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ISOTOPY OF DIGRAPHS

BOHDAN ZELINKA, Liberec

(Received Decemnber 30, 1969)

In this paper we shall define the concept of isotopy of digraphs analogously to the
concept of isotopy of groupoids introduced in [3]. We shall consider digraphs without
multiple (equally directed) edges, but we shall admit loops.

The isotopy of groupoids is defined as follows. Two groupoids G, and G, are called
isotopic, if and only if there exist three one-to-one mappings ¢, ¥, x of G, onto G,
such that for any three elements a, b, ¢ of G, the equality

ab =c¢

in G, is equivalent to the equality

o(a) U(b) = #(¢)
in G,.

Analogously the isotopy of digraphs will be defined. Let G, G’ be two digraphs,
Vand V'’ respectively their vertex sets. The graphs G, G’ are called isotopic, if and only
if there exist two one-to-one mappings f;, f, of ¥ onto V' such that the existence of
the edge ;1; in G (for anyueV,ve V) is equivalent to the existence of the edge
f,(u)fz(;j in G'. A pair of such mappings f = {f,,f,> will be called an isotopy
of G onto G'. If f; = f,, the isotopy | = {f}, f,) is called an isomorphism of G
onto G'.

Now we shall define the composition of isotopies. Let G, G’, G” be three digraphs,
let { = {f1,f,) be an isotopy of G onto G’ and g = {g,, g,> an isotopy of G’
onto G”. Then the composition (product) gf of the isotopies g,  is the isotopy
h = <hy, h,) such that hy = g,f;, h, = g,f,. The inverse isotopy {~' to the
isotopy f is the isotopy ™! = <{f;"!, £ '> of G’ onto G, where f; !, f, ' are inverse
mappings to the mappings f;, f, respectively.

For the investigation of isotopy we shall use a certain blpamte digraph correspond-
ing to the given digraph. Let G be a digraph, let ay, ..., a, be its vertices. The
dxgraph G correspondmg to G has the vertices by, ..., b, Cis oo O In G there exists

an edge by i€ (1 <i<n,1=j< n)if and only if the edge a a exists in G. No two
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of the vertices by, ..., b, and no two of the vertices ¢, ..., ¢, are joined by an edge
and there does not exist any edge c; b We shall denote B = {b, ..., b,,}, C =

= {1 uc).

Theorem 1. Let G, G’ be two isotopic digraphs. Then the corresponding bipartite
digraphs G, G’ are isomorphic.

Proof. Let a, ..., a, be the vertices of G and aj, ..., a, the vertices of G’. The
vertices of G will be by, ..., b,, ¢1, ..., ¢,, the vertices of G’ will be b}, ..., bl, c}, ..., ch.
Now let there exist an isotopy f = {f}, f,) of G onto G'. We shall define a one-to-one
mapping f of the vertex set of G onto the vertex set of G’ as follows. Fori = 1, ..., n
the image f(b;) of a vertex b; is the vertex b, where j is such a number that f,(a;) = a;
Analogously the image f( ) ofa vertex c; is the vertex c,, where k is such a number

thatfz(a ) = a,. Now the edge aka, exists in G, if and only if the edge bkc, exists in G.

Therefore the edge fl(ak)fz(a,) exists in G’ if and only if the edge f(b,) f(c,) exists
in G'. We see that f induces an isomorphism of G onto G'.

In the following the vertex set {b,, ..., b,} in the graph G will be denoted by B,
the set {c;, ..., ¢,} by C.

Now let us have a digraph G and the corresponding graph G. If 7 is a one-to-
one mapping of B onto C in G, then G(n) will be the digraph obtained from G by
identifying all pairs b;, n(bi) fori = 1, ..., n. There are n! possible mappings =, there-
fore also n! digraphs G(r); these digraphs are evidently exactly all digraphs isotopic
to G. They need not be pairwise non-isomorphic. Two graphs G(m,), G(r,) are
isomorphic if and only if there exists an automorphism » of G such that (b)) = b;
if and only if r 71,(b;) = m,(b;) for any i and j. This can be expressed in the form

ry(by) = n, r(b))
fori =1, ..., n, thus we may write the equality of mappings

rTy = WLF,
which implies
T, = ro,r !

