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ON A GROUP OF HOLOMORPHIC TRANSFORMATIONS IN ^^ 

ALOIS SVEC, Praha 

(Received January 23, 1973) 

0. Consider the space ^^ with the complex coordinates (x, y) and let F be the layer 
of real hypersurfaces given by 

(0.1) i{y - y) + (x - xf = r, rem . 

Each hypersurface of V has a non-degenerate Levi form at each its point. The Lie 
group 

(0.2) X = OLX + ß , 7 = 2i(x{ß - ß)x + ia(a - öt) x^' + <x5iy + y; 

a,ß,ye'^; 

of the biholomorphic mappings of ^^ preserves V, the hypersurface (0.1) with the 
parameter r being transformed into the hypersurface (0.1) with the parameter 

(0.3) r' = ^_{r + i{y-y)-{ß-ßy}. 
aa 

Obviously, dim^ G == 6. We are going to prove the following 

Theorem. Let Vbe a layer of real hypersurfaces in ^^ such that each hypersurface 
oj Vhas a non-degenerate Levi form. Let G be a Lie group of biholomorphic trans
formations of ^^ which is transitive on ^^ and preserves the layer V. Then 4 ^ 
^ dim G ^ 6. In the case dim G == 6 there are, in ^^, holomorphic coordinates 
(x, y) such that G is given by (0.2) and V by (0.1). 

1. Be given a differentiable manifold M^" and an almost complex structure J 
over it; all manifolds and maps are supposed to be of class C°°. The torsion of J is 
defined as the vector 2-form [J , J ] given by 

(1.1) i [ J , J ] (u, v) = [ Л , Jv] - J[Ju, ü] - J[w, Jv] - [u, v] . 
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On М^", let us choose vector fields v^, ^n+al a = i ._ ^. 5^^^ ĵ̂ î-

(1-2) JV^ = V„ + ̂ , Jv„ + a=-V^; ^ = 1 , ..., n ; 

and write 

(1-3) Kt;,] = a y , + <;.,^^^, 

h + a, t̂ « + /̂ ] = ^j; + «,. + ̂ ^ + <tln + ßVn^y . 

For 

(1.4) W = X 4 - ^"•'4+« ' ^ - 3^4 - / ^ 4 + a , 

we obtain 

(1.5) i['^'-^](«'t;) = 

= (a„^,,„^, -- al, + a^l^ - a^:^,). 

. {(хУ » x«-^y+0 t;, + (xV^^ + х"+У) t;„̂  J + 

. {(хУ+^ + х"+У) Vy - ( x V - x"+y^^) t;„̂  J . 

The condition [/, J ] = 0 is thus equivalent to 

<r ~ ^lXl,n+ß + (^l,n+ß - ^l,n+a = 0 ; a, ß, у = 1,..., n . 

The following result is classic: Be given a manifold M^", the almost complex struc
ture J over M^" be given by means of the vector fields v^, v„+^ and (1.2); the structure / 
is complex if and only if (1.6). 

2. Consider a manifold M"^, a complex structure J over M'*, and let F be a layer of 
hypersurfaces in M"^. At each point m e M"^, let us choose vectors v^, ...,v^€ TJM"^) 
such that: (i) v^, V2, v^ are tangent to the hypersurface of Fgoing through m, (ii) Jv^ = 
= v^, Jv2 = i?4. (iii) the vector fields v^, ....v^. are of class C°°. The vector fields 
Wi,..., W4 satisfying (i)--(iii) as well, there are real-valued functions (x,ß,y,(p,o 
on M'̂  such that 

(2.1) Vi = aw I — ßw^ , V2 = yWi + (pW2 — ^W3 , 

i?3 = jSwi + awa , t;4 = ^Wj + ywj + (PW4. ; (a^ + ß^') ^ Ф 0 . 
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The complex structure J together with the layer V induce a G-structure BQ on M^,s 
the group G being the set of non-singular matrices of the type 

(2.2) a 
У 
ß 
ô 

0 

(p 
0 
0 

-ß 
-д 

ce 
У 

0 
0 
0 
(p. 

Let us write 

(2.3) [v^, V2] = a^v^ + a2V2 + a^v^, 

[vi, f j = Cit;i + C2V2 + C3Ü3 + С4Г4, 

^^2. ^3] = d^Vi + d2V2 + ^3^3 . 

