## Czechoslovak Mathematical Journal

Alois Švec<br>On a partial product structure

Czechoslovak Mathematical Journal, Vol. 24 (1974), No. 1, 107-113

Persistent URL: http://dml.cz/dmlcz/101221

## Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

# ON A PARTIAL PRODUCT STRUCTURE 

Alois Švec, Praha

(Received February 21, 1973)

In his paper published in Annali di Mat. (vol. 11, 1932, 17-90), E. Cartan solved the equivalence problem for real hypersurfaces in $\mathscr{C}^{2}$. Unfortunately, his approach is not very precise and effective. Because of this, I solve the equivalence problem using other more direct methods. In what follows, the equivalence problem has been solved for a class of partial product structures; the results are, evidently, equivalent to those of E . Cartan. The theory of real hypersurfaces in $\mathscr{C}^{n}$ will be treated in another paper.

1. Be given a 3-dimensional differentiable manifold endowed with a structure consisting of the choice of two tangent directions at each of its points. Such a structure gives rise to a $G$-structure $B_{G}$ as follows: the frame ( $v_{1}, v_{2}, v_{3}$ ), $v_{i} \in T_{m}(M)$, belongs to $B_{G}$ if and only if $v_{1}$ and $v_{2}$ span the given directions. If $\left(v_{1}, v_{2}, v_{3}\right) \subset B_{G}$ and $\left(w_{1}, w_{2}, w_{3}\right) \subset B_{G}$ are two (local) sections of $B_{G}$, there are functions $\alpha, \beta, \gamma, \delta, \varphi$ such that

$$
\begin{equation*}
v_{1}=\alpha w_{1}, \quad v_{2}=\beta w_{2}, \quad v_{3}=\gamma w_{1}+\delta w_{2}+\varphi w_{3} ; \quad \alpha \beta \varphi \neq 0 \tag{1.1}
\end{equation*}
$$

We have

$$
\begin{array}{ll}
{\left[v_{1}, v_{2}\right]=a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3},} & {\left[w_{1}, w_{2}\right]=A_{1} w_{1}+A_{2} w_{2}+A_{3} w_{3},}  \tag{1.2}\\
{\left[v_{1}, v_{3}\right]=b_{1} v_{1}+b_{2} v_{2}+b_{3} v_{3},} & {\left[w_{1}, w_{3}\right]=B_{1} w_{1}+B_{2} w_{2}+B_{3} w_{3},} \\
{\left[v_{2}, v_{3}\right]=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3},} & {\left[w_{2}, w_{3}\right]=C_{1} w_{1}+C_{2} w_{2}+C_{3} w_{3}}
\end{array}
$$

the functions $a_{1}, \ldots, C_{3}$ satisfy the Jacobi identities

$$
\begin{gather*}
{\left[v_{1},\left[v_{2}, v_{3}\right]\right]+\left[v_{2},\left[v_{3}, v_{1}\right]\right]+\left[v_{3},\left[v_{1}, v_{2}\right]\right]=0}  \tag{1.3}\\
{\left[w_{1},\left[w_{2}, w_{3}\right]\right]+\left[w_{2},\left[w_{3}, w_{1}\right]\right]+\left[w_{3},\left[w_{1}, w_{2}\right]\right]=0}
\end{gather*}
$$

Obviously,

$$
\begin{aligned}
{\left[v_{1}, v_{2}\right] } & =\left[\alpha w_{1}, \beta w_{2}\right]=\left(\alpha \beta A_{1}-v_{2} \alpha\right) w_{1}+\left(\alpha \beta A_{2}+v_{1} \beta\right) w_{2}+\alpha \beta A_{3} w_{3}= \\
& =a_{1} \alpha w_{1}+a_{2} \beta w_{2}+a_{3}\left(\gamma w_{1}+\delta w_{2}+\varphi w_{3}\right), \\
{\left[v_{1}, v_{3}\right] } & =\left[\alpha w_{1}, \gamma w_{1}+\delta w_{2}+\varphi w_{3}\right]=(.) w_{1}+(.) w_{2}+\left(v_{1} \varphi+\alpha \delta A_{3}+\alpha \varphi B_{3}\right) w_{3}= \\
& =(.) w_{1}+(.) w_{2}+b_{3} \varphi w_{3}, \\
{\left[v_{2}, v_{3}\right] } & =\left[\beta w_{2}, \gamma w_{1}+\delta w_{2}+\varphi w_{3}\right]= \\
& =(.) w_{1}+(.) w_{2}+\left(v_{2} \varphi-\beta \gamma A_{3}+\beta \varphi C_{3}\right) w_{3}=(.) w_{1}+(.) w_{2}+c_{3} \varphi w_{3},
\end{aligned}
$$

i.e.,
(1.4) $\quad \alpha \beta A_{1}-v_{2} \alpha=\alpha a_{1}+\gamma a_{3}, \quad \alpha \beta A_{2}+v_{1} \beta=\beta a_{2}+\delta a_{3}, \quad \alpha \beta A_{3}=\varphi a_{3}$,

$$
v_{1} \varphi+\alpha \delta A_{3}+\alpha \varphi B_{3}=\varphi b_{3}, \quad v_{2} \varphi-\beta \gamma A_{3}+\beta \varphi C_{3}=\varphi c_{3} .
$$

