Czechoslovak Mathematical Journal

Ján Jakubík

Homogeneous lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 22 (1972), No. 2, 325-337

Persistent URL: http://dml.cz/dmlcz/101101

Terms of use:

© Institute of Mathematics AS CR, 1972

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

HOMOGENEOUS LATTICE ORDERED GROUPS

Ján Jakubík, Košice

(Received June 23, 1971)

Let G be an l-group. We denote by $v G$ the least cardinal α such that card $A \leqq \alpha$ for each bounded disjoint subset of G. The case when $v G$ is finite has been extensively studied (Conrad and Clifford [3], Conrad [2], Kokorin and Chisamiev [7], Kokorin and Kozlov [8]). G will be said to be v-homogeneous if $v H=v G$ for any convex l-subgroup $H \neq\{0\}$ of the l-group G. In this note we show that any complete l-group G can be represented as a complete subdirect product of v-homogeneous l-groups.

Pierce [9] studied some types of homogeneous Boolean algebras. A Boolean algebra B is called homogeneous if it satisfies one of the following equivalent conditions: (i) for any $0 \neq b_{i} \in B(i=1,2)$ the convex sublattices B_{i} of B generated by $b_{i}(i=$ $=1,2$) are isomorphic; (ii) if B_{1} is a convex sublattice of B such that B_{1} is a Boolean algebra then B_{1} is isomorphic to B. Let us consider analogous conditions (i_{1}) and (ii_{1}) for a lattice ordered group G :
(i_{1}) For any $0 \neq g_{i} \in G(i=1,2)$ the convex l-subgroups of G generated by g_{i} $(i=1,2)$ are isomorphic.
(ii ${ }_{1}$) If $G_{1} \neq\{0\}$ is a convex l-subgroup of G, then G_{1} is isomorphic to G.
If G satisfies $\left(\mathrm{i}_{1}\right)$ or $\left(\mathrm{ii}_{1}\right)$, then it will be called respectively homogeneous or strongly homogeneous. We prove that $v G=1$ for any strongly homogeneous l-group $G \neq\{0\}$ and that $v G=1$ or $v G \geqq \aleph_{0}$ for any homogeneous l-group $G \neq\{0\}$. Moreover, for any infinite cardinal α there exists a homogeneous l-group G with $v G=\alpha$.

Let H be a convex l-subgroup of G such that $\sup X \in H$ whenever $X \subset H$ and $\sup X$ does exist in G. Then H is said to be a c-subgroup of G. The closure $c A$ of a subset $A \subset G$ is the intersection of all c-subgroups B of G with $A \subset B$. An l-group G_{1} is called totally inhomogeneous if for any $0<g_{1} \in G_{1}$ there is $0<g_{2} \in G_{1}$ such that (a) g_{2} belongs to the convex l-subgroup A_{1} of G that is generated by g_{1}, and (b) the convex l-subgroup A_{1} of G generated by g_{2} is not isomorphic to A_{1}. The zero l-group $\{0\}$ is homogeneous and, at the same time, totally inhomogeneous. In each l-group G there exists a greatest convex totally inhomogeneous l-subgroup. Let G be a complete
l-group. We prove that there is a system $\left\{A_{0}, A_{i}\right\}(i \in I)$ of convex l-subgroups of G such that (i) A_{0} is totally inhomogeneous, (ii) each A_{i} is homogeneous, and (iii) G is a complete subdirect product of l-groups $A_{0}, c A_{i}(i \in I)$.

1. PRELIMINARIES

We use the standard notation for lattices and lattice ordered groups, cf. [1], [4]. The lattice operations are denoted by \wedge, \vee. The group operation is written additively (though it need not be commutative). Let P be a partially ordered set, $a, b \in P$, $a \leqq b$; the interval $[a, b]$ is the set $\{x \in P: a \leqq x \leqq b\}$. A subset $Q \subset P$ is convex if $[a, b] \subset Q$ whenever $a, b \in Q$ and $a \leqq b$.

Let A be a sublattice of a lattice L such that $\sup a_{n} \in A$ whenever $\left\{a_{n}\right\} \subset A$ and $\sup a_{n}$ does exist in L, and dually; then A is said to be a σ-sublattice of L. Isomorphisms of lattices and l-groups are denoted by \sim and \approx, respectively. Let L be a lattice, $\emptyset \neq Q \subset L$. A set Q is said to be a d-set if there is $x \in L$ such that $q_{1} \wedge q_{2}=x$ for any pair of distinct elements of Q and $q>x$ for each $q \in Q$. For any interval $[a, b]$ of L, we denote by $w[a, b]$ the least cardinal α such that card $Q \leqq \alpha$ for each d-set Q of $[a, b]$; further we put $w_{0}[a, b]=\max \left\{\aleph_{0}, w[a, b]\right\}$.

Throughout the whole paper G is an l-group, $G \neq\{0\}$. A subset $Q \subset G, Q \neq \emptyset$ is disjoint if Q is a d-set and $q_{1} \wedge q_{2}=0$ for any pair of distinct elements q_{1}, q_{2} of Q. Let A be a subgroup of $G, x \in G$. The element x is said to be disjoint to A if $|x| \wedge|a|=$ $=0$ for each $a \in A$. For any $X \subset G$ we denote $X^{\delta}=\{g \in G:|g| \wedge|x|=0$ for each $x \in X\}$. For $g \in G,[g]$ is the convex l-subgroup of G that is generated by g. We denote by $C(G)$ the system of all convex l-subgroups of $G ; C(G)$ is partially ordered by inclusion. An element $0<e \in G$ is a weak unit in G if $e \wedge x>0$ for each $0<$ $<x \in G$.

