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ON IDEALS OF A SEMILATTICE

MaRri10 PETRICH, Pennsylvania

(Received May 4, 1970)

A semilattice S can be defined as a commutative idempotent semigroup or as a par-
tially ordered set in which any two elements have a g.Lb. (in the latter case S is also
called a lower semilattice, dually one defines an upper semilattice). If S is a semilattice
in the former sense, denoting its multiplication by juxtaposition, the relation on S
defined by a < b <> ab = a defines a partial ordering in which ab is the g.1l.b. of a
and b and makes S a semilattice in the latter sense. Conversely, if S is a semilattice
in tke latter sense (i.e., a lower semilattice), definirg the product of any elements a
and b in S to be their g.l.b., we obtain a semilattice in the former sense. It will be
clear from the context whether S is regarded as a semigroup or as a poset.

We first consider S as a semigroup giving a characterization of semilattices among
all semigroups in terms of bitranslations, and then prove that every bitranslation of
a semilattice S is induced by retraction onto an ideal. We then consider S both as
a semigroup and a poset in discussing various (lower) subsemilattices of the lattice .
of all ideals of S such as: the idealizer of the subsemilattice of principal ideals, the
normal (MacNeille) completion of S, injective hull in the category of semilattices,
and present some examples for illustration. For material concerning semigroups
consult [6] and for posets [3].

An ideal I of a semigroup S is a nonempty subset of S for which sa, as €I for all
ael,seS. Ahomorphism 7 of S onto its ideal I which leaves I elementwise fixed is
a retraction and I is a retract of S. Note that the usual definition of retract does not
include the requirement that it be an ideal. A function A (resp. ¢) of S into itself written
on the left (resp. right) is a left (resp. right) translation of S if A(xy) = (Ax)y (resp.
(xy) @ = x(yo)) for all x, y e S; the pair (4, ¢) is a bitranslation if x(1y) = (xo)y
for all x, y € S. Defining multiplication for left (resp. right) translations by (14') x =
= AA'x) (resp. x(0¢') = (xg) ¢') for all x €S, the set of all bitranslations of S is
a semigroup under multiplication (4, ¢) (', ¢") = (44, g¢’), called the translational
hull of S and denoted by ©(S). A semigroup S is weakly reductive if ax = bx,
xa = xb for all x € S implies a = b.
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Proposition 1. For a retraction n of a semigroup S, let is = so = sn for all
s € S; then (4, 0) € Q(S). If Sn is weakly reductive, then n is the only retraction of S
onto Sn.

Proof. The hypothesis on #n implies that Sy is an ideal of S and that »? = 5. For
any x, y € S, we then have (xn)y, x(yn) € Sy and thus

(xn)y = [(xn) yIn = (en®) (yn) = (xy) n = (xn) (yn®) = [x(yn)]n = x(yn)

which implies (4, ¢) € Q(S). If ¢ is another retraction of S with S& = Sy, then for
any s € S and x € Sy, we obtain

x(s€) = (xs) & = (xs)n = x(sn), (s&)x = (sx) & = (sx)n = (sn) x

and hence s& = sy.

We say that the bitranslation (4, ¢) in Proposition 1 is induced by 5. For any ele-
ment s of a semigroup S, the left (resp. right) translation induced by s is given by
Ax = sx (resp. xg, = xs) for all x € S; n, = (4, 0,) is the bitranslation induced by s.

Proposition 2. A semigroup S is a semilattice if and only if every bitranslation
of S is induced by some retraction.

Proof. Let S be a semilattice and let (4, ¢) € Q(S). Then for any x, y € S we obtain

x(ye) = (xy) @ = y(xe) (xo) = (yx) e(xe) = x(ye) (xe) = (x¢) (ye) € Se .
(xe) e = [(xx) e] e = [x(xe)] ¢ = (xe) (x) = xe,
Ax = Axx) = (Ax) x = x(Ax) = (x¢) x = x(x0) = (xx) ¢ = x¢,

which proves that g is a retraction inducing (4, ).

