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ON A PARTIAL PRODUCT STRUCTURE 

ALOIS SVEC, Praha 

(Received February 21, 1973) 

In his paper pubUshed in AnnaH di Mat. (vol. 11, 1932, 17-90), E. CARTAN 
solved the equivalence problem for real hypersurfaces in ^^. Unfortunately, his 
approach is not very precise and effective. Because of this, I solve the equivalence 
problem using other more direct methods. In what follows, the equivalence problem 
has been solved for a class of partial product structures; the results are, evidently, 
equivalent to those of E. Cartan. The theory of real hypersurfaces in ^" will be treated 
in another paper. 

1. Be given a 3-dimensional differentiable manifold endowed with a structure 
consisting of the choice of two tangent directions at each of its points. Such a structure 
gives rise to a G-structure BQ as follows: the frame {v^, V2,1^3), v^ e TJ^M), belongs 
to BQ if and only if Vi and V2 span the given directions. If (v^, i?2,1̂ 3) «=: BQ and 
(̂ 15 2̂> >̂ з) ^ BQ are two (local) sections of BQ, there are functions a, ß, у, ö, (p 
such that 

(1.1) Vi = awi, V2 = ßw2 , i?3 = 7>Vi + ÔW2 + (pw^ ; aßcp Ф 0 . 

We have 

(1.2) \y^, 172] = a^V^ + 02^2 + ^Ъ^Ъ » Ь^и ^т] = ^i^l + ^2^2 + АъУ^ъ , 

\Уи ^з] = b i^ i + Ь2̂ 2̂ + Ьз^з , [Wi, W3] = B1W1 + B2W2 + ^3>^3 » 

\у2,1^з] == Ci^i + C2V2 + Сз1;з, [>V2, W3] = C1W1 + C2W2 + C3W3 ; 

the functions а^,..., С3 satisfy the Jacobi identities 

(̂ •̂ ) bu Ьъ ^̂ з]] + [t;2, [i?3, î^i]] + 1^5, [i^i, 1̂ 2]] = 0, 
[^b [W2, W3]] + [W2, [W3, Wi]] + [W3, [Wi, W2]] = 0 . 
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Obviously, 

[v^, V2] = [awi, j?W2] = [ctßAi - V2ci) w^ + {ocßA2 + v^ß) W2 4- ccßA^w^ = 

= aiocwi + a2ßw2 + «3(7^1 + ÔW2 + <?>м̂ з), 

l^u Щ] = [aWi,7Wi + ÔW2 + ^Wj] = (.) Wi + (.) W2 +(t^i<p + otöA^ + афБз)>Уз = 

= (.)>Vi + (.)>^2 + b3<??W3, 

[^2> ^з] = [ß^^l^ r>Vi + ÖW2 + ф^з] = 

= (.) Wi + (.) W2 + {V2(P - ßyA^ + ß(pCs) W3 = (.) Wi + (.) W2 + C3(}9W3 , 

i.e., 

(1.4) (xßAi — V2OC = a^i + 703 , öcßA2 + Viß — ßüz + öa^ , а^8Лз = (pa^ , 

i;i(j(? + а(5Лз + occpB^ = (рЬз , t;2<5̂  "̂  ßy^3 + ßcC^ == (50C3 . 

Let US restrict ourselves to the case of the non-integrability of the field of planes span
ned by the vectors r^ and t;2> i-e., 

(L5) ^ з Ф О . 

To a given section (w^, W2, W3) of BQ there exist functions a, . . . , (p such that a^ = 1, 
a^ = «2 = ез = C3 = 0; from (1.3), we get b^ + C2 = 0, v^c^ = t;2bi> ^1^1 = 
== "^^2^2' 111 ^c» there are always sections {v^, Vj, v^ satisfying 

(1.6) [i^i, 1̂ 2] = v^ , [t;i, ^з] =̂  ai?! 4- bv2 , [1̂ 2, %] = cv^ - av^y 

(1.7) t;2& = — t^i«, ViC = V2a . 

Let the section (wj, W2, W3) of Б̂ ^ satisfy 

(1.8) [Wi, W2] = W3 , [Wj, W3] = ^Wi + BW2 , [>V2, W3] ~ CWi - ^W2 , 

(1.9) W2B = - W i ^ , WjC = W2A . 