Let $I \neq \emptyset$ be a set and for each $i \in I$ let A_{i} be a lattice ordered group. The complete direct product of l-groups A_{i} will be denoted by $\Pi A_{i}(i \in I)$. Let A be an l-subgroup of $\Pi A_{i}(i \in I)$ with the property that for each $i_{0} \in I$ and each $x \in A_{i_{0}}$ there is $a \in A$ such that $a\left(i_{0}\right)=x$ and $a(i)=0$ for each $i \in I \backslash\left\{i_{0}\right\}$. Then A is said to be a complete subdirect product of l-groups A_{i} (cf. [10]). If I is a linearly ordered set, we denote by $\Gamma A_{i}(i \in I)$ the lexicographic product of l-groups A_{i} (cf. [4]).

We denote respectively by E or R the additive l-group of all integers (all reals) with the natural order.

2. INTERVALS IN DISTRIBUTIVE LATTICES

Let L be a distributive lattice and let $[a, b]$ be a nontrivial interval of L (an interval is nontrivial if it has more than one element). Obviously w is increasing on L in the following sense: if $[a, b] \subset[c, d] \subset L$, then $w[a, b] \leqq w[c, d]$.
2.1. Let $a, b, c \in L, a<b<c$. Then $w[a, c] \leqq w[a, b]+w[b, c]$.

Proof. If $w[a, c]=1$ (i.e., if $[a, c]$ is linearly ordered), then the assertion is obvious. Assume that $w[a, c]>1$; hence there is a d-set $D \subset[a, c]$ with card $D>1$. Denote inf $D=d$. For any $x \in[a, c]$ let $x_{1}=x \wedge b, x_{2}=x \vee b$. Further put

$$
D_{1}=\left\{d_{1}^{i}: d^{i} \in D, d_{1}<d_{1}^{i}\right\}, \quad D_{2}=\left\{d_{2}^{i}: d^{i} \in D \backslash D_{1}\right\} .
$$

For any $d_{2}^{i} \in D_{2}$ we have $d_{2}<d_{2}^{i}$ because in the opposite case we should have

$$
b \wedge d=b \wedge d^{i}, \quad b \vee d=b \vee d^{i}
$$

thus $d^{i}=d$, which is impossible. If x and y are distinct elements of the set D_{i}, then $x \wedge y=d_{i}$, therefore either $D_{i}=\emptyset$ or D_{i} is a d-set $(i=1,2)$. We have $w[a, b] \geqq$ $\geqq \operatorname{card} D_{1}, w[b, c] \geqq \operatorname{card} D_{2}$ and card $D=\operatorname{card} D_{1}+\operatorname{card} D_{2}$; thus $w[a, c] \leqq$ $\leqq w[a, b]+w[b, c]$.

As a corollary, we obtain:
2.2. Let a, b, c be the same as in 2.1. If $w[a, b]$ and $w[b, c]$ are finite, then $w[a, c]$ is finite as well. Moreover, $w_{0}[a, c]=w_{0}[a, b]+w_{0}[b, c]$.
2.3. Let $a, b \in L$. Then $w[a \wedge b, a \vee b] \leqq w[a \wedge b, a]+w[a \wedge b, b]$ and $w_{0}[a \wedge b, a \vee b]=w_{0}[a \wedge b, a]+w_{0}[a \wedge b, b]$.

Proof. The interval $[a, a \vee b]$ being isomorphic to $[a \wedge b, b]$ we have $w[a, a \vee b]=w[a \wedge b, b]$. Now it suffices to apply 2.1 and 2.2.

Let α be an infinite cardinal, $x \in L$. Denote

$$
\begin{aligned}
& V(x, \alpha)=\{y \in L: w[x \wedge y, x \vee y] \leqq \alpha\}, \\
& V_{0}(x, \alpha)=\{y \in L: w[x \wedge y, x \vee y]<\alpha\} .
\end{aligned}
$$

2.4. $V(x, \alpha)$ is a convex sublattice of L.

Proof. Let $y_{1}, y_{2} \in V(x, \alpha)$. Denote

$$
t_{1}=x \vee y_{1} \vee y_{2}, t_{2}=\left(x \vee y_{1}\right) \wedge\left(x \vee y_{2}\right)
$$

According to the assumption, all cardinals

$$
w\left[x, t_{2}\right], \quad w\left[t_{2}, x \vee y_{1}\right], \quad w\left[t_{2}, x \vee y_{2}\right]
$$

are equal or less than α, thus by $2.3 w\left[t_{2}, t_{1}\right] \leqq \alpha$ and so by $2.1 w\left[x, t_{1}\right] \leqq \alpha$. Dually we can prove that $w\left[t_{3}, x\right] \leqq \alpha$ where $t_{3}=x \wedge y_{1} \wedge y_{2}$. By $2.1, w\left[t_{3}, t_{1}\right] \leqq \alpha$. Since

$$
\left[x \wedge\left(y_{1} \vee y_{2}\right), x \vee\left(y_{1} \vee y_{2}\right)\right] \subset\left[t_{3}, t_{1}\right]
$$

the element $y_{1} \vee y_{2}$ belongs to $V(x, \alpha)$. In a dual way we show that $y_{1} \wedge y_{2}$ belongs
to $V(x, \alpha)$, Thus $V(x, \alpha)$ is a sublattice of L. If $y_{1} \leqq z \leqq y_{2}$, then $x \wedge y_{1}$ and $x \vee y_{2}$ are elements of $V(x, \alpha)$, thus $w\left[x \wedge y_{1}, x \vee y_{2}\right] \leqq \alpha$ and clearly $[z \wedge x, z \vee x] \subset$ $\subset\left[x \wedge y_{1}, x \vee y_{2}\right]$. Therefore $w[z \wedge x, z \vee x] \leqq \alpha$ and so $z \in V(x, \alpha)$.
2.5. $V_{0}(x, \alpha)$ is a convex sublattice of L.

The proof is analogous to that of 2.4.
2.6. If $x, y \in L, V(x, \alpha) \cap V(y, \alpha) \neq \emptyset$, then $V(x, \alpha)=V(y, \alpha)$.