Let us restrict ourselves to the case of the non-integrability of the field of planes spanned by the vectors $v_{1}$ and $v_{2}$, i.e.,

$$
\begin{equation*}
a_{3} \neq 0 \tag{1.5}
\end{equation*}
$$

To a given section ( $w_{1}, w_{2}, w_{3}$ ) of $B_{G}$ there exist functions $\alpha, \ldots, \varphi$ such that $a_{3}=1$, $a_{1}=a_{2}=b_{3}=c_{3}=0$; from (1.3), we get $b_{1}+c_{2}=0, v_{1} c_{1}=v_{2} b_{1}, v_{1} b_{1}=$ $=-v_{2} b_{2}$. In $B_{G}$, there are always sections $\left(v_{1}, v_{2}, v_{3}\right)$ satisfying
(1.6) $\left[v_{1}, v_{2}\right]=v_{3},\left[v_{1}, v_{3}\right]=a v_{1}+b v_{2},\left[v_{2}, v_{3}\right]=c v_{1}-a v_{2}$,

$$
\begin{equation*}
v_{2} b=-v_{1} a, \quad v_{1} c=v_{2} a . \tag{1.7}
\end{equation*}
$$

Let the section $\left(w_{1}, w_{2}, w_{3}\right)$ of $B_{G}$ satisfy

$$
\begin{gather*}
{\left[w_{1}, w_{2}\right]=w_{3}, \quad\left[w_{1}, w_{3}\right]=A w_{1}+B w_{2},\left[w_{2}, w_{3}\right]=C w_{1}-A w_{2}}  \tag{1.8}\\
 \tag{1.9}\\
w_{2} B=-w_{1} A, \quad w_{1} C=w_{2} A
\end{gather*}
$$

Then

$$
\begin{gather*}
\varphi=\alpha \beta  \tag{1.10}\\
v_{1} \alpha=-2 \alpha \beta^{-1} \delta, \quad v_{2} \alpha=-\gamma  \tag{1.11}\\
v_{1} \beta=\delta, \quad v_{2} \beta=2 \alpha^{-1} \beta \gamma \\
v_{2} \gamma=\alpha c-\alpha \beta^{2} C, \quad v_{1} \delta=\beta b-\alpha^{2} \beta B \\
v_{1} \gamma-v_{3} \alpha=\alpha a-\alpha^{2} \beta A, \quad v_{2} \delta-v_{3} \beta=-\beta a+\alpha \beta^{2} A
\end{gather*}
$$

The integrability conditions of $\left(1.11_{1,2}\right)$ and $\left(1.11_{3,4}\right)$ being

$$
v_{3} \alpha=-v_{1} \gamma+2 \alpha \beta^{-1} v_{2} \delta-6 \beta^{-1} \gamma \delta, \quad v_{3} \beta=2 \alpha^{-1} \beta v_{1} \gamma-v_{2} \delta+6 \alpha^{-1} \gamma \delta,
$$

there is the function $x$ such that

$$
\begin{align*}
& v_{3} \alpha=\alpha \varkappa-\frac{3}{2} \beta^{-1} \gamma \delta-\frac{3}{4} \alpha a+\frac{3}{4} \alpha^{2} \beta A,  \tag{1.12}\\
& v_{3} \beta=\beta \varkappa+\frac{3}{2} \alpha^{-1} \gamma \delta+\frac{3}{4} \beta a-\frac{3}{4} \alpha \beta^{2} A, \\
& v_{1} \gamma=\alpha \varkappa-\frac{3}{2} \beta^{-1} \gamma \delta+\frac{1}{4} \alpha a-\frac{1}{4} \alpha^{2} \beta A, \\
& v_{2} \delta=\beta \varkappa+\frac{3}{2} \alpha^{-1} \gamma \delta-\frac{1}{4} \beta a+\frac{1}{4} \alpha \beta^{2} A .
\end{align*}
$$

The integrability conditions of the equations $\left(1.11_{1}\right)+\left(1.12_{1}\right),\left(1.11_{3}\right)+\left(1.12_{2}\right)$, $\left(1.11_{4}\right)+\left(1.12_{2}\right)$ and $\left(1.11_{2}\right)+\left(1.12_{1}\right)$ being