Therefore the number of digraphs G(n,) which are isomorphic to G(r,) is equal to
the number of mappings 7, which are conjugated with 7, by automorphisms of G.
For two automorphisms 7, s of G we have

rogrt = smysTh
if and only if s™'r (which is also an automorphism of G) is commutative with 7,
i.e. when s™'r(b;) = b; implies s™'r m,(b;) = m,(b;). Such an automorphism s~ 'r
is an automorphism of G(r,). We have proved
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Theorem 2. The number of digraphs G(r) isomorphic to the digraph G(m;)
for a given iy is equal to the index of the automorphism group of G(m,) in the
automorphism group of G.

& Ca G

bf ba b.!
Fig. la.

Automorphism groups of different G(r) (and thus of two isotopic non-isomorphic
digraphs) need not be isomorphic and even need not have equal orders. In Fig. la
we see a graph G corresponding to the digraphs in Figs. 1b and 1c. There exist six
graphs G(r) for G in Fig. 1a, four of them being isomorphic to the digraph in Fig. 1b,
two being isomorphic to the digraph in Fig. 1c (whose automorphism group is of the
order 2, while the automorphism group of the digraph in Fig. 1b is of the order 1).

e D)

Fig. 1b.

Fig. 1c.

Now we shall investigate digraphs G with the property that any digraph isotopic
to G is isomorphic to G. At first we shall prove a lemma. By a bipartite graph H(X, Y)
we mean a graph whose vertex set is X U Y, where X n'Y = @ and any edge joins
a vertex of X with a vertex of Y.

Lemma. Let H(X, Y) be a bipartite graph, let ]X, = |Y! = n. Let k be the maximal
number of edges in a matching of H(X,Y) and let there exist n pairwise disjoint
matchings with k elements each. Then either k vertices of X are joined with all
vertices of Y, or k vertices of Y are joined with all vertices of X.
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Proof. Let H'(X, Y) be the subgraph of H(X, Y) consisting of all vertices of
H(X, Y), and of the edges belonging to the above mentioned matchings. The graph
H'(X,Y) contains kn edges. Its edge chromatic number is n; if it were less than n,
then there would ex’st at least one colour by which more than k edges would be
coloured and the set of edges coloured by this colour would form a matching with
more than k edges. According to [ 1] the edge chromatic number of a bipartite graph
is equal to the maximal degree of a vertex in this graph. Therefore at least one
vertex u, of the degree n exists in H'(X, Y). At first assume that u, is in X. Then it is
joined with all vertices of Y. Let H{(X, Y) be the subgraph of H'(X, Y) obtained by
deleting u,; we put X; = X = {u,}. The edges incident with u, in H'(X,Y) belong
pairwise to different matchings. Therefore in Hj(X, Y) there exist n pairwise disjoint
matchings with k — 1 elements each and no matching with more than k — 1 elements.
The edge chromatic number of H{(X, Y) is again n, therefore there exists a vertex u,
of Hi(X,, Y) of the degree n. As |X,| = n — 1, any vertex of Y has the degree at most
n — 1 and u, € X. By Hj(X,,Y) we denote the graph obtained from Hj(X,,Y) by
deleting u, and proceed analogously as above with Hy(X, Y). After a finite number
of steps we obtain vertices uy, ..., u, which are all in X and each of which is joined
with all vertices of Y. If u, € Y, we shall find the vertices u,, ..., u, of Y, each of which
is joined with all vertices of X.

Theorem 3. For a digraph G the following two properties are equivalent:

(1) From an arbitrary vertex of G either edges go into all vertices of G (including
this vertex itself), or no edge goes out at all.

(2) All graphs isotopic to G are isomorphic to G.

Proof. The proof of (1) = (2) is easy. We shall prove (2) = (1). Let a maximal
matching of G consist of the edges byc;fori =1,..,k,k < n (without any loss of
generality). Then in G there are k loops. As all graphs isotopic to G are isomorphic
to G, any graph G(n) must have also k loops, i.e. for any one-to-one mapping =
of B onto C there exists a matching consisting of edges b;, n(b;), ..., bj, n(b;)
where jy, ..., j, are some k numbers from the set {1, ..., n}. Consider the mappings ;
fori =0,1,...,n — Isuchthatny(b;) = ¢, ;, where the sum i + j is taken modulo n.
In each of the graphs G(x;) there exist k loops, i.e. for each n; we have a matching M;
with k edges, each of which joins a vertex of B with its image in #;. Any two matchings
M;,, M, for i, = i, are disjoint, because ;(b;) + mn;,(b;) for any j. Therefore the
assumption of Lemma is satisfied and we have either k vertices of B joined with all
vertices of C, or k vertices of C joined with all vertices of B. Without any loss of
generality assume that the vertices by, ..., b, are joined with all vertices of C. Now
let some b, for k + 1 < i < n be joined with a vertex c¢; of C. Choose arbitrary k
vertices ¢;,, ..., ¢; of ¢ which are all different from c;. Then the edges b,c;, ...,
... byey,, bic; form a matching of G with k + 1 vertices, which is a contradiction.
Thus no edge goes out from b;fork + 1 £ i < n.
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In the following two theorems we shall use the concepts of (+ —)-connectivity
and of (— +)-connectivity. These concepts together with some others related to them
(which will be also used here) are defined in [4].

