## Czechoslovak Mathematical Journal

## Aloin Švec

On a group of holomorphic transformations in $\mathfrak{C}^{2}$

Czechoslovak Mathematical Journal, Vol. 24 (1974), No. 1, 97-106

Persistent URL: http://dml.cz/dmlcz/101220

## Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# ON A GROUP OF HOLOMORPHIC TRANSFORMATIONS IN $\mathscr{C}^{2}$ 

Alois Švec, Praha

(Received January 23, 1973)
0. Consider the space $\mathscr{C}^{2}$ with the complex coordinates $(x, y)$ and let $V$ be the layer of real hypersurfaces given by

$$
\begin{equation*}
i(y-\bar{y})+(x-\bar{x})^{2}=r, \quad r \in \mathscr{R} . \tag{0.1}
\end{equation*}
$$

Each hypersurface of $V$ has a non-degenerate Levi form at each its point. The Lie group

$$
\begin{gather*}
X=\alpha x+\beta, \quad Y=2 i \alpha(\beta-\bar{\beta}) x+i \alpha(\alpha-\bar{\alpha}) x^{2}+\alpha \bar{\alpha} y+\gamma ;  \tag{0.2}\\
\alpha, \beta, \gamma \in \mathscr{C} ;
\end{gather*}
$$

of the biholomorphic mappings of $\mathscr{C}^{2}$ preserves $V$, the hypersurface $(0.1)$ with the parameter $r$ being transformed into the hypersurface ( 0.1 ) with the parameter

$$
\begin{equation*}
r^{\prime}=\frac{1}{\alpha \bar{\alpha}}\left\{r+i(\bar{\gamma}-\gamma)-(\beta-\bar{\beta})^{2}\right\} . \tag{0.3}
\end{equation*}
$$

Obviously, $\operatorname{dim}_{\mathscr{R}} G=6$. We are going to prove the following
Theorem. Let V be a layer of real hypersurfaces in $\mathscr{C}^{2}$ such that each hypersurface of $V$ has a non-degenerate Levi form. Let $G$ be a Lie group of biholomorphic transformations of $\mathscr{C}^{2}$ which is transitive on $\mathscr{C}^{2}$ and preserves the layer $V$. Then $4 \leqq$ $\leqq \operatorname{dim} G \leqq 6$. In the case $\operatorname{dim} G=6$ there are, in $\mathscr{C}^{2}$, holomorphic coordinates $(x, y)$ such that $G$ is given by (0.2) and $V$ by (0.1).

1. Be given a differentiable manifold $M^{2 n}$ and an almost complex structure $J$ over it; all manifolds and maps are supposed to be of class $C^{\infty}$. The torsion of $J$ is defined as the vector 2 -form [ $J, J$ ] given by

$$
\begin{equation*}
\frac{1}{2}[J, J](u, v)=[J u, J v]-J[J u, v]-J[u, J v]-[u, v] . \tag{1.1}
\end{equation*}
$$

On $M^{2 n}$, let us choose vector fields $v_{\alpha}, v_{n+\alpha} ; \alpha=1, \ldots, n$; such that

$$
\begin{equation*}
J v_{\alpha}=v_{n+\alpha}, \quad J v_{n+\alpha}=-v_{\alpha} ; \quad \alpha=1, \ldots, n ; \tag{1.2}
\end{equation*}
$$

and write

$$
\begin{align*}
& {\left[v_{\alpha}, v_{\beta}\right]=a_{\alpha \beta}^{\gamma} v_{\gamma}+a_{\alpha \beta}^{n+\gamma} v_{n+\gamma},}  \tag{1.3}\\
& {\left[v_{\alpha}, v_{n+\beta}\right]=a_{\alpha, n+\beta}^{\gamma} v_{\gamma}+a_{\alpha, n+\beta}^{n+\gamma} v_{n+\gamma},} \\
& {\left[v_{n+\alpha}, v_{n+\beta}\right]=a_{n+\alpha, n+\beta}^{\gamma} v_{\gamma}+a_{n+\alpha, n+\beta}^{n+\gamma} v_{n+\gamma} .}
\end{align*}
$$

For

$$
\begin{equation*}
u=x^{\alpha} v_{\alpha}-x^{n+\alpha} v_{n+\alpha}, \quad v=y^{\alpha} v_{\alpha}-y^{n+\alpha} v_{n+\alpha} \tag{1.4}
\end{equation*}
$$

we obtain

$$
\begin{gather*}
\frac{1}{2}[J, J](u, v)=  \tag{1.5}\\
=\left(a_{n+\alpha, n+\beta}^{\gamma}-a_{\alpha \beta}^{\gamma}+a_{\alpha, n+\beta}^{n+\gamma}-a_{\beta, n+\alpha}^{n+\gamma}\right) . \\
\cdot\left\{\left(x^{\alpha} y^{\beta}-x^{n+\alpha} y^{n+\beta}\right) v_{\gamma}+\left(x^{\alpha} y^{n+\beta}+x^{n+\alpha} y^{\beta}\right) v_{n+\gamma}\right\}+ \\
+\left(a_{\alpha \beta}^{n+\gamma}-a_{n+\alpha, n+\beta}^{n+\gamma}+a_{\alpha, n+\beta}^{\gamma}-a_{\beta, n+\alpha}^{\gamma}\right) . \\
\cdot\left\{\left(x^{\alpha} y^{n+\beta}+x^{n+\alpha} y^{\beta}\right) v_{\gamma}-\left(x^{\alpha} y^{\beta}-x^{n+\alpha} y^{n+\beta}\right) v_{n+\gamma}\right\} .
\end{gather*}
$$