Then • -.- ' -, .̂- '• .;; 

(1.10) (p = ocß, 

(1.11) v^a = —2aß~^S , V2OC == —7 

vj = ô, V2ß=-2oc-'ßy, 

V2y = ас - (xß^C , Î;I(5 = ßb - а^^^Б , M 

^i7 — ̂ 3̂« = ofß ~ oc^'ßA, Î;2<5 — t̂ 3iß = —ßa + а^^Л . 
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The integrability conditions of (l.lli^2) and (1.113^4) being 

Vs^x = -^ViJ + 2ocß''^V2S ~ 6ß~^yö , v^ß = 2oL~^ßviy — %^ + ба'^у^ , 

there is the function к such that 

(1.12) v^OL = ак - W^yS - |aa + la}ßA, 

v^ß = ßx + fa"^y(5 + ißa - iocß^A, 

v^y = ак — iß'^yS + iaa — ioc^ßÄ, 

V2Ô = ßx + fa~^y^ ~ ißa + iotß^Ä . 

The integrabiüty conditions of the equations (LUj) + (I.12i), (I.II3) +(1.122), 
(I.II4) + (1.122) and (I.II2) + (1.12i) being 

(xv^x + laß'h^d = laß-Чх + lß~^yd^ - \aß'4a + \уЪ + loLV^a -2 

8 ̂â <5Л - fa^yB - la^ßw^A, 

ßv^x - t;3^ = -f^x - loc~^ß~^yo^ - l^a + ^oc'^ßyb - fjSüia + 

+ 1фА + fajSyB + fa îS^Wî  , 

ßv2X - loc'^ßv^y = - ^a" ĵ5yx + |а"^у2^ - ^oc~^ßya - \bc - lßv2a -

-Iß^yA Л-lß^oC +\aß^W2A. 

(XV2X + з̂у = ^yx — |a~^^~^y^5 ~ У а ~ |aj5~ (̂5c + |аУ2а + 

+ laßyA - fai55C - loc^ß^W2A , 

we obtain 

(1.13) vsy = 27% - oi-^ß-yo + iai72a + iajSy^ ~ фС - ioL^ß^W2A, 

1;з5 = 2̂ % + Qc-^ß-^yo^- + ijîuia - iaj9^^ ~ ocßyB - ia^ß^w^A, 

t,j>,; = - ijÇ-i^x + ia"^i?~V^ - iß'^oa + ia"^yb - iv^a -

- ^а^Л + iayß + ia^j^wH , 

t;2X = ia~^yx + ia~ ĵS~^y^ö - ioc'^ya ~ iß'^öc + |:t;2a -

^ißyA--mC-iocß^yv2A. 

The integrability conditions of the equations (I.II5) + (I.13i) and (l.lle) + (1.1З2) 
are 

(1.14) fei = a^ßK^ , k2 = aJ?̂ K2 , 
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where 
kl = v^v^a — 2v^b — 3ab , /с2 = VzVza — Iv^c + 3Q^ 

Ki = WiWiA — Iw^B — ЗАВ, K2 = y^i^iA — 2W3C •+. -^j^Q ̂  

If fei^2 + 0, there exists a section (y^, V2, v^ such that k^ = kz ^ 1. o f course 
a = 6 = ±1, ß - s and, as a consequence of (1.1Г2,з) + (1.10), у :^ ^ = 0, ^ = 1. 
The next result follows: In BQ, choose a section {v^, Vz, v^) satisfying (1.6). If к к Ф 
Ф О, there are exactly two sections (f 1, Vz, v^) such that we have (I.6), (1.7) and 

(1.15) fci == v^v^a — 2t;3b — 3ab = 1, kz = VzVzCi — 2v^c + 3«^ _ ][ ^ 

(üj, 1̂ 2, t̂ a) b̂ ïw f̂ one 0/ these sections, the other one is w^ = «-.̂  yy = _ j ; 
W3 = %. 

2. Next, suppose 

(2.1) /ci = /с2 = 0 . 