[г;2,1^4] = ^lî^i + ^2^2 + з̂̂ з̂ + ^4^4.. 

[t^3. 1̂ 4] = fi^l + /2t^2 + /з^^З + /А^4 ; 

the conditions (L6) reduce to 

(2.4) /1 - ai + C3 - J3 = 0 , /2 - a2 + C4 = 0 , a^ - f^ + c^ - d^ ^ 0, 

/4 - 2̂ + ^2 = 0 . 

Analoguously, let us write 

(2.5) [wi, W2] = A^Wi + A2W2 + A^w^ , 

[W3, W4] = FiWi + F2W2 + ^3^3 + F4.W4., 

(2.6) JPI - Л1 + C3 - 1)3 = 0 , F2 - ^2 + Q = 0 , 

Л3 - F3 + Ci - Di = 0 , F4 - C2 4- 2)2 = 0 • 

From (2.32), (2.62) and (2.1), we get 

[ui, 1;з] = [awi - j5w3, jOWj + (xwi\ = (O^i + (0^3 + («^ + ß^)^2^2 = 

= (O^l + (0^3 + b2^W2, 
i.e., 

(2.7) (a^ +у^')Б2 =^(pb2^ 

It is easy to see that 62 Ф 0 because of the non-degeneracy of the Levi forms of the 
hypersurfaces of V. Thus we are in the position to choose the frames (Ü^, . . . , Г4) of 
the G-structure BQ in such a way that 

(2-8) Ъг = \; :. -, ,,:n:h 
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from Б2 = 62 = 1, we get 

(2.9) (p = a^ + ß \ 

Further, 

[t^i, v^l = [awi - j5w3, 5wi + 7W3 + cpw^] = 

= (Owi + {')w3 + (•)^4 + (ay + ßö + ot(pC2 - ß(pF2) W2 = 

= (•)Wi + (-jWa + (•)W4 + C2Ç>W2 

[1̂ 3» ^4] = [ß^i + aw3, 5wi + 7W3 + ^ w j = 

= (•)wi + (•)w3 + (•)w4 + (jSy - a5 + ß(pC2 Л- acpF^ W2 = 

= (Ovvi + ( 0 ^ 3 + ( 0 ^ 4 + fi4>^2 . 
i.e., 

(2.10) ay Л- ßa Л- 0L(pC2 - ß(pF2 = (pC2 , 

ßy — do + ß(pC2 + СС(рр2 = (pf2 • 

The frames of BQ may be chosen in such a way that (2.8) and 

(2.11) С 2 = Л = 0 , 

and we get 

(2.12) у = <5 = 0 . 

Further, 
[t̂ 2» 1̂ 4] = [ ф ^ 2 , cpw^] = 

= (pW2(jf) . W4 — <pW4(p . W2 + q)^{EiWx + £ 2 ^ 2 + Е^У^з + £4>^4) = 

= ei(awi — у̂Уз) + е2ф>У2 + e3{ßwi + ашз) + e4^çw4., 

i.e., 

(2.13) (p^£i = a^i + 8̂̂ 3 , (p^E^ = -jSei + а^з 

and 

(2.14) 9\E^Wi + ЕзН^з) = e^v^^ + e^v^ . 

The direction of the vector e^v^ 4- ^з^з is thus invariant. Suppose that e^Vi 4-
+ ^3^3 Ф 0. The frames {v^,..., v^) e BQ may be chosen in such a way that 

(2.15) ^1 = 1 , ^ 3 = 0 . 

This means 

(2.16) a = l , iS = 0 , ф = 1 , 

and the induced structure BQ is reduced to the {e}-structure B^ey Denote by G{V) the 
group of biholomorphic transformations of ^^ preserving V. Obviously, G{V) 
preserves the induced G-structure BQ and the reduced structure B^^y I^ ^^^ ^^se 
dim G{V) S 4. 
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If dim G(y) > 4, we should have 

(2.17) e, = ^3 = 0 , 

i.e., 

(2.18) [üi , V2'] = a^v^ + a2V2 + a^v^, 

[ül , 174] = Cil^i + C3P3 + a2Î^4 » 

[ü2, 1̂ 3] = diVi + ^2^2 + d^V^ , 

[^2, i;^] = 621̂ 2 + ^4^4 . 

[^3, ^̂ 4] = fl^l + /3^3 - ^2^4 . 