The condition $[J, J]=0$ is thus equivalent to

$$
\begin{gather*}
a_{n+\alpha, n+\beta}^{\gamma}-a_{\alpha \beta}^{\gamma}+a_{\alpha, n+\beta}^{n+\gamma}-a_{\beta, n+\alpha}^{n+\gamma}=0,  \tag{1.6}\\
a_{\alpha \beta}^{n+\gamma}-a_{n+\alpha, n+\beta}^{n+\gamma}+a_{\alpha, n+\beta}^{\gamma}-a_{\beta, n+\alpha}^{\gamma}=0 ; \quad \alpha, \beta, \gamma=1, \ldots, n .
\end{gather*}
$$

The following result is classic: Be given a manifold $M^{2 n}$, the almost complex structure $J$ over $M^{2 n}$ be given by means of the vector fields $v_{\alpha}, v_{n+\alpha}$ and (1.2); the structure $J$ is complex if and only if (1.6).
2. Consider a manifold $M^{4}$, a complex structure $J$ over $M^{4}$, and let $V$ be a layer of hypersurfaces in $M^{4}$. At each point $m \in M^{4}$, let us choose vectors $v_{1}, \ldots, v_{4} \in T_{m}\left(M^{4}\right)$ such that: (i) $v_{1}, v_{2}, v_{3}$ are tangent to the hypersurface of $V$ going through $m$, (ii) $J v_{1}=$ $=v_{3}, J v_{2}=v_{4}$. (iii) the vector fields $v_{1}, \ldots, v_{4}$ are of class $C^{\infty}$. The vector fields $w_{1}, \ldots, w_{4}$ satisfying (i)-(iii) as well, there are real-valued functions $\alpha, \beta, \gamma, \varphi, \delta$ on $M^{4}$ such that

$$
\begin{array}{ll}
v_{1}=\alpha w_{1}-\beta w_{3}, & v_{2}=\gamma w_{1}+\varphi w_{2}-\delta w_{3}  \tag{2.1}\\
v_{3}=\beta w_{1}+\alpha w_{3}, & v_{4}=\delta w_{1}+\gamma w_{3}+\varphi w_{4} ; \quad\left(\alpha^{2}+\beta^{2}\right) \varphi \neq 0
\end{array}
$$

The complex structure $J$ together with the layer $V$ induce a $G$-structure $B_{G}$ on $M^{4}$, the group $G$ being the set of non-singular matrices of the type

$$
\left(\begin{array}{rrrr}
\alpha & 0 & -\beta & 0  \tag{2.2}\\
\gamma & \varphi & -\delta & 0 \\
\beta & 0 & \alpha & 0 \\
\delta & 0 & \gamma & \varphi
\end{array}\right)
$$

Let us write

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3},}  \tag{2.3}\\
& {\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3},} \\
& {\left[v_{1}, v_{4}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4},} \\
& {\left[v_{2}, v_{3}\right]=d_{1} v_{1}+d_{2} v_{2}+d_{3} v_{3},} \\
& {\left[v_{2}, v_{4}\right]=e_{1} v_{1}+e_{2} v_{2}+e_{3} v_{3}+e_{4} v_{4},} \\
& {\left[v_{3}, v_{4}\right]=f_{1} v_{1}+f_{2} v_{2}+f_{3} v_{3}+f_{4} v_{4} ;}
\end{align*}
$$

the conditions (1.6) reduce to

$$
\begin{align*}
f_{1}-a_{1}+c_{3}-d_{3}= & 0, \quad f_{2}-a_{2}+c_{4}=0, \quad a_{3}-f_{3}+c_{1}-d_{1}=0,  \tag{2.4}\\
& f_{4}-c_{2}+d_{2}=0
\end{align*}
$$

Analoguously, let us write

$$
\begin{gather*}
{\left[w_{1}, w_{2}\right]=A_{1} w_{1}+A_{2} w_{2}+A_{3} w_{3}}  \tag{2.5}\\
\quad \ldots \\
{\left[w_{3}, w_{4}\right]=F_{1} w_{1}+F_{2} w_{2}+F_{3} w_{3}+F_{4} w_{4}}  \tag{2.6}\\
F_{1}-A_{1}+C_{3}-D_{3}=0, \quad F_{2}-A_{2}+C_{4}=0, \\
A_{3}-F_{3}+C_{1}-D_{1}=0, \quad F_{4}-C_{2}+D_{2}=0
\end{gather*}
$$