Consider the system 

(2.2) v^a = —laß^^ö , 1̂ 2« = — у , v^oc = ax — fi^'^-y^ — | a a , 

vj = Ô, vzß = 2a" Vy , vj = ßx + f a " ^75 + ißa , 

i;i7 = a% - fiS~^7^ Ф i aa , 1̂ 2? = ccc , 1;зУ = 27% - a~ V"~^7 (̂5 + iat;2a , 

v^ô =. î b , i;25 = ßx + fa"^7^ - ijßa , v^ô = 2ôx + a'^ß-^^yo^ + ^ßv^a , 

t;^x = -iß'^ox + i a - V " V ^ - i iß" '^« + f a - ^ ~ K « , 

ü^x = fa '^yx + ia"^j5"^7^5 - i a ' ^ y a - iß~^Oc + ^^2« 

obtained from (1.11) + (1.12) + (1,13) by means of the substitution Л = Б = С = 0. 
The integrabiUty conditions of (2.23^9) and (2.2io,i2) are akz ^ 0, ßk^ = 0, and they 
are satisfied. The integräbility condition of (27,9) is 

(2.3) v^K = x^ + ^a-^jß-^7^^^ -- ^a^ - be + l(x~'yv,a - ^ß-'ovza + 

this being the integrabiUty condition of (211Д2) as well. The integrabiUty condition 
of (2.213Д4) is satisfied identically. Finally, the integrabiUty conditions а~^7^1 + 
+ 2t;2fei=0, ß~^ok2~2vik2 = 0 of (2.2ii) + (2.3) and (2.212) + (2.3) are 
satisfied. The system (2.2) + (2.3) being completely integrable, we obtain the fol
lowing result: In BQ, choose a section (v^, Vz, v^) satisfying (1.6). / / k^ = fc2 = 0, 
there are, in BQ, sections (v^, V2, v^) satisfying 

(2.4) [vi, V2] = v^, [vi, г̂ з] = Ö , [vzyVs] = 0 . 
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3. Finally, suppose k^ :^ 0, k2 = 0, the case k^ == 0, kz =¥ 0 is symmetric. In BQ, 

there are sections {v^, v^, 173)' satisfying (1.6), (1.7) and 

(3.1) /ci = v^v^a - Ъ^Ь - ЗаЬ = 1 , k^ =- г̂ 2̂ 2̂  - ^^з^ + Здс = О. 

(î^i, t;2,1^з) and (wi, W2, W3) being two such sections, we get ß = oc~^ from (1.13). 

From (1.113,4) +(1.122), 

(3.2) î̂ i« = -ioc'^ô , i;20C = ~зУ , 

Comparing with (l .Hi.a) + (l-l^i) we get 7 == ^ = 0 and 

(3.3) x = f a - | a ~ M . 

The system (3.2) reduces to 

(3.4) v^a = 0, V2OC = 0, v^(x = -iaa + |а~^Л , 

the integrability condition of (3.4i 2) being 

(3.5) aa = (x~^A. 

Suppose a Ф 0. Then there are, in BQ, sections (vi, V2, v^) satisfying 

(3.6) [üi, V2] = v^ , [v^, У3] = et;i + bv2 , [vz, vi\ = cvj^ - ev2 ; e = ± 1 ; 

from (3.5), we get a^ = 1. From (1.7) and (3.1), 

(3.7) Vzb = 0 , v^b = ~ i - feb , v^^c = 0 , v^c = fee . 

The integrability conditions of (3.7i,2) and (3.73,4) are cv^b = 0 and bv2C = 0 resp. 
Suppose v^b = 0. From (3.7), b = - | е and V2C = 0; from (3.7з), с = 0. In BQ, 
choose a section (y^, 1̂2̂  ̂ 3̂) satisfying (I.6). If /cj = 1, /c2 = Ö, a Ф 0, there exist 
exactly two sections (v^, V2, v^), { — v^, —1̂2» ^3) satisfying 

(3.8) [t;i, V2] = 1̂3 » [î^i, 1;з] = ÊUI + bv2 , [t̂ 2» ^̂ з] = е̂ 2̂ ; e = ± 1 ; 

(3.9) 1̂ 2̂  = 0 , 1;зЬ= - i - f e b . 