Conversely, let S be a semigroup all of whose bitranslations are induced by retrac-
tions. Then for every s € S, ny is induced by a retraction, which implies that sx =
= Ax = xg, = xs for all x € S and thus S is commutative. Since every retraction is
idempotent, we have g2 = o, which implies that

= x0p = xs*

(1 XS = X0, = XQ

for all x € S. Define the function g by: xo = x? for all x € S. Letting t5 be the identity
function on S and using commutativity and (1), we obtain

(xy)e = (xy)* = x*y* = xy* = x(ve), (x0)y = xy = xy = x(15)),

which shows that (i5, ¢) € Q(S). The hypothesis then implies x = tgx = xg = x*

and S is indeed a semilattice.

We now restrict our attention to semilattices and fix a semilattice S. Note that in
view of the above discussion, we can speak of a translation g instead of a bitranslation
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(4, @), multiplication of translations is their composition. As is customary in posets,
we now include the empty set @ as an ideal of S; observe that in terms of order, an
ideal I of S is a subset of S satisfying: xeI, ye S, y < x implies y € I; the principal
ideal generated by s € Sis given by (s) = {x e S | x < s}. We further fix the following
notation: .# is the complete lattice of all ideals of S, 2 is the lower subsemilattice of .#
consisting of all principal ideals of S, £ is the poset of all retracts of S, where the or-
dering is always the set theoretic inclusion. The following are consequences of
Proposition 2.

Corollary 1 (Szasz [12]). A function ¢ on S is a translation if and only if ¢ is
a retraction.

Corollary 2 (cf. Szasz [13], Kolibiar [10]). The function ¢ — Sg is an isomorphism
of ©(S) onto .

Proof. Let ¢ and ¢’ be translations of S and x € S. Then
xeo' = [x(x)] ¢ = [(xe)x] ¢ = (xe) (xe') = (x¢') (x) = [(x¢') x] ¢ € Se

so that Sgo’ < So n Sp’; conversely, if x = yo = zg’, then

x = (ve) (z¢) = [(ve)z] ¢’ = [z(ve)] ¢’ = (zy) 00’ € Se¢’

and thus Sg n So’ < Spo’. Consequently Sgo” = Sg n S¢’. That S¢ = S¢’ implies
¢ = ¢’ follows from the last part of Proposition 1.
This proof shows that Z is a lower subsemilattice of .#.

Corollary 3 (Szasz-Szendrei [14]). Q(S) is a semilattice.

The next result shows that a retract can be regarded as a generalization of a prin-
cipal ideal. Kolibiar [10] proved it for the upper semilattice of a lattice but his proof
is valid in any semilattice. The proof below is shorter.

Proposition 3. An ideal I of a semilattice S is a retract if and only if for every
s€ S, the ideal I n (s) is principal.

Proof. Let  be a retraction of S onto I and let se S. If xeI n(s), then x el
and x < x,s0 x = xn = (xs)n = (xn) (sn) = x(sn) nad thus x < (sn). Consequently
In(s) = (sn). Conversely, if x < sy, then x = x(sn) = (xs)n = s(xn) so that
x < s; furthermore

xn = (sn) (xn*) = (sn) (xn) = (sx) n = s(xn) = x
and x e I. Thus (sn) = I N (s), which proves I n (s) = (sn).
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Conversely, suppose that for every s € S there exists § € S such that I n (s) = (5).
Since 5 is then the unique maximal element of the set {x el [ x < s}, the theorem and
Proposition 2 of [ 11] imply that I is a retraction of S. However, one can show directly
that the mapping s — § is the desired retraction.

If A is a subsemigroup of a semigroup B, then the idealizer of A in B is the largest
subsemigroup of B containing A4 as an ideal and is given by {be B | ba, ab € A for
allae A}. If I is an ideal of B, then B is an (ideal) extension of I; B is a dense exten-
sion of I if the equality relation on B is the only congruence on B whose restriction
to I is the equality relation on I; I is a densely embedded ideal of B if B is under
inclusion a maximal dense extension of I. A subsemigroup A4 of B is densely embedded
in B if A is a densely embedded ideal of its idealizer in B. For an extensive study of
these concepts consult [7].

Corollary 1. Z is the idealizer of # in # and & is a densely embedded sub-
semigroup of £.

Proof. The first statement follows from Proposition 3. For the second, we note
that the function in Corollary 2 to Proposition 2 has the property: g, — (s) for all
s € S, which by ([8], 1.3.5, see also [9], 3.12) implies that £ is a densely embedded
ideal of 2.