From (2.3 $),\left(2.5_{2}\right)$ and (2.1), we get

$$
\begin{gathered}
{\left[v_{1}, v_{3}\right]=\left[\alpha w_{1}-\beta w_{3}, \beta w_{1}+\alpha w_{3}\right]=(\cdot) w_{1}+(\cdot) w_{3}+\left(\alpha^{2}+\beta^{2}\right) B_{2} w_{2}=} \\
=(\cdot) w_{1}+(\cdot) w_{3}+b_{2} \varphi w_{2}
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
\left(\alpha^{2}+\beta^{2}\right) B_{2}=\varphi b_{2} . \tag{2.7}
\end{equation*}
$$

It is easy to see that $b_{2} \neq 0$ because of the non-degeneracy of the Levi forms of the hypersurfaces of $V$. Thus we are in the position to choose the frames $\left(v_{1}, \ldots, v_{4}\right)$ of the $G$-structure $B_{G}$ in such a way that

$$
\begin{equation*}
b_{2}=1 ; \tag{2.8}
\end{equation*}
$$

from $B_{2}=b_{2}=1$, we get

$$
\begin{equation*}
\varphi=\alpha^{2}+\beta^{2} . \tag{2.9}
\end{equation*}
$$

Further,

$$
\begin{gathered}
{\left[v_{1}, v_{4}\right]=\left[\alpha w_{1}-\beta w_{3}, \delta w_{1}+\gamma w_{3}+\varphi w_{4}\right]=} \\
=(\cdot) w_{1}+(\cdot) w_{3}+(\cdot) w_{4}+\left(\alpha \gamma+\beta \delta+\alpha \varphi C_{2}-\beta \varphi F_{2}\right) w_{2}= \\
=(\cdot) w_{1}+(\cdot) w_{3}+(\cdot) w_{4}+c_{2} \varphi w_{2} \\
{\left[v_{3}, v_{4}\right]=\left[\beta w_{1}+\alpha w_{3}, \delta w_{1}+\gamma w_{3}+\varphi w_{4}\right]=} \\
=(\cdot) w_{1}+(\cdot) w_{3}+(\cdot) w_{4}+\left(\beta \gamma-\alpha \delta+\beta \varphi C_{2}+\alpha \varphi F_{2}\right) w_{2}= \\
=(\cdot) w_{1}+(\cdot) w_{3}+(\cdot) w_{4}+f_{2} \varphi w_{2},
\end{gathered}
$$

i.e.,

$$
\begin{align*}
& \alpha \gamma+\beta \delta+\alpha \varphi C_{2}-\beta \varphi F_{2}=\varphi c_{2},  \tag{2.10}\\
& \beta \gamma-\alpha \delta+\beta \varphi C_{2}+\alpha \varphi F_{2}=\varphi f_{2} .
\end{align*}
$$

The frames of $B_{G}$ may be chosen in such a way that (2.8) and

$$
\begin{equation*}
c_{2}=f_{2}=0 \tag{2.11}
\end{equation*}
$$

and we get

$$
\begin{equation*}
\gamma=\delta=0 \tag{2.12}
\end{equation*}
$$

Further,

$$
\begin{gathered}
{\left[v_{2}, v_{4}\right]=\left[\varphi w_{2}, \varphi w_{4}\right]=} \\
=\varphi w_{2} \varphi \cdot w_{4}-\varphi w_{4} \varphi \cdot w_{2}+\varphi^{2}\left(E_{1} w_{1}+E_{2} w_{2}+E_{3} w_{3}+E_{4} w_{4}\right)= \\
=e_{1}\left(\alpha w_{1}-\beta w_{3}\right)+e_{2} \varphi w_{2}+e_{3}\left(\beta w_{1}+\alpha w_{3}\right)+e_{4} \varphi w_{4},
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
\varphi^{2} E_{1}=\alpha e_{1}+\beta e_{3}, \varphi^{2} E_{3}=-\beta e_{1}+\alpha e_{3} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{2}\left(E_{1} w_{1}+E_{3} w_{3}\right)=e_{1} v_{1}+e_{3} v_{3} . \tag{2.14}
\end{equation*}
$$

The direction of the vector $e_{1} v_{1}+e_{3} v_{3}$ is thus invariant. Suppose that $e_{1} v_{1}+$ $+e_{3} v_{3} \neq 0$. The frames $\left(v_{1}, \ldots, v_{4}\right) \in B_{G}$ may be chosen in such a way that

$$
\begin{equation*}
e_{1}=1, \quad e_{3}=0 \tag{2.15}
\end{equation*}
$$

This means

$$
\begin{equation*}
\alpha=1, \quad \beta=0, \quad \varphi=1 \tag{2.16}
\end{equation*}
$$

and the induced structure $B_{G}$ is reduced to the $\{e\}$-structure $B_{\{e\}}$. Denote by $G(V)$ the group of biholomorphic transformations of $\mathscr{C}^{2}$ preserving $V$. Obviously, $G(V)$ preserves the induced $G$-structure $B_{G}$ and the reduced structure $B_{\{e\}}$. In our case $\operatorname{dim} G(V) \leqq 4$.

