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ON SUBMULTIPLICATIVE NONNEGATIVE FUNCTIONALS
ON LINEAR MAPS OF LINEAR FINITEDIMENSIONAL NORMED SPACES

JArROSLAV KURZWEIL, Praha

(Received May 14, 1971)

It is shown that a certain inequality involving submultiplicative functionals and
norms of linear maps cannot be strengthened by diminishing a certain constant.

0. For m =1, 2,3, ... define
(0,1) g(m) = sup {det (a; ;) | ot; ;€ R, | j| S 1, i,j = 1,2,...,m}.

Throughout this paper (Y, ¢), (Y;, ¢;), i = 1,2,3,... will denote a linear finite-
dimensional normed space (i.e. Y is a linear space and ¢(y) is the norm of y €Y).
Let A:Y, —» Y, be linear and assume that 0 < dim ¥; = dim Y. In [1], section 1
there was introduced a map Dt, which assigned to any such triple (Y, ¢,), (Y2, ¢,), 4)
a nonnegative real. (See Note 0,1.) This real was in [1] denoted — for sake of brevi-
ty — by DtA, in this paper it will be denoted by D#(¢,, ¢,, A). It was shown in [1]
that the map Dt has the following properties:

(0,2) Let ¢,(Ay) = @,(y) for y € Y;. Then Dt(¢,, ¢,, 4) = 1.

(0,3) Let dimY, =dimY, =dimY;, let A:Y, - Y,, B:Y, - Y, be linear. Then
DH(¢y, @3, Bo A) = D¢, @3, A) . D(¢3, ¢3, B).

(0,4) Let ¥, =V, o ... oV, be linear subspaces of Y;,

dimV,=m—j+1, »;eR", j=12,...m
and assume that ¢,(Ay) < %, ¢,(y) for y e V;. Then
Dt(¢y, @i, A) < g(m) ey . %5 ... %y, -
(If A|y, is the restriction of A to V; and
l4lv,| = sup {ox(4y) [y eV}, 0:(y) < 1},
then the last inequality may bz rewritten as

DH(g1, @2, 4) = g(m) Al - [4lv.]l - [Alv..] )

454



(0,5) Let (Y, @), (Y2, @,) be Euclidean spaces (i.e. let there exist bilinear forms ;
on Y; such that ¢?(y) = y(y, y) for ye Y, i = 1, 2). Then

Di(@y, @;, A) = |det A|

(det 4 = det (Y,(4e;, f;)), e, i = 1,2, ..., m being an orthonormal basis in Y,
and f;, j = 1,2, ..., m being an orthonormal basis in Y;).

Write Dt,(¢,, @5, A) instead of Dt(¢,, ¢,, A) to emphasize that dimY, = m =
= dimY, so that the map D1, is the restriction of Dt to such triples ((Y;, ¢,),
(Y2, @5), A) that dim Y; = m = dim Y,. In [1] the map Dt was used to derive some
properties of systems of operator equations, which in [2] were applied to linear
functional differential equations. By the same method as in [1] stronger results on
systems of operator equations would be obtained, if — for some m — the map Dt,,
could be replaced by a map 9 satisfying (1,1), (1,2), (1,3) with i < g(m). The aim of
this paper is to show that no such map 9 exists (cf. Theorem 1,1).

Note 0,1. Let there be recalled the definition of Dt. Let dimY;, = m = dimY,
and let ¥, i = 1, 2 be the space of m-linear skew symmetric forms (exterior m-forms)
on Y;. Introduce the norm ¢; on ¥; by

¢in) = sup {n(ye, .. vw) | ¥, €Ye @ly)) S 1, j=1,2,...,m}.

Define 4 : ¥, » ¥, by (dn) (v, - ¥u) = 1(Ayy, .., Ay,,) and Dt by Dt(@,, ¢,, A) =

= sup {(An) [ n e ¥, ¢a(n) = 1.
As Y; is a one-dimensional linear space, it may be seen that

(0»6) Dt((pls P, A) = ¢1(/i’7) , if ne ?2 s @2(’1) =1.

