-1})$ is a maximal mutant in $T_{3-1} = D_{3-1} \cup D_{3-2}$.

7. $K_8(D_{8-1})$ IS A MAXIMAL MUTANT OF T_{8-1}

- (i) $K_8(D_{8-1}) = \bigcup_{i=1}^4 A_{8i}(D_{8-1})$, and A_{8i} are orthogonal and idempotent free
- (ii) Since any two distinct sections A_{8i} and A_{8j} have cross sections, $\bigcup \{A_{8i}(D_{8-1}) A_{8j}(D_{8-1})\}$ contains $D_{8-1} \bigcup_{i=1}^{n} A_{8i}(D_{8-1})$ by Lemma 5.
- (iii) In K_8 , for each N_{ij} , there are two partition ranges $[N_{ij}, M_k]$ and $[N_{ij}, M_{k-1}]$. Thus if $H_1 = (N_{ij}, M_k)$ and $H_2 = (N_{ij}, M_{k-1})$, then by Theorem $D, H_1H_2 \subset D_{8-2}$

and $H_1H_2 \cup H_2H_1$ contains (n-1)(n-2)/2 R-classes R_i such that if N is a partition of rank 6 with $N_{ij} \subset N$ then there is R_i such that $N(R_i) = N$ for some i. Hence we can infer that $\bigcup_{i=1}^4 \{A_{8i}(D_{8-1}) A_{8j}(D_{8-1})\}$ contains D_{8-2} .

Definition 7. (i) Let $M \in p_{n-3}(X)$ and let $[N_{ij}, M_t] \in \pi_{n-1} x p_{n-1}(X)$. If $M \subset M_t$ and $\{u_i, u_j\} \notin M$, then we say that M is passable to $[N_{ij}, M_t]$.

- (ii) Let $[N_{ij}, M_t] \in A$. If Y is passable to $[N_{ij}, M_t]$, then we shall say that Y is passable to A.
- (iv) We can check that for any element M in $p_{8-3}(X)$, there is $[N_{ij}, M_t]$ in K_8 to which M is passable.

For example, if $M = \{u_1, u_2, u_3, u_4, u_5\} \in p_{8-3}(X)$, then taking $[N_{56}, M_8]$ in A_{81} , M is passable to $[N_{56}, M_8]$. Hence every element Y in $p_{8-3}(X)$ is passable to K_8 .

Lemma 8. If $Y \in p_{n-3}(X)$ is passable to $[N_{ij}, M_t]$, then

- (i) a subset M of Y is passable to $[N_{ij}, M_t]$;
- (ii) letting $H = (N_{ij}, M_t)$ and $\alpha = (N_1, Y) \in D_{n-3}$ for $N_1 \in \pi_{n-3}(X)$, αH contains α ;
 - (iii) if $\beta = (N_2, M) \in D_{n-3-i}$, then βH contains β .

Proof. (i) follows from Definition 7. (ii) By Definition 7, $||M(\alpha) \cap N_{ij}|| = 0$; $\varphi(\alpha\beta) = \varphi(\alpha)$ for $\beta \in H$, by Theorem 1. It follows from $N(\alpha\beta) \subset N(\alpha)$ and $M(\alpha\beta) \subset M(\beta) \supset Y = M(\alpha)$ that $\alpha \in \alpha H$. The proof of (iii) is analogous as the above.

Finally we have that if $\alpha \in D_{8-3-i}$ then $\alpha K_8(D_{8-1})$ contains α , whence $K_8(D_{8-1})$ is a maximal mutant of T_{8-1} in view of (ii), (iii) and Lemma 8.

8.
$$K_n(D_{n-1})$$
 (9 \ge n) AND D_{n-i} (i \ge 2)

We begin with

Lemma 9. $K_n(D_{n-1}) K_n(D_{n-1})$ contains D_{n-2} .

Proof. Let $H=(H_1,Y)$ be an H-class in D_{n-2} . Then there exist two partition ranges $[N_{ij},M_t]$ and $[N_{ab},M_s]$ in K_n with $N_{ij} \subset N_1$ and $Y \subset M_s$. Let $H_1=(N_{ij},M_t)$ and $H_2=(N_{ab},M_s)$ be H-classes determined by the partition ranges. Then H_1H_2 contains H by Theorem D. This completes the proof.

Lemma 10. Every element Y in $p_{n-3}(X)$ is passable to K_n for n=4,5,6,7,8.

Lemma 11. Let
$$n \geq 9$$
. (i) $p_{n-3}(X) = \bigcup_{i=1}^{n-2} Q_i$, where $Q_1 = \{Y \in p_{n-3}(X) : n \notin Y\}$, $Q_k = \{Y \in p_{n-3}(X) \setminus \bigcup_{i=1}^{k-1} Q_i : n-k+1 \notin Y\}$ $(k = 1, 2, ..., n-2)$.

- (ii) Every Y in $\bigcup_{i=1}^{\tau} Q_i$ is passable to A(n).
- (iii) Let $W = \{a_1, a_2, ..., a_s\}$ be a set of s elements and let $Z = \{b_1, b_2, ..., b_{4t}\}$ be a set of 4t elements with $W \cap Z = \emptyset$, the empty set. Let $Y_1 \in p_{s-3}(W)$ and $[N_1, M_1] \in \pi_{s-1} \times p_{s-1}(W)$ such that Y_1 is passable to $[N_1, M_1]$. Then setting $N_2 = \{N_1, \{b_1\}, \{b_2\}, ..., \{b_{4t}\}\}, M_2 = M_1 \cup Z$ and $Y_2 = Y_1 \cup Z, Y_2$ is passable to $[N_2, M_2]$.
- (iv) Every Y in $p_{n-3}(X)$ is passable to K_n .