If $\operatorname{dim} G(V)>4$, we should have

$$
\begin{equation*}
e_{1}=e_{3}=0 \tag{2.17}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
& {\left[v_{1}, v_{2}\right] }=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}  \tag{2.18}\\
& {\left[v_{1}, v_{3}\right] }=b_{1} v_{1}+v_{2}+b_{3} v_{3} \\
& {\left[v_{1}, v_{4}\right] }=c_{1} v_{1}+c_{3} v_{3}+a_{2} v_{4} \\
& {\left[v_{2}, v_{3}\right] }=d_{1} v_{1}+d_{2} v_{2}+d_{3} v_{3}, \\
& {\left[v_{2}, v_{4}\right] }=e_{2} v_{2}+e_{4} v_{4} \\
& {\left[v_{3}, v_{4}\right] }=f_{1} v_{1} \\
& f_{1}-a_{1}+c_{3}-d_{3} v_{3}-d_{2} v_{4}  \tag{2.19}\\
& 0, a_{3}-f_{3}+c_{1}-d_{1}=0
\end{align*}
$$

the admissible transformations of the frames are given by

$$
\begin{array}{ll}
v_{1}=\alpha w_{1}-\beta w_{3}, & v_{2}=\varphi w_{2},  \tag{2.20}\\
v_{3}=\beta w_{1}+\alpha w_{3}, & v_{4}=\varphi w_{4} ; \quad \varphi=\alpha^{2}+\beta^{2}
\end{array}
$$

From the Jacobi identities
(2.21) $\left[v_{i},\left[v_{j}, v_{k}\right]\right]+\left[v_{j},\left[v_{k}, v_{i}\right]\right]+\left[v_{k},\left[v_{i}, v_{j}\right]\right]=0 ; i, j, k=1,2,3,4 ;$
it follows

$$
\begin{align*}
& v_{1} d_{1}-v_{2} b_{1}+v_{3} a_{1}+\left(d_{2}+b_{1}\right) a_{1}+\left(d_{3}-a_{1}\right) b_{1}-\left(b_{3}+a_{2}\right) d_{1}=0,  \tag{2.22}\\
& v_{1} d_{2}+v_{3} a_{2}+\left(d_{2}+b_{1}\right) a_{2}+d_{3}-a_{1}-\left(b_{3}+a_{2}\right) d_{2}=0, \\
& v_{1} d_{3}-v_{2} b_{3}+v_{3} a_{3}+\left(d_{2}+b_{1}\right) a_{3}+\left(d_{3}-a_{1}\right) b_{3}-\left(b_{3}+a_{2}\right) d_{3}=0, \\
&-v_{2} c_{1}+v_{4} a_{1}+\left(e_{2}+c_{1}\right) a_{1}+\left(e_{4}-a_{1}\right) c_{1}-c_{3} d_{1}-a_{3} f_{1}=0, \\
& v_{1} e_{2}+v_{4} a_{2}+\left(e_{2}+c_{1}\right) a_{2}-c_{3} d_{2}-2 a_{2} e_{2}=0, \\
&-v_{2} c_{3}+v_{4} a_{3}+\left(e_{2}+c_{1}\right) a_{3}+\left(e_{4}-a_{1}\right) c_{3}-c_{3} d_{3}-a_{3} f_{3}=0, \\
& v_{1} e_{4}-v_{4} a_{2}+\left(e_{4}-a_{1}\right) a_{2}-2 a_{2} e_{4}+a_{3} d_{2}=0, \\
& v_{1} f_{1}-v_{3} c_{1}+v_{4} a_{1}+\left(f_{3}+c_{1}\right) b_{1}-\left(d_{2}+a_{1}\right) c_{1}-\left(a_{2}+a_{3}\right) f_{1}=0, \\
& v_{4} a_{2}+f_{3}+c_{1}-a_{2} e_{2}=0, \\
& v_{1} f_{3}-v_{3} c_{3}+v_{4} a_{3}+\left(f_{3}+c_{1}\right) b_{3}-\left(d_{2}+a_{1}\right) c_{3}-\left(a_{2}+a_{3}\right) f_{3}=0, \\
&-v_{1} d_{2}-v_{3} a_{2}-\left(d_{2}+a_{1}\right) a_{2}+\left(a_{2}+a_{3}\right) d_{2}-a_{2} e_{4}=0, \\
& v_{2} f_{1}+v_{4} d_{1}-f_{1} a_{1}+\left(f_{3}+e_{2}\right) d_{1}-\left(e_{4}+d_{3}\right) f_{1}-d_{1} c_{1}=0, \\
&-v_{3} e_{2}+v_{4} d_{2}-f_{1} a_{2}+\left(f_{3}+e_{2}\right) d_{2}-2 d_{2} e_{2}=0, \\
& v_{2} f_{3}+v_{4} d_{3}-f_{1} a_{3}+\left(f_{3}+e_{2}\right) d_{3}-\left(e_{4}+d_{3}\right) f_{3}-d_{1} c_{3}=0, \\
&-v_{2} d_{2}-v_{3} e_{4}-2 d_{2} e_{4}+\left(e_{4}+d_{3}\right) d_{2}-d_{1} a_{2}=0 .
\end{align*}
$$