(2.19) / 1 - a i + C3 - ^3 = 0 , аз - / 3 + Ci - c/i = 0 ; 

the admissible transformations of the frames are given by 

(2.20) üi = awi - ßw^ , V2 = (pW2 , 

^3 = j5wi + a w 3 , V4. = <̂ W4 ; (p = a^ + jS^ . 

F r o m the Jacobi identities 

(2.21) [i;„ [t;,-, г;,]] + [i;,-, [i;„ t;,]] + [i;„ [t;,, t;J] = 0 ; ij, к = 1,2,3,4; 
i t f n l l nws it follows 

(2.22) ^1^1 ~ ^2^1 + ^3^1 + (<̂ 2 + ^1) ^1 + (^3 — ^1) ^1 — (Ьз + аз) (il = 0, . 

^1^2 + ^3^2 + (<̂ 2 + bi) a2 + J3 — a i — (Ьз + a2) (̂ 2 = О, 

î ^ i 4 - ^2^3 + 1̂ 3% + {d2 + bi) аз + (^3 - « i ) Ьз - (^з + сц) ^з = 0 ^ 

- Î ; 2 C I + v^a^ + {62 + Cl) a^ + {e^ - а^) c^ - C3J1 - а з / i = 0 , 

i;ie2 + ^4^2 + (^2 + ^1) ^2 "~ ^3^2 "~ 2a2C2 = 0 , 

-i;2C3 + t;4a3 + (^2 + c^) a^ + {e^. - Uj) c^ - c^d^ - aj^ = 0 , 

1̂ 164 — t>4a2 + (^4 — a^) a2 — 2a2e4 + аз^2 = 0 , 

vJi - v^c^ 4- г;4а1 + ( Д + с,) bj - (^2 + a j ) Ci - (a2 + а з ) / 1 = 0 , 

t̂ 4<̂ 2 + / 3 + ^1 - ^2^2 = 0 , ' 

Vifs - V3C3 + î^4«3 + ( /3 + Cl) Ьз - (^2 + a,) C3 - (a2 + а з ) / з = 0 , 

-î;i<i2 - ^^3^2 - {di + û i ) a2 + (a2 + аз) ^2 - «2^4 = 0 » 

t^2/l + M l - / l « ! + ( /3 + 62) d, - (C4 + J 3 ) / i - б/iCi = 0 , 

-t>3^2 + M 2 - / l « 2 + ( /3 + C2) d2 - 2J2C2 = 0 , 

t^2/3 + М з - / 1 % + ( / з + e2)d^ - (C4 + 4 ) / з - ^дСз = 0 , 

~î^2^2 - t?3C4 - 2d2e^ + (C4 + ^3) ^2 - ^1^2 = 0 . 
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From (2.18), the analoguous equations for [w^, w j and from (2.20), we get 

(2.23) — (pw2a + acpA^ + ßcD^ = aa^ + ßa^, 

(PW2OC — ßcpÄ^ + oLcpD^ = —ßdi + а^з , 

(pw2ß + асрА^ + ßcD^ = —ßdi + ааз , 

(pw2i5 — ßcpÄi + acpDi = aJ i + ^̂ 3̂ , 

~(pw4a + occpC^ — jffcpFi = aci + 5̂сз , 

-(pw4a + ßcpC^ + cccpF^ = -ßfi + а/з , 

(pw4J? + афСз — ^^^3 = — )5ci + асз , 

-(pw^ß + ßcpC^ + cccpF^ = a/i + Д/з, 

(2.24) ocw^cp — ßw^cp + oc(pÄ2 + ß(pD2 = Ф^2 ? 

— ßw^cp — aw^cp — ß(pA2 + a(pD2 = (pd2 , 

(2.25) W29 + (pE^^ ^ ^4 , -W49 + (pE2 = ^2 , 

(2.26) awiß — ßw^ß — ßwioc — aw^oc + cpB^ — аЪ^ + ßb^,, 

aw^a — i5w3a + j^w^j^ + 0LW2,ß + ^^3 = —ßb^ + аЬз . 

From (2.23i^2) + (2.233,4) and (2.235,б) + (2.237,3), we get 

(2.27) щ{А^ + 1)з) + ßcp{D^ - Лз) = a(^i + ^з) - ß{d, - а^) , 

a(p{D^ - ^3) - ß^{Ai + /)з) = a(Ji - аз) + ß{a^ + ^3) , 

(2.28) аср{С, ~ ^з) - iS(p(Fi + С3) = а{с, ^ Л ) + ß{h + С3) , 

осф(̂ 1̂ + Сз) + i8(p(Ci - F3) = а(Л + сз) - ß{c, - / 3 ) . 