Proof. Let $t \in V(x, \alpha) \cap V(y, \alpha)$ and $z \in V(t, \alpha)$. According to the definition of $V(t, \alpha)$ we have $x \in V(t, \alpha)$; hence by $2.4[x \wedge z, x \vee z] \subset V(t, \alpha)$. As a consequence we easily get $w[x \wedge z, x \vee z] \leqq \alpha$, thus $z \in V(x, \alpha)$. Therefore $t \in V(x, \alpha)$ implies $V(t, \alpha) \subset V(x, \alpha)$. Since $x \in V(t, \alpha)$, we have $V(x, \alpha) \subset V(t, \alpha)$ and so $V(x, \alpha)=$ $=V(t, \alpha)$. Similarly $V(t, \alpha)=V(y, \alpha)$ and consequently $V(x, \alpha)=V(y, \alpha)$.

Since $x \in V(x, \alpha)$, we obtain:
2.7. The system $\{V(x, \alpha)\}(x \in L)$ is a partition of the set L.

The equivalence relation on L corresponding to this partition will be denoted by $R(\alpha)$. Analogously we define the equivalence $R_{0}(\alpha)$ by taking the sets $V_{0}(x, \alpha)$ instead of $V(x, \alpha)$.
2.8. $R(\alpha)$ and $R_{0}(\alpha)$ are congruence relations on the lattice L.

Proof. Let $x, y, z \in L, x \equiv y(R(\alpha))$. By $2.5 x \wedge y \equiv x \vee y(R(\alpha))$. Put $x \wedge y=$ $=u, x \vee y=v$. The interval $[u \vee z, v \vee z]$ is transposed to the interval $[(u \vee z) \wedge$ $\wedge v, v] \subset[u, v]$. Therefore the intervals $[u \vee z, v \vee z]$ and $[(u \vee z) \wedge v, v]$ are isomorphic, hence $w[u \vee z, v \vee z] \leqq \alpha$. Clearly $x \vee z, y \vee z$ belong to $[u \vee z$, $v \vee z]$, thus $w[(x \vee z) \wedge(y \vee z),(x \vee z) \vee(y \vee z)] \leqq \alpha$. Hence we obtain $x \vee z \equiv y \vee z(R(\alpha))$. The relation $x \wedge z \equiv y \wedge z(R(\alpha))$ can be proved dually. Hence $R(\alpha)$ is a congruence relation on L. The proof for $R_{0}(\alpha)$ is analogous.
2.9. Let $\left\{x_{n}\right\} \subset L(n=0,1,2, \ldots), x_{0} \leqq x_{1} \leqq x_{2} \leqq \ldots, \bigvee x_{n}=y, w_{0}\left[x_{i-1}, x_{i}\right] \leqq$ $\leqq \alpha(i=1,2, \ldots)$. Assume that the lattice L is infinitely distributive. Then $w_{0}\left[x_{0}, y\right] \leqq \alpha$.

Proof. If the interval $\left[x_{0}, y\right]$ is linearly ordered, then the assertion is obvious. Assume that $\left[x_{0}, y\right]$ is not linearly ordered; then there is a d-set $D \subset\left[x_{0}, y\right]$ with card $D>1$. Denote $\inf D=d$. For $z \in\left[x_{0}, y\right]$ and $i=1,2, \ldots$ put $z^{i}=z \wedge x_{i}$, $D^{i}=\left\{z^{i}: z \in D, d^{i}<z^{i}\right\}$. For each $z \in D$ there is $i \in\{1,2, \ldots\}$ such that $z^{i} \in D^{i}$. For, if not, then

$$
d=d \wedge y=d \wedge\left(\bigvee x_{i}\right)=\bigvee\left(d \wedge x_{i}\right)=\bigvee\left(z \wedge x_{i}\right)=z \wedge\left(\bigvee x_{i}\right)=z
$$

a contradiction. Let $D_{0}^{i}=\left\{z \in D: z^{i} \in D^{i}\right\}$. We have $D=U D_{0}^{i}(i=1,2, \ldots)$ and for each $i \in\{1,2, \ldots\}$ either card $D^{i} \leqq 1$ or D^{i} is a d-set and $D^{i} \subset\left[x_{0}, x_{i}\right]$. From 2.1 we obtain by induction card $D^{i} \leqq \alpha$. If $z, t \in D_{0}^{i}$, then $z^{i} \wedge t^{i}=d^{i} \neq z^{i}, d^{i} \neq t^{i}$, hence $z^{i} \neq t^{i}$; therefore card $D^{i}=\operatorname{card} D_{0}^{i}$ and it follows card $D \leqq \alpha$. Therefore $w_{0}\left[x_{0}, y\right] \leqq \alpha$.
2.10. Let $x \in L$ and let A be a convex sublattice of L such that $x \in A$ and $w\left[a_{1}, a_{2}\right] \leqq \alpha$ whenever $a_{1}, a_{2} \in A, a_{1} \leqq a_{2}$. Then $A \subset V[x, \alpha]$.

Proof. Let $y \in A$. According to the assumption we have $w[x \wedge y, x \vee y] \leqq \alpha$, hence $y \in V(x, \alpha)$.

A similar assertion is valid for $V_{0}(x, \alpha)$.
Summarizing, we have the following result:
2.11. Theorem. Let L be a distributive lattice and let α be an infinite cardinal. Then for each $x \in L$ there are convex sublattices $V(x, \alpha)$ and $V_{0}(x, \alpha)$ of L such that $x \in V_{0}(x, \alpha) \subset V(x, \alpha)$ and
(i) if I is an interval of $V(x, \alpha)\left(V_{0}(x, \alpha)\right)$, then $w I \leqq \alpha(w I<\alpha)$,
(ii) if A is a convex sublattice of L fulfilling $w I \leqq \alpha(w I<\alpha)$ for each interval $I \subset A$ and $x \in A$, then $A \subset V(x, \alpha)\left(A \subset V_{0}(x, \alpha)\right)$,
(iii) the systems $\{V(x, \alpha)\}(x \in L)$ and $\left\{V_{0}(x, \alpha)\right\}(x \in L)$ are partitions of L and the corresponding equivalences $R(\alpha), R_{0}(\alpha)$ are congruence relations on L;
(iv) if L is infinitely distributive, then each set $V(x, \alpha)$ is a σ-sublattice of L.