From (2.18), the analoguous equations for $\left[w_{i}, w_{j}\right]$ and from (2.20), we get

$$
\begin{align*}
&-\varphi w_{2} \alpha+\alpha \varphi A_{1}+\beta \varphi D_{1}=\alpha a_{1}+\beta a_{3},  \tag{2.23}\\
& \varphi w_{2} \alpha-\beta \varphi A_{3}+\alpha \varphi D_{3}=-\beta d_{1}+\alpha d_{3}, \\
& \varphi w_{2} \beta+\alpha \varphi A_{3}+\beta \varphi D_{3}=-\beta a_{1}+\alpha a_{3}, \\
& \varphi w_{2} \beta-\beta \varphi A_{1}+\alpha \varphi D_{1}=\alpha d_{1}+\beta d_{3}, \\
&-\varphi w_{4} \alpha+\alpha \varphi C_{1}-\beta \varphi F_{1}=\alpha c_{1}+\beta c_{3}, \\
&-\varphi w_{4} \alpha+\beta \varphi C_{3}+\alpha \varphi F_{3}=-\beta f_{1}+\alpha f_{3}, \\
& \varphi w_{4} \beta+\alpha \varphi C_{3}-\beta \varphi F_{3}=-\beta c_{1}+\alpha c_{3}, \\
&-\varphi w_{4} \beta+\beta \varphi C_{1}+\alpha \varphi F_{1}=\alpha f_{1}+\beta f_{3}, \\
& \alpha w_{1} \varphi-\beta w_{3} \varphi+\alpha \varphi A_{2}+\beta \varphi D_{2}=\varphi a_{2},  \tag{2.24}\\
&-\beta w_{1} \varphi-\alpha w_{3} \varphi-\beta \varphi A_{2}+\alpha \varphi D_{2}=\varphi d_{2}, \\
& w_{2} \varphi+\varphi E_{4}=e_{4}, \quad-w_{4} \varphi+\varphi E_{2}=e_{2},  \tag{2.25}\\
& \alpha w_{1} \beta-\beta w_{3} \beta-\beta w_{1} \alpha-\alpha w_{3} \alpha+\varphi B_{1}=\alpha b_{1}+\beta b_{3},  \tag{2.26}\\
& \alpha w_{1} \alpha-\beta w_{3} \alpha+\beta w_{1} \beta+\alpha w_{3} \beta+\varphi B_{3}=-\beta b_{1}+\alpha b_{3} .
\end{align*}
$$

From $\left(2.23_{1,2}\right)+\left(2.23_{3,4}\right)$ and $\left(2.23_{5,6}\right)+\left(2.23_{7,8}\right)$, we get

$$
\begin{align*}
& \alpha \varphi\left(A_{1}+D_{3}\right)+\beta \varphi\left(D_{1}-A_{3}\right)=\alpha\left(a_{1}+d_{3}\right)-\beta\left(d_{1}-a_{3}\right),  \tag{2.27}\\
& \alpha \varphi\left(D_{1}-A_{3}\right)-\beta \varphi\left(A_{1}+D_{3}\right)=\alpha\left(d_{1}-a_{3}\right)+\beta\left(a_{1}+d_{3}\right), \\
& \alpha \varphi\left(C_{1}-F_{3}\right)-\beta \varphi\left(F_{1}+C_{3}\right)=\alpha\left(c_{1}-f_{3}\right)+\beta\left(f_{1}+c_{3}\right),  \tag{2.28}\\
& \alpha \varphi\left(F_{1}+C_{3}\right)+\beta \varphi\left(C_{1}-F_{3}\right)=\alpha\left(f_{1}+c_{3}\right)-\beta\left(c_{1}-f_{3}\right) .
\end{align*}
$$

The equations (2.28) are the consequence of (2.27) because of (2.19). From (2.27),

$$
\begin{equation*}
\varphi\left\{\left(A_{1}+D_{3}\right)^{2}+\left(D_{1}-A_{3}\right)^{2}\right\}=\left(a_{1}+d_{3}\right)^{2}+\left(d_{1}-a_{3}\right)^{2} \tag{2.29}
\end{equation*}
$$

Suppose

$$
\begin{equation*}
\left(a_{1}+d_{3}\right)^{2}+\left(d_{1}-a_{3}\right)^{2} \neq 0 . \tag{2.30}
\end{equation*}
$$

Thus we may choose the frames of $B_{G}$ in such a way that

$$
\begin{equation*}
\left(a_{1}+d_{3}\right)^{2}+\left(d_{1}-a_{3}\right)^{2}=1 \tag{2.31}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\varphi=\alpha^{2}+\beta^{2}=1 \tag{2.32}
\end{equation*}
$$

We have $\operatorname{dim} G(V) \leqq 5$ because the system (2.23)-(2.26) is, in the best case, completely integrable.