Suppöse a = 0. The system (3.4) reduces to v^a = 1̂2« = ^з« = 0. In BQ, there 
exist sections (i;i, 1̂2» ̂ з̂) satisfying 

(3.10) [1̂ 1, V2] = V2, [t^i, Уз] = bt;2 , [i?2. ^3] = cv^, ^ 

(3.11) V2b==0, V2b=-i, v^c =^ 0, v^c = 0. : . : 
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From (1.1 lg б), 

(3.12) с = а~^С, Ъ = а^Б . 

The integrability conditions of the system (3.11) are cv^b = 0, bv2C = 0. From v^b = 
~ 0 and (3.II1) it follows v^ = 0, this being a contradiction. Thus и^Ь Ф 0 and 
с = 0. From (3.12), i?ib = a^t;iB = a^WiB, i.e., 

(3.13) b(üib)-^/^ = B(wlB)-^/^ 

The following result follows: In BQ, choose a section (vi, V2, v^) satisfying (1.6). 
/ / /cj = 1, /̂ 2 = 0, a = 0, there are sections satisfying 

(3.14) [v^, V2] = Г3 , [t;i, г?з] = bv2 , [^2, t̂ a] = 0 ; 

г̂ зЬ = 0 , v^b ^ - i . 

T/ie section (wi, W2, W3) satisfying analoguous equations 

(3.15) [Wi, W2] = W3 , [Wi, W3] = BW2 , [W2, W3] = 0 , 

w^ have 

(3.16) Vi = a w i , V2 = a~^W2 , Ü3 = а~^^з ; a = const, ; 

and (3.13). 

4. Let us consider the transitive G-structure Б^. First of all, suppose the case (1.6), 
(1.7) and (1.15). The functions a, b, с being now constant, we have b = —^a, с = -Ja 
from (1.15). Next, let fcj = 1, ^2 = 0, a Ф 0. From b = const., we get b = —Je 
because of (З.92). Finally, consider the case (3.14). Applying i?2 to b{vib)~^'^^ = 
= const, and taking regard of (3.14)4, we get V2Vib = 0. From (З.144), ViV2b = 0, 
i.e., v^b =^ 0, this being a contradiction. Our result is as follows: Let BQ be transitive. 
Then there exist sections (v^, V2, v^ of BQ such that 

(4.1) [üi, 1̂ 2] = 1̂ 3. [рху ^ъ\ = a^i - i^^2 » [t̂ 2> %] = i^üi - ai?2 ; 

a = const. ; 
or 

(4.2) [üi, V2'] = v^ , [üi, v^l = £^1 - ;iei;2 , [1̂ 2» ̂ з̂] = -et>2 ; e = ± 1 ; 

resp. 

The problem of the construction of models of transitive G-structures turns now to 
be a (non-trivial!) exercise. Consider a flat product structure ^'^ = ^ J © ^l and 
its hypersurface M^ cz M"^. On M^, there is induced the G-structure of the considered 
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type: let m G M^, the frame (î ,̂ V2, v^) belongs to BQ if and only if Vp e Т,п{М^) n S^; 
p = 1, 2; Sp being determined by m e Ŝ  || ^^. Now, be given a transitive G-structure 
on M. In local coordinates (w'; i = 1, 2, 3), let Ü̂  = a\u). 5/̂ w', z;2 == ̂ '(^) • ^/^"* 
be the vector fields satisfying (4.1) or (4.2) resp. Let (x*", y""; a = 1, 2) be the co
ordinates in M"^ such that ^l or Ml is given by j;"^ = 0 or x"̂  = 0 resp. Let Ф : M -^ ^^ 
be an embedding given by x"" = x\u'), y"" = y\u^). Then 

(4.3) Ф.„. . aXu) -±J - + 4«) ^ - = '.Ли) ^ + . , / ~ . 

Our condition says 

(4.4) v^ y\u) = 0 , i;̂  x (̂u) = 0 ; a = 1, 2 . 

The problem is thus reduced to the exhibition of independent solutions of (4.4). 

Author's address: 118 00 Praha 1, Malostranské nam. 25, CSSR (Matematicko-fyzikalni 
fakulta UK). 
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