3. w-HOMOGENEOUS LATTICE ORDERED GROUPS

A cardinal property f on the class of all lattices is a rule that assigns to each bounded lattice A a cardinal $f A$ such that $f B=f A$ whenever B is isomorphic to A. A cardinal property is increasing if $f C \leqq f A$ for any lattices A and C such that A is bounded and C is isomorphic to an interval of the lattice A (cf. [7]). A lattice L is f-homogeneous if $f B_{1}=f B_{2}$ for any two nontrivial intervals B_{1}, B_{2} of the lattice L.

Let G be a lattice ordered group and let f be a cardinal property on the class of all lattices. The following conditions on f were considered in [6]:
$\left(\mathrm{c}_{1}\right)$ If $0<t_{i} \in G(i=1,2), f\left[0, t_{1}\right]=f\left[0, t_{2}\right]$ and if $\left[0, t_{1}\right]$ and $\left[0, t_{2}\right]$ are f-homogeneous, then $f\left[0, t_{1}+t_{2}\right]=f\left[0, t_{1}\right]$.
(c_{2}) If $t_{i} \in G, 0<t_{1} \leqq t_{2} \leqq \ldots, f\left[0, t_{1}\right]=f\left[0, t_{i}\right], \bigvee t_{i}=t$ and if the intervals $\left[0, t_{i}\right]$ are f-homogeneous $(i=1,2, \ldots)$, then $f[0, t]=f\left[0, t_{1}\right]$.
3.1. The cardinal property w_{0} fulfils $\left(\mathrm{c}_{1}\right)$ and $\left(\mathrm{c}_{2}\right)$.

Proof. Since $0<t_{1}<t_{1}+t_{2}$ and the interval $\left[t_{1}, t_{1}+t_{2}\right]$ is isomorphic to
[$0, t_{2}$], it follows form 2.2 that $\left(\mathrm{c}_{1}\right)$ is valid. It is known that any lattice ordered group is infinitely distributive. Since w_{0} is increasing, 2.9 implies that $\left(\mathrm{c}_{2}\right)$ holds.
3.2. The sets $V(0, \alpha)$ and $V_{0}(0, \alpha)$ are l-ideals of G and for any $x \in G, V(x, \alpha)=$ $=V(0, \alpha)+x, V_{0}(x, \alpha)=V_{0}(0, \alpha)+x$.

Proof. Let $x \in G$. Since the mapping $\varphi(g)=g+x$ is an automorphism on the lattice G, from the definition of $V(g, \alpha)$ it follows $V(g+x, \alpha)=V(g, \alpha)+x$. In particular, $V(x, \alpha)=V(0, \alpha)+x$. Assume that $x, g \in V(0, \alpha)$. Then according to 2.6,

$$
\begin{gathered}
V(x+g, \alpha)=V(x, \alpha)+g=V(0, \alpha)+g=V(g, \alpha)=V(0, \alpha), \\
V(-x, \alpha)=V(0, \alpha)-x=V(x, \alpha)-x=V(0, \alpha)
\end{gathered}
$$

thus $V(0, \alpha)$ is a subgroup of G. Moreover, for any $y \in G$,

$$
-y+V(0, \alpha)+y=V(-y, \alpha)+y=V(0, \alpha)
$$

hence $V(0, \alpha)$ is normal. Since $V(0, \alpha)$ is a convex sublattice of G, it is an l-ideal of G. The proof for $V_{0}(0, \alpha)$ is similar.

We need the following results:
3.3. ([6], Thm. 1.21.) Let G be a complete l-group and let f be an increasing cardinal property satisfying $\left(\mathrm{c}_{1}\right)$ and $\left(\mathrm{c}_{2}\right)$. Then G is isomorphic to a complete subdirect product of f-homogeneous l-groups. If G is also laterally complete, then it is isomorphic to a complete direct product of f-homogeneous l-groups.
3.4. Let G be a complete lattice ordered group. Then G is isomorphic to a direct product $A \times B$ such that (i) A is isomorphic to a complete subdirect product of linearly ordered groups, and (ii) B has no linearly ordered direct factor $C \neq\{0\}$.

Proof. Let $\left\{A_{k}\right\}(k \in K)$ be the set of all maximal linearly ordered subgroups of G, $B=\left\{\bigcup A_{k}\right\}^{\delta}, A=B^{\delta}$. According to the Riesz-Birkhoff Theorem (cf. [1], Chap. XIV) $G=A \times B$ and clearly B has no linearly ordered factor different from $\{0\}$. Thus it remains to show that A is isomorphic to a complete subdirect product of linearly ordered groups. By [5], Thm. 1 each A_{k} is a direct factor in G. Hence there exist components $x\left(A_{k}\right)$ for each $x \in A$ and $x\left(A_{k}\right)=\sup \left\{a_{k} \in A_{k}: a_{k} \leqq x\right\}$ whenever $x \geqq 0$. Consider the mapping $\varphi(x)=\left(\ldots, x\left(A_{k}\right), \ldots\right)$ of A into $\Pi A_{k}(k \in K)$. If $\varphi(x)=0$, then $\varphi(|x|)=0$ hence x is disjoint with each $A_{k}(k \in K)$ and so $|x| \in B$; this implies $x=0$. Hence φ is an isomorphism of A onto $\varphi(A)$. Let $k_{0} \in K, f \in \Pi A_{k}$, $f(k)=0$ for each $k \in K \backslash\left\{k_{0}\right\}$. Put $f\left(k_{0}\right)=x$. Then $x\left(A_{k}\right)=0$ for each $k \neq k_{0}$ and $x\left(A_{k_{0}}\right)=x$, hence $\varphi(A)$ is a complete subdirect product of linearly ordered groups $\varphi\left(A_{k}\right)(k \in K)$.

Let B be the same as in 3.4 and assume that $B \neq\{0\}$. Clearly B is a complete l-group and hence B is Archimedean. From [5], Thm. 1' it follows that B has no basic element.