A poset P is a meet (resp. join) dense extension of its partially ordered subset Q
if every element of P is the meet (join) of some subset of Q.

Corollary 2. Let V be a semilattice and an ideal extension of S. Then V is a dense
extension (qua semigroup) if and only if V is a join dense extension (qua poset).

Proof. This follows from ([8], 1.5) and Corollary 1.

An ideal I of a semilattice S is normal if I = ) (a) for some subset 4 of S (if
acA

A=0,thenl = S). The set A" of all normal ideals of S is a complete lattice under
inclusion called the normal (or MacNeille, or Dedekind-MacNeille) completion of S.
Note that 4" is a lower subsemilattice of .# and contains £. A complete lattice L
containing S is a normal completion of S if there exists a lattice isomorphism of L
onto .4 which restricted to S coincides with the mapping s — (s). In particular, A" is
a normal completion of #. Let 2 denote the set of all ideals which are arbitrary
intersections of retracts of S; then & is a lower subsemilattice of .#.

Proposition 4. 9 is a normal completion of A.

Proof. Since 2 is closed under taking intersections and S € % implies S € 2, 9 is
a complete lattice. By its very definition, 2 is a meet dense extension of £, and since
it is also a join dense extension of £, it is also a join dense extension of £. It now
follows from ([ 1], Kor 3, p. 123) that & is a normal completion of Z.
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If a subset M of S has a join denote it by VM. Bruns and Lakser [5] call a subset M
of S admissible if (i) VM exists, (ii) for any s € S, V{sm | m € M} exists and s(VM) =
= V{sm | me M}. They call an ideal I of S a D-ideal if with every admissible subset I
also contains its join. They prove that the lower subsemilattice I, of .#, consisting
of all D-ideals of S, is an injective hull of S in the category of semilattices and their
homomorphisms, and that I, is a complete lattice.

Proposition 5. /" = @ = I, B N = 2 U {S}.

Proof. Since normal ideals are arbitrary intersections of principal ideals and the
latter are retracts, we have &/ = 2. Let e Z and M be an admissible subset
of I, m = VM. By Proposition 3, there exists n € S such that I n (m) = (n). For
every x € M, we obtain x €I n (m) = (n) so that x < n and n is an upper bound
for M. But then n < m implies that m = n el. Consequently I € I, and so #Z < I,
Since I, is a complete lattice, it must contain arbitrary intersections of elements of %
which shows that 9 < I,

If I € # and I has an upper bound m, then I = I n (m) = (n) for some ne S so
that I € 2. If I € A and I has no upper bound, then I = S. Consequently Z n A" =
< 2 u {S}, the converse inclusion is obvious.

Using the terminology and certain results in [1], [4], and [5], we can illustrate
a portion of the discussion above by the following diagram.

ideals
g — maximal join dense extension of 2
D-ideals
lp — injective hull of 2
intersections of retracts
2 — normal completion of #
RuN

retracts / \ normal ideals
— idealizer of Z in # & — normal completion of 2

Ve
N
2ufs}

P principal ideals

With the usual identification of S and 2, we can write S instead of 2 in the diagram.
The following examples show that each inclusion in the diagram is in general strict.
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Example 1. Let Z be the set of integers and S be the semilattice as in the diagram:

\w/ 2 = {@)]i=0.1,2}u{(n)|nez} v (),

o N =20 {S 0},

0\1 R =20{(a)gu(n)|n>0}u{au(w)|i=012}u{s}
0 In=9=2R0 4,

K S =1,0{Z,Zvu{a}},

and hence we get the following strict inclusion diagram:

Example 2. Let A={1>2>3>_.}, B={I'>2>3>.} S=
= AuBu{a,b,c, z} with the diagram:

VN

where, e.g., b is the meet of any element in 4 and any element in B, etc. Then I =
= {a, b, ¢, z} has the property [€ 2,1 ¢ # U .
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Example 3. Adding a greatest element to S in Example 2, we get [ eIy, [ ¢ 2.

If S is a chain, it is easy to verify that I;, = 4" and hence the normal completion
of S is its injective hull in the category of semilattices. Berthiaume [2] has proved
that the same holds in the category of S-systems. It is not known what the injective
hull of an arbitrary semilattice S in the latter category looks like.
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