## Suppose

$$
\begin{equation*}
d_{3}=-a_{1}, \quad d_{1}=a_{3} ; \tag{2.33}
\end{equation*}
$$

from (2.19), we obtain

$$
\begin{equation*}
f_{1}=-c_{3}, \quad f_{3}=c_{1} . \tag{2.34}
\end{equation*}
$$

From $\left(2.23_{1,3}\right)+\left(2.25_{1}\right)$ and $\left(2.23_{5,7}\right)+\left(2.25_{2}\right)$,

$$
\begin{equation*}
\varphi\left(2 A_{1}+E_{4}\right)=2 a_{1}+e_{4}, \quad \varphi\left(E_{2}-2 C_{1}\right)=e_{2}-2 c_{1} . \tag{2.35}
\end{equation*}
$$

Again, $2 a_{1}+e_{4} \neq 0$ or $e_{2}-2 c_{1} \neq 0$ implies $\operatorname{dim} G(V) \leqq 5$.
3. Finally, suppose (2.18) with

$$
\begin{equation*}
d_{3}=-a_{1}, \quad d_{1}=a_{3}, \quad f_{1}=-c_{3}, \quad f_{3}=c_{1}, \quad e_{4}=-2 a_{1}, \quad e_{2}=2 c_{1} . \tag{3.1}
\end{equation*}
$$

The equations (2.25) reduce to

$$
\begin{equation*}
w_{2} \varphi=2 \varphi A_{1}-2 a_{1}, \quad w_{4} \varphi=2 \varphi C_{1}-2 c_{1} . \tag{3.2}
\end{equation*}
$$

Consider the system

$$
\begin{equation*}
w_{2} \varphi=-2 a_{1}, \quad w_{4} \varphi=-2 c_{1} . \tag{3.3}
\end{equation*}
$$

Then $w_{4} w_{2} \varphi=-2 w_{4} a_{1}, w_{2} w_{4} \varphi=-2 w_{2} c_{1}$, and we get

$$
\left[w_{2}, w_{4}\right] \varphi=-2 w_{2} c_{1}+2 w_{4} a_{1}=2 c_{1} w_{2} \varphi-2 a_{1} w_{4} \varphi=-4 c_{1} a_{1}+4 a_{1} c_{1}=0
$$

by means of $\left(2.18_{5}\right)$. The integrability condition of the system (3.3) is $w_{2} c_{1}-w_{4} a_{1}=$ $=0$, i.e., $v_{2} c_{1}-v_{4} a_{1}=0$. This equation being satisfied because of $\left(2.22_{14}\right)$, the system (3.3) is completely integrable. It follows the possibility to choose the frames of $B_{G}$ such that $A_{1}=C_{1}=0$. Let us suppose

$$
\begin{equation*}
a_{1}=c_{1}=0 \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{2} \varphi=w_{4} \varphi=0 . \tag{3.5}
\end{equation*}
$$

From (2.23 $3_{3,7}$ ),

$$
\begin{equation*}
\varphi w_{2} \beta+\alpha \varphi A_{3}=\alpha a_{3}, \quad \varphi w_{4} \beta+\alpha \varphi C_{3}=\alpha c_{3} . \tag{3.6}
\end{equation*}
$$

Consider the system

$$
\begin{equation*}
v_{2} \beta=\alpha a_{3}, \quad v_{4} \beta=\alpha c_{3} . \tag{3.7}
\end{equation*}
$$

From (3.5) and (3.7), $v_{2} \alpha=-\beta a_{3}, v_{4} \alpha=-\beta c_{3}$, from (3.7) and (2.185), $v_{2} v_{4} \beta=$ $=-\beta a_{3} c_{3}+\alpha v_{2} c_{3}, v_{4} v_{2} \beta=-\beta c_{3} a_{3}+\alpha v_{4} a_{3}$. The integrability condition of (3.7) $0=\left[v_{2}, v_{4}\right] \beta=\alpha\left(v_{2} c_{3}-v_{4} a_{3}\right)$ is now satisfied because of $\left(2.22_{6}\right)$. The system (3.7) being integrable, we are in the position to choose the frames in such a way that $A_{3}=$ $=C_{3}=0$. Suppose

$$
\begin{equation*}
a_{3}=c_{3}=0 \tag{3.8}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
w_{2} \alpha=w_{2} \beta=w_{4} \alpha=w_{4} \beta=0 . \tag{3.9}
\end{equation*}
$$