Hence $w[a, b]$ is infinite for any nontrivial interval of B and so $w[a, b]=w_{0}[a, b]$. Any linearly ordered group is w-homogeneous, thus by $3.4 A$ is a complete subdirect product of w-homogeneous l-groups. According to 3.1 and $3.3 B$ is isomorphic to a complete subdirect product of w_{0}-homogeneous l-groups $B_{k}(k \in K), B_{k} \neq\{0\}$; but B_{k} are isomorphic to some convex l-subgroups of B and so $w_{0} I=w I$ for any nontrivial interval of B_{k}, therefore B_{k} are w-homogeneous. We arrive at
3.5. Theorem. Any complete l-group is a complete subdirect product of w-homogeneous l-groups.
3.6. An l-group is v-homogeneous if and only if it is w-homogeneous.

Proof. If G is linearly ordered, then the assertion is trivial; assume that G is not linearly ordered. Let $[a, b]$ be an interval of G. Since $[a, b]$ is isomorphic to $[0, b-a]$, we have $w[a, b]=w[0, b-a]$. Assume that G is w-homogeneous and that $w I=\alpha$ for any nontrivial interval I of G. Let M be a bounded disjoint subset of G. Since M is a d-set, we have card $M \leqq \alpha$, thus $v G \leqq \alpha$. On the other hand, if M is a bounded d-set of G with $\operatorname{card} M>1$, inf $M=m$, then the set $M^{\prime}=\{x-m$: $: x \in M\}$ is disjoint and therefore $v G=\alpha$.
From 3.5 and 3.6 we obtain
3.7. Theorem. Any complete l-group is a complete subdirect product of v-homogeneous l-groups.

4. STRONGLY HOMOGENEOUS LATTICE ORDERED GROUPS

Let $G \neq\{0\}$ be a lattice ordered group. The following assertion is easy to verify:
4.1. For any $0<g \in G,[g]=\mathrm{U}[-n g, n g](n=1,2, \ldots)$.

From 4.1 we obtain immediately:
4.2. If $0<g \in G$, then g is a strong unit of the lattice ordered group [g].
4.3. Let $0<g \in G$ and assume that the interval $[0, g]$ is a chain. Then $[g]$ is linearly ordered.

This follows from 4.1 and [5], 17.2 by using induction.
4.4. Let G be homogeneous and not linearly ordered. Then G contains a bounded infinite disjoint subset.

Proof. Since G is not linearly ordered there are incomparable elements $a, b \in G$. Put $a_{1}=a-(a \wedge b), b_{1}=b-(a \wedge b), g=a_{1} \vee b_{1}$. The set $\left\{a_{1}, b_{1}\right\}$ is disjoint
and the l-group [g] is not linearly ordered. Since G is homogeneous, the l-group [b_{1}] is not linearly ordered, thus by $4.3\left[0, b_{1}\right]$ is not a chain. Hence there is a disjoint subset $\left\{a_{2}, b_{2}\right\} \subset\left[0, b_{1}\right]$ and clearly $\left\{a_{1}, a_{2}\right\}$ is a disjoint set. Analogously we construct disjoint sets $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}(n=1,2, \ldots)$. Then the set $\left\{a_{n}\right\}_{n=1}^{\infty}$ is disjoint as well and it is a subset of $[0, g]$.
4.5. Let $\left\{a_{1}, a_{2}, \ldots\right\}$ be a disjoint subset of G and let $A_{n}=\left[a_{n}\right](n=1,2, \ldots)$. Denote by A the system of all elements $g \in G$ that can be written in the form $g=$ $=b_{n_{1}}+\ldots+b_{n_{k}}$ with $b_{n_{i}} \in A_{i^{2}}$. Then A is a convex l-subgroup of G.

Proof. Since $\left|b_{n_{i}}\right| \wedge\left|b_{n_{j}}\right|=0$ for $i \neq j$ we infer that the elements $b_{n_{i}}$ and $b_{n_{j}}$ are permutable, therefore A is a subgroup of G. Clearly A is a directed subset of G. If $x \in G, g \in A, 0<x \leqq g$, then there are elements $b_{n_{i}}>0, b_{n_{i}} \in A_{i}$ such that $g=$ $=b_{n_{1}}+\ldots+b_{n_{k}}$; hence it follows that $x=c_{n_{1}}+\ldots+c_{n_{k}}$ for some $0 \leqq c_{n_{i}} \leqq b_{n_{i}}$ ($i=1, \ldots, k$). Thus A is a convex subgroup of G and, being directed, it is an l-subgroup of G.
4.6. Let A be the same as in 4.5. Then A has no weak unit.

Proof. Let $g, b_{n_{i}}(i=1, \ldots, k)$ be as in 4.5. Choose $n>\max \left\{n_{1}, \ldots, n_{k}\right\}$; we have $a_{n} \wedge b_{n_{i}}=0$, therefore $a_{n} \wedge g=0$. This shows that A has no weak unit.

4.7. If G is strongly homogeneous, then G is linearly ordered.

Proof. Assume on the contrary that G is strongly homogeneous and that it is not linearly ordered. By 4.4, G contains an infinite disjoint subset $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Let A be as in 4.5 and $0<g \in G$. According to $4.2[g]$ has a weak unit and thus by 4.6 the l-subgroups $[g]$ and A of G are not isomorphic, which is a contradiction.

As a corollary, we obtain
4.7.1. If G is strongly homogeneous, then $C(G)$ is linearly ordered.

If φ is an isomorphism of a lattice ordered group G_{1} onto G_{2}, then φ induces an isomorphism φ_{1} of the partially ordered set $C\left(G_{1}\right)$ onto $C\left(G_{2}\right)$.
4.8. Let G be strongly homogeneous, $\{0\} \neq A \in C(G)$. Then there is $A_{1} \in C(G)$ such that A_{1} is covered by A in $C(G)$.