Note 0,2. A map ¢, which has analogous properties as Dt, may be introduced
as follows: Let dimY, = m = dim Y,. By F. JonN, [4] there exists to (Y, @),
i = 1,2 a positive definite quadratic form ; on Y; such that the ellipsoid U; =

= {yeY;|§(y) < 1} contains the unit ball K; = {y e Y;| ¢, (y) < 1} and has the
least possible volume; moreover, F. John proved in [4] that

(0,7) Fiy) < 0i(y) £ m"?y(y) for yeY,.
¥ is unique (cf. Note 1,3). Let ; be the corresponding bilinear form. Let e;, j =
= 1,2, ..., m be an orthonormal basis in Y; and let f;, j = 1,2, ..., m be an ortho-

normal basis in Y,. Define {(¢;, ¢,, A) = |det (/5(4e;, f;))|. Obviously {(¢y, ¢,, 4)
is independent of the choice of bases {e;}, {f;} and it may be verified that (0,2)—(0,5)
are fulfilled, if Dt is replaced by { and g(m) in (0,4) is replaced by m™/>.

By the Hadamard inequality g(m) < m™2. Relations between the maps Dt and {
are discussed in Notes 1,6 and 1,7.

1. Definition 1,1. For m = 1,2,3,... and h > 0 let @(m, h) be the set of such
maps 9, which assign to any triple (Y, @y), (Y2, ¢,), 4), dimY; = m = dimY,,

455



A :Y, - Y, being linear, a nonnegative real. This real will be denoted — for sake of
brevity — by 3(¢1, ¢,, A). Moreover, it is assumed that any 9 € @(m, h) fulfils the
following conditions:

(11) Let Y, =Y, ¢, = @5, Iy = y for y e Y. Then 3(¢y, 95, 1) = 1.
(1,2) Let A: Y, > Y,, B:Y, - Y; be linear. Then
9(@1’ ?3, Bo A) é 9((P1, ?2s A) . 9((/72, @3, B) .

1,3) Let V, oV, >...oV, be linear subspaces of Y;, dimV,=m —j + 1,
1 J
j=1,2,...,m. Then

@1 02, 4) < hlAly,| - [4l.] - - |4y,
(l4]y,| being defined in (0,4)). If dim Y = m, let @(m, h, (Y, ¢)) be the set of such
maps o that assign to any linear map A : Y — Y a nonnegative real a(A) so that
(1,1), (1,2) and (1,3) are fulfilled for Y, =Y, =Y, ¢, = ¢, = ¢, 3¢, ¢, A) = o(A).
Theorem 1,1. If h < g(m), then ©(m, h) = 0.
For x = (x4, ..., X,,) € R™ put ¢(x) = Y |x;|; for 9 € O(m, h) denote by n(9) the
=1

J
restriction of 9 to the set of triples ((R™, @), (R™, @), A) with 4 : R™ — R™ linear.
Obviously n(9) € ©(m, h, (R™, $)) for every 9 e O(m, h). Therefore Theorem 1,1
is a consequence of

Theorem 1,2. If h < g(m), then ©(m, h, (R™, @)) = 0.

Theorem 1,2 follows directly from Theorems 1,3 and 1,4.

Theorem 1,3. If € @(m, h, (Y, ¢)), then o(A) = |det A| for any linear map
A:Y-Y.

Theorem 1,4. Let m be a positive integer, §(x) = Y |x;| for x = (x4, ..., x,,) € R™
=1

A If A:R™ — R™ is linear and V is a linear subspace of R™, define HAM‘ =
= sup {@(4x) | x e ¥, @(x) < 1}. Let h e R" be such that

(1.4) |det 4] = b [[Aly. ] - [4lv.] - |4l

for any linear map A : R™ — R™ and for any chainV, oV, o ... oV, of linear
subspaces of R™, dimV; =m —j + 1,j=1,2,...,m. Then

(13) h 2 g(m).