Proof. (i) and (iii) are clear.

- (ii) Let $Y \in Q_1$. We note that $|Y| = n 3 < |[1 \ n 3, n 3 \ n 2][n]| = (n-4) + (n-3)$, and $Y \subset M_n$. If Y contains u_{n-2} , then $Y \setminus u_{n-2}$ contains n-4 elements. But in $[1 \ n 3, n 3 \ n 2][n]$ there are n-3 distinct partitionranges of the form $[N_{in-2}, M_n]$ (i = 1, 2, ..., n-3). Thus there must exist a partitionrange $[N_{in-2}, M_n]$ such that Y is passable to $[N_{in-2}, M_n]$ for some $i \in \{1, 2, ..., n-3\}$. If Y does not contain u_{n-2} , then Y is passable to $[N_{in-2}, M_n]$ for all $i \in \{1, 2, ..., n-3\}$. Similarly, we can show that for any Y in $1 \in \{1, 2, ..., n-3\}$.
- ..., n-3}. Similarly, we can show that for any Y in $\bigcup_{i=1}^{n} Q_i$ there is a partition range $[N_{ij}, M_i]$ in A(n) to which Y is passable.
- (iv) We shall prove the part (iv) by induction on n=4m+4+i. If n=4+i ($i \le 4$) then it follows from Lemma 10. We assume that we have been proved that (iv) holds for $n \le t-1$. Now let n=t. From (iii) and the inductional assumption, it follows that any Y in $\bigcup_{4(k+1)} Q_i$ is passable to A(n-4k) ($0 \le k \le m-1$); similarly, every Y in $\bigcup_{4m+1} Q_i$ is passable to K_{4+i} . This proves Lemma 11. By Lemmas 7, 8, 10 and 11, we have that if $\alpha \in D_{n-i}$ ($i \ge 3$), then $\alpha K_n(D_{n-1})$ contains α .

9.
$$K_n(D_{n-1})$$
 AND D_{n-1} (9 $\ge n$)

Let n = 4m + 4 + i $(1 \le i \le 4)$. Consider A(s). We abbreviate $[N_{ij}, M_t]$ as [ij, t].

Definition 8. (i) $(-A(s)) = \{[ij, t] : (1 s - 3) \le (ij) \le (s - 1 s) \text{ and } t \ge s + 1\} \cup \{[ij, t] : (1 s - 1) \le (ij) \le (s - 1 s) \text{ and } t = s, s - 1\} \cup \{[ij, t] : (s - 3 s - 1) \le (ij) \le (s - 1 s); t = s - 2, s - 3\} \cup \{[ij, t] : (s - 5 s) \le (ij) \le (s - 1 s); t = s - 4, s - 5\}.$

- (ii) $(-K_n) = (-A(n)) \cup (-A(n-4)) \cup \ldots \cup (-A(n-(m-1)4)) \cup (-K_{4+i})$ is called the left complementary set of K_n .
- (iii) $(K_n-)=\pi_{n-1}xp_{n-1}(X)\backslash K_n\cup (-K_n)$ is called the right complementary set of K_n .

Lemma 12. (i) $K_n(D_{n-1}) K_n(D_{n-1})$ contains $(-K_n) (D_{n-1})$.

(ii) If $\alpha \in (K_n -) (D_{n-1})$, then $\alpha K_n(D_{n-1})$ contains α .

Proof. (i) follows from Lemma 4 (and Lemma 5 if necessary).

(ii) For any partition range $[N_{ij}, M_t]$ in $(K_n -)$, there are $[N_{ij}, M_s]$ and $[N_{ab}, M_s]$ in K_n , and $[N_{ab}, M_t]$ in $(K_n -)$ such that M_t is a cross section of N_{ab} . Therefore, taking $H_1 = (N_{ij}, M_t)$ and $H_2 = (N_{ab}, M_s)$ we have $H_1H_2 = (N_{ij}, M_s)$. This proves the part (ii).

Finally we have:

Theorem 2. Let S_n be the symmetric semigroup on n letters.

- (i) Let $n \ge 3$. $K_n(D_{n-1})$ is a mutant of S_n .
- (ii) $K_n(D_{n-1})$ is a maximal mutant of T_{n-1} .

References

- [1] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, Vol. I, II (Math. Surveys 7) Amer. Math. Soc., Providence, R. I., 1963, 1967.
- [2] J. H. Howie: The semigroup generated by the idempotents of a full transformation semigroup, J. of London Math. Soc. 41 (1966) 707-716.
- [3] Jin Bai Kim: Mutants in semigroups, Czech. Math. J. 19 (94) (1969) 86-90.
- [4] Jin Bai Kim: The rank of the product of two matrices, Kyungpook Math. J., September (1969) 27-30.
- [5] Jin Bai Kim: On the structure of linear semigroups, To appear in J. of Combinatorial Theory.
- [6] Jin Bai Kim: On full transformation semigroups, Semigroup Forum (1970) 236-242.
- [7] Jin Bai Kim: Idempotents in symmetric semigroups, To appear in J. of Combinatorial Theory.
- [8] G. C. Rota: The number of partitions of a set, Amer. Math. Monthly, 71 (1964) 498-504.
- [9] M. Tainter: A characterization of idempotents in semigroups, J. of Combinatorial Theory, 5 (1968) 370-373.

Author's address: Department of Mathematics, West Virginia University, Morgantown, West Virginia, U.S.A.