Proof. Choose $0<g \in G$. From the Zorn Lemma it follows that there is a convex l-subgroup B of G that is maximal with respect to not containing the element g; since $C(G)$ is linearly ordered by 4.7 , the l-group B is uniquely determined. There is an isomorphism φ of $[g]$ onto A; then the l-group $A_{1}=\varphi_{1}(B)$ is covered by A in $C(A)$, thus clearly A_{1} is covered by A in $C(G)$.

Denote $A_{1}=f(A)$ for any $A \neq\{0\}$ and $\{0\}=f(\{0\})$; further define inductively $f^{\lambda}(A)$ for any ordinal number λ as follows: for a non-limit ordinal $\lambda=\lambda_{1}+1$ we put $f^{\lambda}(A)=f\left(f^{\lambda_{1}}(A)\right)$ and if λ is a limit ordinal, we set $f^{\lambda}(A)=\bigcap_{v<\lambda} f^{v}(A)$. Then

$$
A \supset \ldots \supset f^{v}(A) \supset \ldots \supset f^{\lambda}(A) \supset \ldots
$$

whenever $v<\lambda$ and for any λ either $f^{\lambda}(A)=f^{\lambda+1}(A)=\{0\}$ or $f^{\lambda+1}(A)$ is covered by $f^{\lambda}(A)$.

In 4.9-4.14 we assume that G is strongly homogeneous.
4.9. For any ordinal $\lambda, f^{\lambda}(G)$ is an l-ideal of G.

Proof. According to 4.8, $\varphi(f(G))=f(G)$ for any automorphism of the l-group G; by transfinite induction we get $\varphi\left(f^{\lambda}(G)\right)=f^{\lambda}(G)$. Thus $f^{\lambda}(G)$ is an l-ideal of G.
4.10. If $f^{\lambda}(G) \neq\{0\}$, then the factor l-group $f^{\lambda}(G) \mid f^{\lambda+1}(G)$ is isomorphic to an l-subgroup of R.

Proof. From the assumption it follows that $f^{\lambda+1}(G)$ is covered by $f^{\lambda}(G)$, the factor l-group $f^{\lambda}(G) \mid f^{\lambda+1}(G)=F \neq\{0\}$ has no convex subgroups distinct from $\{0\}$ and F, thus F is Archimedean; being linearly ordered F is isomorphic to an l-subgroup of R (cf. [1], Chap. XIV).

By the definition of f, for any λ either $f^{\lambda}(G)=\{0\}$ or $f^{\lambda+1}(G)$ is a proper subset of $f^{\lambda}(G)$; hence we obtain
4.11. There is an ordinal λ_{0} such that $f^{\lambda}(G)=\{0\}$ if and only if $\lambda \geqq \lambda_{0}$.
4.12. Let A be a convex l-subgroup of $G,\{0\} \neq A \neq G$. Then there is an ordinal $\lambda_{1}<\lambda_{0}$ such that $A=f^{\lambda_{1}}(G)$.

Proof. From 4.11 it follows that the set $\Lambda=\left\{\lambda \leqq \lambda_{0}: f^{\lambda}(G) \subset A\right\}$ is non-empty; let λ_{1} be the first element of the set Λ. If λ_{1} is a limit ordinal, then $f^{\lambda_{1}}(G)=\bigcap f^{\lambda}(G)$ $\left(\lambda<\lambda_{1}\right)$, and for each such λ we have $f^{\lambda}(G) \supset A$, therefore $f^{\lambda_{1}}(G) \supset A$; this implies $f^{\lambda_{1}}(G)=A$. Assume that λ_{1} is nonlimit, $\lambda_{1}=\lambda_{2}+1$. Then A is a proper subset of $f^{\lambda_{2}}(G)$ and since $f^{\lambda_{1}}(G) \subset A$ is covered by $f^{\lambda_{2}}(G)$ we obtain $f^{\lambda_{1}}(G)=A$.

If α, β are ordinals, $\alpha \leqq \beta$, we denote by $[\alpha, \beta]$ the system of all ordinals λ with $\alpha \leqq \lambda \leqq \beta$.
4.13. For any $\lambda<\lambda_{0},\left[1, \lambda_{0}\right]$ is isomorphic to $\left[\lambda, \lambda_{0}\right]$.

Proof. According to 4.11 and $4.12,\left[1, \lambda_{0}\right]$ and $\left[\lambda, \lambda_{0}\right]$ is the order type of the chain $C(G)$ and $C\left(f^{\lambda}(G)\right)$, respectively. Since G is isomorphic to $f^{\lambda}(G), C(G)$ is isomorphic to $C\left(f^{\lambda}(G)\right)$.
4.14. For any $\lambda<\lambda_{0}$, the l-groups $G / f(G)$ and $f^{\lambda}(G) / f^{\lambda+1}(G)$ are isomorphic.

Proof. There exists an isomorphism φ of G onto $f^{\lambda}(G)$ and $\varphi(f(G))=f^{\lambda+1}(G)$; therefore $G \mid f(G)$ is isomorphic to $f^{\lambda}(G) / f^{\lambda+1}(G)$.

Denote $h(G)=G / f(G)$. Let us remark that if G_{1} and G_{2} are strongly homogeneous l-groups such that $C\left(G_{1}\right)$ is isomorphic to $C\left(G_{2}\right)$ and $h\left(G_{1}\right)$ is isomorphic to $h\left(G_{2}\right)$, then G_{1} and G_{2} need not be isomorphic. Moreover, we have:
4.15. Let G be strongly homogeneous and assume that card $C(G)>2$. Then there exists a strongly homogeneous l-group G_{1} such that $C(G) \sim C\left(G_{1}\right), h(G) \approx$ $\approx h\left(G_{1}\right)$ and G is not isomorphic to G_{1}.