Proof of Theorem 1,3: Assume that there exists such a linear map 4:Y > Y
that o(A4) < |det A|. A is nonsingular and o(4) = o|det 4|, 0 <a <1 (a(4) >0
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for A nonsingular by (1,1) and (1,2)). Find a positive integer k such that «* <
< h™'.27™72 By (1,1) and (1,2) again,

(1,6) o(A*) < h™'. 27" 2|det 44| .

If A~ % is represented by a matrix in Jordan canonical form, it is seen readily that there
exists such a linear map B : Y — Y that

(17) |45~ <2,
(1,8) |det 4B~ > 1,

(1,9) All characteristic numbers 1, j = 1,2,...,m of B are distinct and can be
ordered in such a way that |A;| = [4,| = ... 2 |4,| and if |2 = |2;4,], then
Imd; %0, 2; = A;44 (i.e. if 4; is real, then llk| > lijl for k < j and Mz‘l > I,l,‘| for
k > j; if ImA; = 0, then A; = J  for s = j — 1 or for s = j + 1 and |/1k| > |lj| for
k < min (j, s), || < |4;] for k > max (j, s)). By (1,3) and (1,7) 6(A"*B~") < h . 2",
hence by (1,2), (1,6) and (1,8) o(B™') < o(A*) o(A7*B™ ") < 272|det 44 =
= 272|det B™'| . |det BA*| < 27'|det B™'| and o(B7*) < 27¥|det B™¥| for k =
=1,2,3,... By (1,1) and (1,2)

(1,10) o(B*) > 2%|det BY|, k=1,2,3,...
Find a basis uy, ..., u,, in Y such that ¢(u;) = 1,j = 1,2, ..., m and

(1,11) Bu; = Aju;, if A;isreal,
Bu; = |4 (u;cos p; + uj,q sinp;),

Buj.y = |A;]| (—ujsin pj + uj,q cos ),
if A; = Zj+1, #; = Arg 4; (i.e. the matrix of B is “real-canonical”).

It is seen readily that
(1,12) |det BY| = [T |4;]*-
j=1

Obviously there exists a ¢ > 0 such that

m

(1,13) if xeY, o(x)<1, x=Y¢&u;, then [{|<c, j=1,2,..,m.

j=

Let V; be the space spanned by uj, u;,y, ..., U, Let yeV,, y =} Bu, o(y) < 1.
m s=j
Then B*y = ) yu, where
s=j

(1,14) Vs M5B, if A, is real ,
Vs = lj's‘k (Bs €os k#s - ﬂs+1 sin k/ls) s
Vs+1 = |)~s|k (By sin kpg + Pgiy cos kpy)
A, =Ty, k=123, ...
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(1,13) and (1,14) imply that
(1,15) sl < [Aff2¢ for s=j,j+1,...,m.
It follows from (1,15), (1,11) and (1,9) that

o(B) < Y [n] < 2¢ Y |4 < [A]* dem
s=j s=j

so that

(1,16) B, = |4;]* 4em .

By (1,3) and (1,16)

(1,17) o(BY) < h(de)™ m™ ﬁ1 e
Iz

Hence (1,10) and (1,17) cannot hold simultaneously for sufficiently large k (cf.
(1,12)) which makes the proof of Theorem 1,3 complete.

Proof of Theorem 1,4: Choose ¢ > 0 and find reals d,, d,, ..., d,, such that
0<d,<du_y<..<d;and
(1,18) dy+ ... +d;<dfl +¢) for j=mm—1,..1.
Define
K ={xeR"|¢(x) <1}, _
L ={xeR"'||xj|§m_”2,j 1,2,..,m},

M= {xeR"||x;| Sdm ™% j=1,2,..,m}.