The condition $\operatorname{dim} G(V)>5$ for a layer $V$ implies the existence of sections $\left(v_{1}, \ldots, v_{4}\right)$ of $B_{G}$ such that

$$
\begin{array}{ll}
{\left[v_{1}, v_{2}\right]=a_{2} v_{2},} & {\left[v_{2}, v_{3}\right]=d_{2} v_{2},}  \tag{3.10}\\
{\left[v_{1}, v_{3}\right]=b_{1} v_{1}+v_{2}+b_{3} v_{3},} & {\left[v_{2}, v_{4}\right]=0,} \\
{\left[v_{1}, v_{4}\right]=a_{2} v_{4} ;} & {\left[v_{3}, v_{4}\right]=d_{2} v_{4} .}
\end{array}
$$

The equations (2.22) reduce to

$$
\begin{array}{ll}
v_{2} b_{1}=v_{2} b_{3}=0, & v_{2} a_{2}=v_{4} a_{2}=0, \quad v_{2} d_{2}=v_{4} d_{2}=0,  \tag{3.11}\\
v_{1} d_{2}+v_{3} a_{2}=0, & a_{2} d_{2}+a_{2} b_{1}-b_{3} d_{2}=0
\end{array}
$$

The equations (2.24) may be written as

$$
\begin{equation*}
v_{1} \varphi+\alpha \varphi A_{2}+\beta \varphi D_{2}=\varphi a_{2}, \quad-v_{3} \varphi-\beta \varphi A_{2}+\alpha \varphi D_{2}=\varphi d_{2} \tag{3.12}
\end{equation*}
$$

the equation (2.26) as

$$
\begin{equation*}
v_{1} \beta-v_{3} \alpha+\varphi B_{1}=\alpha b_{1}+\beta b_{3}, \quad v_{1} \alpha+v_{3} \beta+\varphi B_{3}=-\beta b_{1}+\alpha b_{3} \tag{3.13}
\end{equation*}
$$

The integrability condition of (3.12) is

$$
\begin{equation*}
a_{2} d_{2}=\varphi A_{2} D_{2} . \tag{3.14}
\end{equation*}
$$

The condition $a_{2} d_{2} \neq 0$ implies $\operatorname{dim} G(V) \leqq 5$. Suppose

$$
\begin{equation*}
a_{2}=0 \tag{3.15}
\end{equation*}
$$

the case $d_{2}=0$ being symmetric. Because of (3.11), the system $v_{1} \varphi=0, v_{3} \varphi=-\varphi d_{2}$ is integrable, and we may choose the frames of $B_{G}$ in such a way that

$$
\begin{equation*}
a_{2}=d_{2}=0 \tag{3.16}
\end{equation*}
$$

which implies

$$
\begin{equation*}
v_{1} \varphi=v_{3} \varphi=0 \tag{3.17}
\end{equation*}
$$

Then $\alpha v_{1} \alpha+\beta v_{1} \beta=\alpha v_{3} \alpha+\beta v_{3} \beta=0$, and we get

$$
\begin{equation*}
v_{1} \alpha=\alpha \beta B_{1}-\beta^{2} B_{3}-\beta b_{1}, \quad v_{3} \alpha=\beta^{2} B_{1}+\alpha \beta B_{3}-\beta b_{3} \tag{3.18}
\end{equation*}
$$

from (3.13). The integrability condition of (3.18) is

$$
\begin{equation*}
v_{1} b_{3}-v_{3} b_{1}-b_{1}^{2}-b_{3}^{2}=\varphi\left(w_{1} B_{3}-w_{3} B_{1}-B_{1}^{2}-B_{3}^{2}\right) . \tag{3.19}
\end{equation*}
$$

The condition $v_{1} b_{3}-v_{3} b_{1}-b_{1}^{2}-b_{3}^{2} \neq 0$ implies $\operatorname{dim} G(V) \leqq 5$. Let us suppose

$$
\begin{equation*}
v_{1} b_{3}-v_{3} b_{1}-b_{1}^{2}-b_{3}^{2}=0 \tag{3.20}
\end{equation*}
$$

The system $v_{1} \alpha=-\beta b_{1}, v_{3} \alpha=-\beta b_{3}$ being integrable, there are sections $\left(v_{1}, \ldots, v_{4}\right)$ satisfying

$$
\begin{equation*}
b_{1}=b_{3}=0, \tag{3.21}
\end{equation*}
$$

and we have

$$
\begin{equation*}
v_{1} \alpha=v_{1} \beta=v_{3} \alpha=v_{3} \beta=0 . \tag{3.22}
\end{equation*}
$$