Proof. Let I be the order type isomorphic to $C(G)$. For each $i \in I$ let $H_{i}=h(G)$. Put $H=\Gamma H_{i}(i \in I)$. Let $A \neq\{0\}$ be a convex l-subgroup of H and let i_{0} be the least element of I such that there exists $a \in A$ with $a\left(i_{0}\right) \neq 0$. Then $A=\Gamma H_{i}\left(i \in I: i \geqq i_{0}\right)$. Since according to 4.13 the linearly ordered set $\left\{i \in I: i \geqq i_{0}\right\}$ is isomorphic to I, A is isomorphic to H and therefore H is strongly homogeneous. Clearly $h(H) \approx h(G)$ and $C(H) \sim C(G)$. If H is not isomorphic to G, we put $G_{1}=H$. Assume that H is isomorphic to G. For any $x \in H$ let $s(x)$ be the support of x. Let X be the set of all $x \in H$ such that $s(x)$ is finite. It is easy to verify that X is strongly homogeneous, $C(X) \sim C(H), h(X) \approx h(H)$ and X is not isomorphic to G; we put $G_{1}=X$.
4.16. Let α be an infinite cardinal. There exists a strongly homogeneous l-group G with $\operatorname{card} G=\alpha$.

Proof. Let ω_{α} be the first ordinal such that the power of the set of all ordinals less than ω_{α} equals α. Let $\lambda<\omega_{\alpha}$. Since $\operatorname{card}[1, \lambda]<\alpha$, we have $\operatorname{card}\left[\lambda, \omega_{\alpha}\right]=\alpha$ and so the order type of $\left[\lambda, \omega_{\alpha}\right]$ is isomorphic to $\left[1, \omega_{\alpha}\right]$. Hence it follows that the l-group

$$
A=\Gamma A_{\lambda}\left(\lambda<\omega_{\alpha}\right)
$$

with $A_{\lambda}=E$ for each $\lambda<\omega_{\alpha}$ is strongly homogeneous. Let G be the set of all $a \in A$ with a finite support. Then G is strongly homogeneous as well and card $G=\alpha$.
4.17. An l-group G will be said to be totally inhomogeneous if for each $0<g \in G$ there exists $g_{1} \in G$ such that $0<g_{1} \in[g]$ and the l-groups [$\left.g_{1}\right]$, [g] are not isomorphic. The following example shows that there exist totally inhomogeneous l-groups: Let $I=\{1,2, \ldots\}$ and let p be a prime. Put $G_{1}=\Gamma A_{i}(i \in I)$, where

$$
A_{i}=E \quad \text { if } \quad i=p^{k} \quad(k=0,1,2, \ldots)
$$

and

$$
A_{i}=R \quad \text { otherwise } .
$$

Then it is easy to verify that G is totally inhomogeneous. If p_{1}, p_{2} are distinct primes, then $G_{p_{1}}$ and $G_{p_{2}}$ are not isomorphic.

5. HOMOGENEOUS l-GROUPS

Let G be an l-group.
5.1. If $\left\{G_{i}\right\}(i \in I)$ is a chain of the lattice $C(G)$ such that each G_{i} is homogeneous, then $H=\bigcup G_{i}$ is homogeneous.

Proof. If $0<h_{k} \in H(k=1,2)$, then $h_{1}, h_{2} \in G_{i}$ for some i, hence $\left[h_{1}\right] \approx\left[h_{2}\right]$. By using the Zorn Lemma, we obtain from 5.1:
5.2. If H_{0} is a homogeneous convex l-subgroup of G, then there is a maximal convex homogeneous l-subgroup H of G such that $H_{0} \subset H$.

Moreover, from 5.2 and from the Axiom of Choice we infer:
5.3. There exists a system $\mathscr{A}=\left\{A_{k}\right\}(k \in K)$ of convex l-subgroups of G such that:
(i) Each $A_{k} \in \mathscr{A}$ is a maximal homogeneous l-subgroup of G.
(ii) The system \mathscr{A} is disjoint.
(iii) If $0<x \in G$ and x is disjoint with each $A_{k} \in \mathscr{A}$, then $[x]$ is not homogeneous.
5.4. Let \mathscr{A} be the same as in 5.3 and $0<x \in G$. Then the following conditions are equivalent: $\left(\mathrm{iii}_{1}\right) x$ is disjoint with each $A_{k} \in \mathscr{A}$; (iv) $[x]$ is totally inhomogeneous.

Proof. Assume that $\left(\mathrm{iii}_{1}\right)$ holds and let $0<y \in[x]$. Then y is disjoint with each $A_{k} \in \mathscr{A}$ and thus by 5.3 the l-group $[y]$ is not homogeneous. Hence there is $0<z \in$ $\in[y]$ such that $[z]$ is not isomorphic to $[y]$ and so $[x]$ is totally inhomogeneous. Conversely, assume that $[x]$ is totally inhomogeneous. If $x \wedge a_{k}=y$ for some $0<a_{k} \in A_{k} \in \mathscr{A}$, then the l-group $[y]$ is homogeneous since $y \in A_{k}$ and at the same time $[y]$ is totally inhomogeneous because $[y] \subset[x]$; thus $[y]=\{0\}$ and therefore (iii ${ }_{1}$) holds.
5.5. Theorem. In any l-group G there is a greatest convex totally inhomogeneous l-subgroup.

Proof. Denote $X=\left(\bigcup A_{k}\right)^{\delta}(k \in K)$. Then X is a convex l-subgroup of G. From 5.4 it follows that X is totally inhomogeneous and that any totally inhomogeneous convex l-subgroup of G is a subset of X.