The equations (2.28) are the consequence of (2.27) because of (2.19). From (2.27), 

(2.29) ç{{A, + ^з)^ + {D, - A,Y] = {a, + d^f + {d, - a.f . 
Suppose 

(2.30) (ai + ^з)2 + (dl - аз)2 Ф О. 

Thus we may choose the frames of BQ in such a way that 

(2.31) {a, + d,f + (Ji - a,y = 1 , 

i.e., 

(2.32) Ф = a^ + jÇ̂  = 1 . 

We have dim Giy) ^ 5 because the system (2.23)-(2.26) is, in the best case, com
pletely integrable. 
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Suppose 

(2.33) d^ = -a^, dl = a^; 

from (2.19), we obtain 

(2.34) Л = - ^ 3 , / з = ^ 1 . 

From (2.231,з) + (2-25i) and (2.235,7) + (2.252), 

(2.35) (p{2Äi + £4) = 2ai + e^ , ^(£2 ~ 2Ci) = 2̂ - 2ci . 

Again, la^ + ^4 Ф 0 or 62 — 2ci ф 0 implies dim G{V) g 5. 

3. Finally, suppose (2.18) with 

(3.1) ^3 = - a i , J i = «3 , /1 = - C 3 , /3 = ci , ^4 = - 2 a i , ^2 = 2ci . 

The equations (2.25) reduce to 

(3.2) н?2ф = 2(pÄi — 2ai , W4(j9 = IcpCi — 2ci . 

Consider the system 

(3.3) W2(p = -lui , W4.(p = — 2ci . 

Then W4W2<̂  = — 2w4ai, W2W4.(p = — 2w2Ci, and we get 

[w2, W4] (p = —IW2C1 + 2^4«! = 2ciW2<?? — la^w^ip = —Ас^а^ + Аа^с^ = О 

by means of (2.I85). The integrability condition of the system (3.3) is W2C1 — w^a^ = 
= 0, i.e., V2C1 — v^a^ = 0. This equation being satisfied because of (2.22i4), the 
system (3.3) is completely integrable. It follows the possibility to choose the frames 
of В G such that Л^ = Ci = 0. Let us suppose 

(3.4) ai = Ci = 0 

and 

(3.5) W2(p = W4,(p = 0 . 

From (2.233,7), 

(3.6) (pW2ß + oc(pÄ^ = а а з , cpw^^ß + ocçC^ = асз . 

Consider the system 

(3.7) Vzß = ааз , v^ß = асз . 
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From (3.5) and (3.7), ^2« = -ßa^, v^oc = -ßc^, from (3.7) and (2.I85), V2V^ß = 
^ —ßa^c^ + аг^г^з, V4V2ß = —ßc^a^ + OLV^a^. The integrability condition of (3.7) 
О = [ü2> 1̂ 4] ß = ^{pi^z ~" ^4^3) is now satisfied because of (2.225). The system (3.7) 
being integrable, we are in the position to choose the frames in such a way that A^ = 
== C3 = 0. Suppose 

(3.8) аз = C3 = 0 

and, consequently, 

(3.9) W2a = W2j8 = w^a = w^^ß = 0 . 

The condition dim G{V) > 5 for a layer V imphes the existence of sections 
(DJ, ..., Г4) of JBG such that 

(3.10) [Vi, V2] = a2V2 , [V2, 1̂ 3] = 2̂Î̂ 2 , 

[^u ^3] = ^1^1 + ^2 + Ьзг̂ з , [v2,1^4] = 0 , 

[Vx, 1̂ 4] = a2Î^4 » [^3. ^4] =^2t^4 • 

The equations (2.22) reduce to 

( 3 . 1 1 ) V2bi = 1;2Ьз = 0 , t;2a2 = ^4^2 = ^ > ^2^2 = ^4<^2 = Ö ? 

^1^/2 + 1^302 = Ö » ^ 2 ^ 2 + ^ 2 ^ 1 "" ^ 3 ^ 2 = 0 . 