Theorem 4. Let | = {fy, f,) be an isotopy of a digraph G onto G'. If two vertices
x,y of G are (+ —)-connected, then also the vertices f(x), f,(y) are (+ —)-con-
nected in G'.

Proof. Let P be a (+ —)-path from x to y, i.e. P = [uy, 1, v4, Iy, uy, €5, 05,
Byy thgy ooy Ug_ 1y €x—15 Vk—1, My, ], Where uy = x, u, = y, ¢; = ;,;: h; = ;4::7,
fori = 1, ..., k — 1. Then there exists a (+ —)-path P’ in G’ such that P’ = [f,(u,),
enfz(‘h) hx,fl(”z) ezvfz(vz) hz,f1(u3) fx Up— 1) 1> fz(Uk 1) hy - - fl(uk)]

where fl(:x) = f1(x), fi(ue) = f1(»), €i = f1(w)) fo(v), b = fl(“-'ﬂ)fz(vi) for i =
Y

Theorem 5. Let | = {fy, fo) be an isotopy of a digraph G onto G'. If two vertices
x,y of G are (— +)-connected, then also the vertices f,(x), fo(y) are (— +)con-
nected in G'.

Proofis dual to the proof of Theorem 4.

Theorem 6. Let G be an alternatingly connected digraph. Then all digraphs
isotopic to G are alternatingly connected.

This is an immediate consequence of Theorems 4 and 5.

An analogous assertion holds neither for connectivity nor for strong connectivity.
For example, let G be a cycle with six vertices, i.e. a strongly connected digraph.
Let its vertices be u, ..., us and edges mj fori=1,...,6. (The sum i + 1 is
taken modulo 6.) Let G’ be the digraph consisting of two connected components
which are cycles with three vertices. Let their vertices be vy, v,, v; and w,, w,, w;
while their edges are vlv:, 1)_2;]:, v:v—,), and W:, w_z‘;:, ;v3—w: respectively. The graph G’
is not connected. But the graphs G and G’ are isotopic. Let us define f, and f, so that
fi(u) = v, for i =1,2,3 and f,(u;) = w;_5 for i = 4,5,6, further f,(u;) = wy,
fa(uz) = va, fo(u3) = v3, fo(us) = vi, fous) = wy, f2(4s) = ws. The pair of map-
pings f = {fy, f,) is an isotopy of G onto G'.

An isotopy of a digraph G onto itself is called an autotopy of G. The autotopies of G
form a group with respect to the operations of product and inverse defined above.
This group is evidently isomorphic to that of all automorphisms of G. Its unit element
is e = {e, e, where e is the identical mapping of V onto itself.

Theorem 7. Let H be an arbitrary finite Abelian gfoup. Then there exists a di-
graph G whose group of autotopies is isomorphic to H.

Proof. Let 4 be a finite cyclic group of the order k. Now G, will be the dlgraph

constructed as follows. Take 6k vertices uy, ..., us, vy, ..., 03, and put the edges uv;
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and u,-ﬂt_z:- fori = 1,..., 3k (the sum i + 1 is taken modulo 3k). We have obtained

an alternating circuit (see [3]) Now adjoin the vertices x;, X}, y;, ¥}, ¥, ¥

"

7 forj =

"