If P is a direct factor of G and $g \in G$, then we denote by $g(P)$ the component (= projection) of g in P; for any $0 \leqq g \in G$ we have $0 \leqq g(P) \leqq g$. Each c-subgroup of a complete l-group G is a direct factor of G and for any $Z \subset G . Z^{\delta}$ is a closed l subgroup of G (cf. Riesz-Birkhoff Thm., [1], Chap. XIV).
5.6. Let X and A_{k} be the same as in 5.5. Assume that G is a complete l-group, $0<g \in G$. Then

$$
g=g(X) \vee\left(\vee g\left(c A_{k}\right)\right)
$$

Proof. Since X and $c A_{k}$ are c-subgroups of G, the projections $g(X), g\left(c A_{h}\right)$ exist in G and belong to the interval $[0, g]$. Hence $y=\mathrm{V} g\left(c A_{k}\right)$ does exist in G and $0 \leqq$ $\leqq y \leqq x$. According to the definition of X we have $g\left(c A_{k}\right) \in X^{\delta}$, thus $y \in X^{\delta}$ and so $g(X) \wedge y=0$, whence $g(X) \vee y=g(X)+y$. Denote $t=-g(X)-y+g$. Then $t(X)=-g(X)(X)-y(X)+g(X)=-g(X)+g(X)=0$ since $y(X)=0$, thus t is disjoint to X. Similarly we can show that t is disjoint to each $c A_{k}$. According to the definition of X we have $t=0$, hence $g=g(X) \vee\left(\vee g\left(c A_{k}\right)\right)$.
5.7. Theorem. Let G be a complete l-group. Then there exists a system of convex l-subgroups $\left\{X, A_{k}\right\}(k \in K)$ in G such that
(i) X is the greatest convex l-subgroup of G that is totally inhomogeneous;
(ii) each A_{k} is homogeneous;
(iii) the l-group G is isomorphic to the complete subdirect product of the l-groups $X, c A_{k}(k \in K)$.

Proof. The assertions (i) and (ii) were already proved. Let $k_{0} \notin K, K^{\prime}=K \cup\left\{k_{0}\right\}$, $A_{k_{0}}=X$ and consider the mapping $\varphi(g)=\left(\ldots, g_{k}, \ldots\right)_{k \in K^{\prime}}$ of G into the direct product of l-groups $A_{k_{0}}, c A_{k}(k \in K)$ such that $g_{k_{0}}=g\left(A_{k_{0}}\right), g_{k}=g\left(c A_{k}\right)$ for $k \in K$. Since X and $c A_{k}$ are direct factors of G the mapping φ is a homomorphism. Denote $\varphi(G)=$ $=G_{1}$. If $g \in X$, then $g_{k_{0}}=g$ and $g_{k}=0$ for each $k \in K$; similarly, if $g \in c A_{k_{1}}$ for $k_{1} \in K$, then $g_{k_{1}}=g$ and $g_{k_{0}}=0, g_{k}=0$ for each $k \in K \backslash\left\{k_{1}\right\}$. Therefore G_{1} is a complete subdirect product of l-groups X and $c A_{k}(k \in K)$. If $0 \neq g_{1} \in G, \varphi\left(g_{1}\right)=0$, then for $g=\left|g_{1}\right|$ we have $g>0, \varphi(g)=0$, thus $g(X)=0$ and $g\left(c A_{k}\right)=0$ for each $k \in A_{k}$. Hence according to $5.6 \mathrm{~g}=0$, a contradiction. This implies that φ is an isomorphism of G onto G_{1}.

Let B be a Boolean algebra and let $X(B)$ be the Stone space of B. Then B is isomorphic to the system B^{*} consisting of the subsets of $X(B)$ that are simultaneously closed and open. Let $F_{1}(B)$ be the system of all real functions defined on $X(B)$ with the following property: for each $f \in F_{1}(B)$ there is a system $A_{1}, \ldots, A_{n} \in B^{*}$ such that

$$
\cup A_{i}=X(B), A_{i_{1}} \cap A_{i_{2}}=\emptyset \quad \text { for distinct } i_{1}, i_{2} \in\{1, \ldots, n\}
$$

and f is a constant on each subset $A_{i}(i=1, \ldots, n)$. Then $F_{1}(B)$ is an additive group and it is an l-group if we put $f \leqq g$ whenever $f(x) \leqq g(x)$ for each $x \in X(B)$. It is easy to verify that $v(G)=w(B)$. If $0<f \in F_{1}(B)$, let $s(f)=\{x \in X(B): f(x) \neq 0\}$. The set $S=s(f)$ belongs to B^{*}. Denote $B_{1}=[\emptyset, S] \subset B^{*}$; then B_{1} is a Boolean algebra and $F_{1}\left(B_{1}\right)$ is isomorphic to $[f]$. Therefore the l-group $F_{1}(B)$ is homogeneous whenever the Boolean algebra B is homogeneous. For any infinite cardinal α
there is a homogeneous Boolean algebra B with $w B=\alpha$ (cf. [9], Thm. 3.5 and Lemma 3.12). Thus for any infinite cardinal α there exists an l-group $G=F_{1}(B)$ such that G is homogeneous and $v G=\alpha$.

References

[1] C. Birkhoff: Lattice theory, third edition, Providence 1967.
[2] P. Conrad: The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J. 7 (1960), 171-180.
[3] P. Conrad, A. H. Clifford: Lattice-ordered groups having at most two disjoint elements, Proc. Glasgow Math. Assoc., 4 (1960), 111-113.
[4] Л. Фукс: Частично упорядоченные алгебраически системы, Москва 1965.
[5] J. Jakubik: Konvexe Ketten in l-Gruppen, Časop. pěst. mat. 84 (1959), 53-63.
[6] J. Jakubik: Cardinal properties of lattice-ordered groups, Fundam. math. 74 (1972), 85-98.
[7] А. И. Кокорин, Н. Г. Хисамиев: Элементарная классификация структурно упорядоченных абелевых групп с конечным числом нитей, Алгебра и логика, 5 (1966), 41-50.
[8] А. И. Кокорин, Г. Т. Козлов: Расширенные элементарная и универсальная теории решеточно упорядоченных групп с коненым числом нитей, Алгебра и логика 7 (1968), 91-103.
[9] R. S. Pierce: Some questions on complete Boolean algebras, Proc. Symp. Pure Math. Vol. 2, Lattice theory, Amer. Math. Soc., 1961, 129-- 140.
[10] F. Šik: Über subdirekte Summen geordneter Gruppen, Czechosl. Math. J. 10 (1960), 400-424.

Author's address: Košice, Zbrojnicka 7, ČSSR (Vysoká škola technická).