It is easy to see that there exists such a matrix (b, ;) that b, ;€ R, |b; ;| = 1 for
i,j=1,2,...,m and det(b,;) = g(m) (cf. (0,1)). Let e; =(0,...,0,1,0,...,0)
with 1 on the j-th place, j = 1, 2, ..., m. Let B: R™ — R™ be linear, B being repre-
sented by the matrix (b; ;/m'/?) with respect to the basis {e;} and let D : R™ - R™ be
linear and let D be represented by diag (d;) (diagonal matrix). It is easy to see that

(1,19) det DoB=detD.detB=d,.d,.....d,.g(m).m™ ™2,
BK)< L, D.B(K)<=D(I)=M..
Define W, = R™, W; = {x = (xl,...,x,,,)eR'"lx1 =..=x,=0},j=23,..
coom, V;=B ' (W), ¢;=inf{leR'|120, AKoMnW}, j=12..,m
Obviously D« B(K nV;) = D(W;n B(K)) =« D(W; nL) = W; A M, |D.B|,| =
= inf{ieRll 220, (Ko D.BKnV)} <& =(d; + ... +d,)m 2. Hence
by (1,19), (1,4) and (1,18)
dy.dy....d,.g(m).m™?* =detD.B<h.[[|DoB|y,| =
m ji=1

<hT[[d; + ... + d)ym 2] S h.dy.dy.....d,(1 + &) m™?
j=1

and (1,5) holds, as ¢ > 0 is arbitrary.
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Note 1,1. Let o € O(m, h, (Y, @)) fuiﬁl
(1,20) . o(B s A) = o(B) o(A)

for any linear maps 4 : Y — Y, B:Y — Y. Then o(A4) = |det 4.

To show it observe that (1,1), (1,2) and (1,20) imply that o(I) = 1 if Iy = y for
yeY. If A:Y—Y is linear and singular, then |det A = 0 = o(4) by (1,3). If
A:Y Y is linear and nonsingular, then by Theorem 1,3 (4) = |det 4| > 0 and
o(47") 2 |det A™'| > 0. 6(A) > |det A| would imply that 1 = o(I) = o(A) 6(A"") >
> |det A| . |det 47| = 1.

Note 1,2. Let ¥, i = 1, 2 be positive definite quadratic forms on R™ §, + V,
and for 1 €<0, 1) define

U,={xeR"|1y,(x) + (1 — ) §y(x) < 1}

and assume that vol Uy = vol U,(vol U; = [, dx, ... dx,). Then vol U, < vol U,
for 1€ (0, 1).

Let us show it. In a suitable coordinate system both ¥/, and ¥, are represented
by diagonal matrices so that without loss of generality it may be assumed that

Ui(x) = Yaxi, ¥x(x) =Y Bxi, x>0, B>0, i=12...m,
i=1 i=1 ‘ ‘
(CXI, ey am) 4: (ﬁl’ ceey Bm) .

For 2€<0,1yvolU; = o [] (a; + AB; — 2;))"'/*, @ being a suitable positive
i=1

constant and

s

f[lfxi = Bi -

Put p(4) = [] (a; + A(B; — «;)). The degree r of the polynomial p is equal to the

1

1]

i=1

number of i-s such that a; & f; and p has r real roots. Hence dp/dl has r — 1 rea!
roots and there is just one root of dp/dl between the smallest positive root of p
(which is greater than 1) and the largest negative root of p and therefore p(1) > p(0)

for 1€ (0, 1).

Note 1,3. Let S = R™ be bounded. Then there exists an ellipsoid U = R™ such that
U o S and U has the least possible volume (the proof is based on the compactness
of a suitable set of ellipsoids, cf. [4]). U is unique by Note 1,2.