The equations (2.24) may be written as 

(3.12) v^cp + a(pA2 + ß(pD2 = <pa2 , ~v^(p — ß(pA2 + aç>D2 = ^^2 > 

the equation (2.26) as 

(3.13) Viß — г̂ за + срВ^ = abj + ßb^ , u^a + v^ß + фБз = —)̂ bj + ocb^ . 

The integrability condition of (3.12) is > 

(3.14) «2^2 = Ф^2^2 • 

The condition 02^2 7̂  0 implies dim G(F) ^ 5. Suppose 

(3.15) a2 = 0 , 

the case ^2 = 0 being symmetric. Because of (3.11), the system t;i<p = 0,V2(p = --9^2 
is integrable, and we may choose the frames of BQ in such a way that 

(3.16) Ö2 = ^2 = 0 

which implies 

(3.17) ViÇ = v^cp = 0 . 
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Then av^a + ßv^ß = oiv^oi + ßv^ß = О, and we get 

(3.18) v^oi = oißB^ - ß^B^ - ßb^ , v^a = ß^B^ + aßB^ - ßb^ 

from (3.13). The integrability condition of (3.18) is 

(3.19) v,bs - v^b, -bl'-bl = (p{w,B^ ~ W3B1 - Bl- Bl). 

The condition v^b^ — v^bi — bl — bl Ф 0 implies dim G{V) S 5. Let us suppose 

(3.20) ribs - v^b, - bl- bl = 0. 

The system ViCC = —ßbi, v^oc = —ßb^ beingintegrable, there are sections (v^,..., ^4) 
satisfying 

(3.21) bi = b^ = 0, 

and we have 

(3.22) v^a = Viß = Уза = v^ß = О. 

4. The condition dim G{y) > 5 implies dim G ( F ) = 6 and the existence of a section 
{v^, ,..,v^oï BQ such that 

(4.1) [г^!, 1;з] = г;2 , \у^, V2'\ = [v^, v^] = [y^, v^'\ = [v2,1^4] = [t^3. t;4] = 0 . 

Consider the layer F(O.l). It is easy to check that the real vector fields 

(4.2) v, = i-~ + 2{x-x)--i--: + 2{x-x)-, ^^ = 4 - + - , 
ox dy ox oy \oy oy) 

+ li{x -x)—---_- li{x - x) - : , i;4 = 4z — - — 
oy ox oy \oy oy) dx 

over <̂ ^ satisfy the following conditions: (i) ^3 = Jf j , t;4 = Jv2, (ii) at each point 
z G ^^, f 1, t;2, t̂ 3 are tangent to the hypersurface of Fgoing through z, (iii) i;i, . . . , ^4 
satisfy (4.1). The Lie group (0.2) preserving F, we have obtained an example of a layer 
satisfying the conditions of our Theorem. It remains to show that any two layers 
satisfying these conditions are biholomorphically equivalent. Consider the complex 
manifold M^ and its layer V such that in its corresponding structure BQ there is 
a section (и^,..., 1̂ 4) satisfying (4.1). Let N^ be another complex manifold with 
a layer Pf of hypersurfaces such that in the associated structure B'Q there is a section 
(wi , . . . , W4) such that 

(4.3) [wi, W3] = W2 , 

[>Vl. >̂ 2] = [Wb >̂ 4] = [>V2, W3] = [W2, W4] = [W3, W4] = 0 . 
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On М"^ X iV^ consider the vector fields vf, wf defined by the relations dni{v7) = v^, 
d7r2(î;f) = 0, d7Ci(wf) = 0, d7r2(wf) = ŵ ; тг̂  : M^ x iV^ -> M^, тг̂  : M^ x iV^ -> iV^ 
being the natural projections. Let oc, ße^, cp = â  + jŜ  Ф 0. On M"*" x AT''', 
consider the distribution D such that its space /)̂ m,n) <= T(m,n){^'^ x -̂ '̂ ) is spanned 
by the vectors 

Vi=vt + aw* - ßwt, V2 = vt + (pwt, F3 = ü| + î wî + aw* , 

F4 = i;* + (?)w*. 
Because of 

[V,, F3] = F2 , [F„ F^] = [Fl, F4] = [F„ F3] = [F„ F4] = [F3, F4] = 0 , 

the distribution D is integrable and its integral manifold represents a (local) biholo-
morphic map M^ -> N^ transforming F into W. 

Author's address: 118 00 Praha 1, Malostranské nam. 25, CSSR (Matematicko-fyzikalni 
fakultaUK). 
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