= 1,..., k and the edges u;;,x;, Xx;, 3542V Viyj» Y3V Y7y} We have obtained

J
m

a bipartite digraph, whose set of sources is {uy, ..., Usgy X1s ooes Xp» V1o ceos Vo V1 -
.. ¥i'} and whose set of sinks is {vy, ..., Usgy X1y oevs Xps V1o eoos Vio Vio -0 Vie}- We
see that the set of sources and the set of sinks have the same cardinality 6k. Let a
be an automorphism of G, such that a(u;) = u;,s, a(v;) = vi43, a(x;) = xj44,
a(x}) = Xj+1, a()’j) =Jj+1v a(y}) = Yit+1 a(y'}) = Vit 1 a(y;f') = yj4y for i=
=1,...3k j=1,...k (the sum i + 3 is taken modulo 3k, the sum j + 1 is taken
modulo k). The cyclic group generated by a has the order k. When we take into
account that any automorphism of G, must map the alternating circuit onto itself,
x; onto some X, etc., we see that besides the powers of a there exist no automorphisms
of G 4. Thus the group of automorphisms of G is isomorphic to A. Now let H be an
arbitrary finite Abelian group. It can be expressed as a direct product of primary
cyclic groups. To each of these groups we construct the corresponding graph. The
graph G whose connected components are these graphs has the group of auto-
morphisms isomorphic to H. Any vertex of G is either a source or a sink. The number
of sources is equal to the number of sinks. Now we shall choose a one-to-one cor-
respondence between sources and sinks of G and identify the corresponding vertices.
The resulting digraph will be denoted by G. (The correspondence can evidently be
chosen so that G is connected.) For G the corresponding bipartite digraph is G and
the group of autotopies of G is isomorphic to H.

As we have mentioned, the group of autotopies of G is isomorphic to the group of
automorphisms of G. To any automorphism f of G (which is also an autotopy) such
an automorphism f of G corresponds that f(b;) = b; is equivalent with f(c;) = ¢;
for 1 £i<n, 1=<j<n Let us denote by ¢ the mapping of the vertex set of G
onto itself such that o(b;) = ¢;, ¢(c;) = b; for i = 1, ..., n. Thus if f(b;) = b;, then

f‘P(bi) =f(ci) =c¢; = o(b) = o f(by),
fole) =7(b:) = b; = olc;) = o f(c) -
We see that f and ¢ are commutative to each other. And also if fo = ¢f we have

f(b;) = b; equivalent to f(c;) = c; and the automorphism f of G corresponds to an
automorphism f of G. We shall express this as

Il

Theorem 8. Let S; be the group of all permutations of the vertex set of G which
map A onto itself, let Ag be the group of automorphisms of G (considered only as
mappings of the vertex set of G onto itself), let Ag be the group of automorphisms
of G corresponding to automorphisms of G, let ¢ be the mapping of the vertex set
of G onto itself such that ¢(b;) = c;, ¢(c;) = b;. Then Ag is the intersection of the
subgroup of Sg consisting of all elements commutative with ¢ with the subgroup Ag.

Remark. The group Sg is isomorphic to the direct product of two groups which
are both isomorphic to the symmetric group S,
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Now we shall consider the digraphs G with the property that any autotopy of that
graph is an automorphism. This means that any automorphism of G is commutative
with ¢@. We shall give an example of such digraphs. In [2] A. Kotzig defines the con-
cept of centrally symmetric (undirected) graph. It is a graph with the property that
to any of its vertices x a unique vertex X exists so that the distance of the vertices x
and X is equal to the diameter of the graph. All automorphisms of a graph preserve
distance, thus if f is an automorphism of a centrally symmetric graph and f(x) =y
for two vertices x, y, then f(?) = j. Thus f is commutative with the mapping which
maps each x onto X. The vertices x and X are called opposite to each other. We have
proved

Theorem 9. Let G, be a bipartite centrally symmetric graph with 2n vertices,
whose domination number is n and whose diameter is odd. If we direct its edges so
that one of its dominating sets is the set of sources and the other is the set of sinks
and then identify any pair of opposite vertices, we obtain a digraph G, each of
whose autotopies is an automorphism.

Remark. We must assume that the diameter of G, is odd, because two opposite
vertices must lie in different dominating sets of G,.

Us

Fig. 2.

An example of such a digraph is a complete digraph K_; without loops. In the
graph G the pairs [b;, ¢;] for i = 1,..., n are the unique pairs of vertices with the
distance 3, other pairs have distances 1 or 0. Other examples of bipartite centrally
symmetric graphs which satisfy the assumption of Theorem 9 are Cartesian products
of cycles of even lengths C; x C, x ... x C, such that the half of the sum of their
lengths is odd (this number is the diameter of such a graph).
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There exist also digraphs which have no automorphisms besides the identical one,
but have non-identical isotopies. An example is in Fig. 2. There exists an autotopy
f = {f1,f2) such that f, is the identical mapping of the vertex set of G onto itself
and f5(u;) = uy, fo(uy) = “ufz(“s) = Us.
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