Note 1,4. Let K = {x = (x, ..., X,,) € R™ | ixj] Sm 'V j=12..,m} U=
= {x = (x;, ..., X,) € R"| Y. x} < 1}. Then U is the ellipsoid of the least volume
i=1

containing K.
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To show it, assume that for some symmetric positive definite matrix (y; ;) U, =
= {xeR"| Zy”x,x < 1} is the ellipsoid of the least volume containing K. If

yk,#Oforsomek I, k # I, then define B; ; =y;;if i+ k+jandif i =k =,
B:; = —7v:; otherwise. It is easy to see that U, = {x e R"| Y. B; ;x;x; < 1} con-

t,J
tains K, vol U, = vol U; and U, cannot be the ellipsoid of the least volume con-
taining K by Note 1,3. Similarly U, cannot be the ellipsoid of the least volume con-
taining K unless 7,1 = 722 = --. = Ymom

Note 1,5. Let 9 € ©(m, h) fulfil $(¢,, @3, Bo A) = (¢, ¢,, A) H¢,, @3, B) for
any linearmaps 4 :Y; = Y,, B =Y, - Y;,dimY; = m, i = 1, 2, 3. Let Y be a linear
space, dimY = m, let @4, 5 be norms on Y and let I : Y — Y be the identity map.
Then

(1,21) (@4 @5: A) = s, s, 1) |det A|, A:Y—>Y linear.
This follows by Note 1,1.

Especially let Y = R", K, = {x e R"| ¢,(x) £ 1}, ¢s5(x) = (Y x})"/%. Then
=1

(1,22) Dt(@4, @5, A) = Dt(@4, @s,I)|det A|, A:Y—>Y linear,
(1,23) Dt(4, @5, I) = sup {det (') | y@ = (¥, .., yP)eK,, i=12 .., m}.
To obtain (1,23), define n € ¥ by

MY®s o y) = det (37)
¢s(n) = sup {n(y", .., y™) [ yP€eY, (") <1, i=1,2,..,m}.

By Hadamard inequality |det (y)] < [T( X (»”)%)"2 = [T @s(»®) so that ¢5(n) =
i=1 j=1 i=1
= 1; by (0,6) D14, @5, I) = p4(n) and (1,23) holds.

Note 1,6. Let @4(x) = m™ "2 max |x;|, @s(x) = (X x})"/? for x = (x4, ..., X,,) €
€ R™ Then 1=1

(1,24) {(@4> @5, A) = |det 4|, A :R™—> R™ linear,
(1,25) Di(@,, ¢s, A) = g(m) m~™?|det 4|, A:R™— R™ linear .

(1,24) follows directly from the definition of { (see Note 0,2) and Note 1,4. (1,25)

is a consequence of (1,22) (1,23) and (0,1). For the properties of g see [3], Chapter 14
or [1], Note 1,2.

Note 1,7. Let y®@ = (y{, y9’), r = 1,2, ..., 6 be the vertices of the regular
Sixangle KG in RZ: y(l) = (05 1)’ y(Z) = (%’ %\/3)’ y(3) = (—%a %\/3)9 y(4) = —y(l)’
Y = —y@ y® = —y3) Let ¢ be such a norm on R? that g4(x) < 1iff x € K.
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Then
(1,26) U¢e> @5, A) = |det 4], A :R? > R? linear,
(1,27) Di(¢g, 95, A) = 1+ /(3) |det A|, 4:R*— R*> linear.

(1,26) follows from the definition of { and from the fact that U = {x e Rzle +
+ x3 < 1} is the two-dimensional ellipsoid of the least area containing points y*, i =
=1,2,...,6. This can be shown in an elementary way or from conditions (19a)—
—(19d) in [4]. (Conditions (192)—(19d) of [4] are satisfied for y; = y{”, 1, = 3,
A=1r=1,2,...,6,s = 6. It can be concluded in quite the same manner as in [4]
that the area of any two-dimensional ellipsoid containing the points y®, r =
=1,2,..., 6 s at least equal to =; it does not matter that 6 = s > m(m + 3) = 5.)

(1,27) is a consequence of (1,22) and (1,23).
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