4. The condition $\operatorname{dim} G(V)>5$ implies $\operatorname{dim} G(V)=6$ and the existence of a section $\left(v_{1}, \ldots, v_{4}\right)$ of $B_{G}$ such that

$$
\begin{equation*}
\left[v_{1}, v_{3}\right]=v_{2}, \quad\left[v_{1}, v_{2}\right]=\left[v_{1}, v_{4}\right]=\left[v_{2}, v_{3}\right]=\left[v_{2}, v_{4}\right]=\left[v_{3}, v_{4}\right]=0 . \tag{4.1}
\end{equation*}
$$

Consider the layer $V(0.1)$. It is easy to check that the real vector fields

$$
\begin{array}{ll}
v_{1}=i \frac{\partial}{\partial x}+2(\bar{x}-x) \frac{\partial}{\partial y}-i \frac{\partial}{\partial \bar{x}}+2(x-\bar{x}) \frac{\partial}{\partial \bar{y}}, & v_{2}=4\left(\frac{\partial}{\partial y}+\frac{\partial}{\partial \bar{y}}\right)  \tag{4.2}\\
v_{3}=-\frac{\partial}{\partial x}+2 i(\bar{x}-x) \frac{\partial}{\partial y}-\frac{\partial}{\partial \bar{x}}-2 i(x-\bar{x}) \frac{\partial}{\partial \bar{y}}, & v_{4}=4 i\left(\frac{\partial}{\partial y}-\frac{\partial}{\partial \bar{y}}\right)
\end{array}
$$

over $\mathscr{C}^{2}$ satisfy the following conditions: (i) $v_{3}=J v_{1}, v_{4}=J v_{2}$, (ii) at each point $z \in \mathscr{C}^{2}, v_{1}, v_{2}, v_{3}$ are tangent to the hypersurface of $V$ going through $z$, (iii) $v_{1}, \ldots, v_{4}$ satisfy (4.1). The Lie group (0.2) preserving $V$, we have obtained an example of a layer satisfying the conditions of our Theorem. It remains to show that any two layers satisfying these conditions are biholomorphically equivalent. Consider the complex manifold $M^{4}$ and its layer $V$ such that in its corresponding structure $B_{G}$ there is a section ( $v_{1}, \ldots, v_{4}$ ) satisfying (4.1). Let $N^{4}$ be another complex manifold with a layer $W$ of hypersurfaces such that in the associated structure $B_{G}^{\prime}$ there is a section $\left(w_{1}, \ldots, w_{4}\right)$ such that

$$
\begin{gather*}
{\left[w_{1}, w_{3}\right]=w_{2},}  \tag{4.3}\\
{\left[w_{1}, w_{2}\right]=\left[w_{1}, w_{4}\right]=\left[w_{2}, w_{3}\right]=\left[w_{2}, w_{4}\right]=\left[w_{3}, w_{4}\right]=0 .}
\end{gather*}
$$

On $M^{4} \times N^{4}$, consider the vector fields $v_{i}^{*}, w_{i}^{*}$ defined by the relations $\mathrm{d} \pi_{1}\left(v_{i}^{*}\right)=v_{i}$, $\mathrm{d} \pi_{2}\left(v_{i}^{*}\right)=0, \mathrm{~d} \pi_{1}\left(w_{i}^{*}\right)=0, \mathrm{~d} \pi_{2}\left(w_{i}^{*}\right)=w_{i} ; \pi_{1}: M^{4} \times N^{4} \rightarrow M^{4}, \pi_{2}: M^{4} \times N^{4} \rightarrow N^{4}$ being the natural projections. Let $\alpha, \beta \in \mathscr{R}, \varphi=\alpha^{2}+\beta^{2} \neq 0$. On $M^{4} \times N^{4}$, consider the distribution $D$ such that its space $D_{(m, n)}^{4} \subset T_{(m, n)}\left(M^{4} \times N^{4}\right)$ is spanned by the vectors

$$
\begin{aligned}
& V_{1}=v_{1}^{*}+\alpha w_{1}^{*}-\beta w_{3}^{*}, \quad V_{2}=v_{2}^{*}+\varphi w_{2}^{*}, \quad V_{3}=v_{3}^{*}+\beta w_{1}^{*}+\alpha w_{3}^{*} \\
& V_{4}=v_{4}^{*}+\varphi w_{4}^{*} .
\end{aligned}
$$

Because of

$$
\left[V_{1}, V_{3}\right]=V_{2}, \quad\left[V_{1}, V_{2}\right]=\left[V_{1}, V_{4}\right]=\left[V_{2}, V_{3}\right]=\left[V_{2}, V_{4}\right]=\left[V_{3}, V_{4}\right]=0,
$$

the distribution $D$ is integrable and its integral manifold represents a (local) biholomorphic map $M^{4} \rightarrow N^{4}$ transforming $V$ into $W$.

Author's address: 11800 Praha 1, Malostranské nám. 25, ČSSR (Matematicko-fyzikální fakulta UK).