$$
\begin{aligned}
\alpha v_{1} \varkappa+2 \alpha \beta^{-1} v_{3} \delta= & \frac{7}{2} \alpha \beta^{-1} \delta \chi+\frac{9}{4} \beta^{-1} \gamma \delta^{2}-\frac{1}{8} \alpha \beta^{-1} \delta a+\frac{1}{2} \gamma b+\frac{3}{4} \alpha v_{1} a- \\
& -\frac{9}{8} \alpha^{2} \delta A-\frac{3}{2} \alpha^{2} \gamma B-\frac{3}{4} \alpha^{3} \beta w_{1} A, \\
\beta v_{1} \varkappa-v_{3} \delta= & -\frac{5}{2} \delta \chi-\frac{3}{4} \alpha^{-1} \beta^{-1} \gamma \delta^{2}-\frac{1}{8} \delta a+\frac{1}{2} \alpha^{-1} \beta \gamma b-\frac{3}{4} \beta v_{1} a+ \\
& +\frac{3}{8} \alpha \beta \delta A+\frac{3}{2} \alpha \beta \gamma B+\frac{3}{4} \alpha^{2} \beta^{2} w_{1} A, \\
\beta v_{2} \chi-2 \alpha^{-1} \beta v_{3} \gamma= & -\frac{7}{2} \alpha^{-1} \beta \gamma \varkappa+\frac{9}{4} \alpha^{-1} \gamma^{2} \delta-\frac{1}{8} \alpha^{-1} \beta \gamma a-\frac{1}{2} \delta c-\frac{3}{4} \beta v_{2} a- \\
& -\frac{9}{8} \beta^{2} \gamma A+\frac{3}{2} \beta^{2} \delta C+\frac{3}{4} \alpha \beta^{3} w_{2} A, \\
\alpha v_{2} \chi+v_{3} \gamma= & \frac{5}{2} \gamma \chi-\frac{3}{4} \alpha^{-1} \beta^{-1} \gamma^{2} \delta-\frac{1}{8} \gamma a-\frac{1}{2} \alpha \beta^{-1} \delta c+\frac{3}{4} \alpha v_{2} a+ \\
& +\frac{3}{8} \alpha \beta \gamma A-\frac{3}{2} \alpha \beta \delta C-\frac{3}{4} \alpha^{2} \beta^{2} w_{2} A,
\end{aligned}
$$

we obtain

$$
\begin{align*}
v_{3} \gamma= & 2 \gamma \varkappa-\alpha^{-1} \beta^{-1} \gamma^{2} \delta+\frac{1}{2} \alpha v_{2} a+\frac{1}{2} \alpha \beta \gamma A-\alpha \beta \delta C-\frac{1}{2} \alpha^{2} \beta^{2} w_{2} A,  \tag{1.13}\\
v_{3} \delta= & 2 \delta \varkappa+\alpha^{-1} \beta^{-1} \gamma \delta^{2}+\frac{1}{2} \beta v_{1} a-\frac{1}{2} \alpha \beta \delta A-\alpha \beta \gamma B-\frac{1}{2} \alpha^{2} \beta^{2} w_{1} A, \\
v_{1} \varkappa= & -\frac{1}{2} \beta^{-1} \delta \varkappa+\frac{1}{4} \alpha^{-1} \beta^{-2} \gamma \delta^{2}-\frac{1}{8} \beta^{-1} \delta a+\frac{1}{2} \alpha^{-1} \gamma b-\frac{1}{4} v_{1} a- \\
& -\frac{1}{8} \alpha \delta A+\frac{1}{2} \alpha \gamma B+\frac{1}{4} \alpha^{2} \beta w_{1} A, \\
v_{2} \varkappa= & \frac{1}{2} \alpha^{-1} \gamma \varkappa+\frac{1}{4} \alpha^{-2} \beta^{-1} \gamma^{2} \delta-\frac{1}{8} \alpha^{-1} \gamma a-\frac{1}{2} \beta^{-1} \delta c+\frac{1}{4} v_{2} a- \\
& -\frac{1}{8} \beta \gamma A-\frac{1}{2} \beta \delta C-\frac{1}{4} \alpha \beta^{2} w_{2} A .
\end{align*}
$$

The integrability conditions of the equations $\left(1.11_{5}\right)+\left(1.13_{1}\right)$ and $\left(1.11_{6}\right)+\left(1.13_{2}\right)$ are

$$
\begin{equation*}
k_{1}=\alpha^{3} \beta K_{1}, \quad k_{2}=\alpha \beta^{3} K_{2}, \tag{1.14}
\end{equation*}
$$

where

$$
\begin{array}{ll}
k_{1}=v_{1} v_{1} a-2 v_{3} b-3 a b, & k_{2}=v_{2} v_{2} a-2 v_{3} c+3 a_{c}, \\
K_{1}=w_{1} w_{1} A-2 w_{3} B-3 A B, & K_{2}=w_{2} w_{2} A-2 w_{3} C+3 A C .
\end{array}
$$

If $k_{1} k_{2} \neq 0$, there exists a section $\left(v_{1}, v_{2}, v_{3}\right)$ such that $k_{1}=k_{2}=1$. Of course, $\alpha=\varepsilon= \pm 1, \beta=\varepsilon$ and, as a consequence of $\left(1.11_{2,3}\right)+(1.10), \gamma=\delta=0, \varphi=1$. The next result follows: In $B_{G}$, choose a section $\left(v_{1}, v_{2}, v_{3}\right)$ satisfying (1.6). If $k_{1} k_{2} \neq$ $\neq 0$, there are exactly two sections $\left(v_{1}, v_{2}, v_{3}\right)$ such that we have (1.6), (1.7) and

$$
\begin{equation*}
k_{1}=v_{1} v_{1} a-2 v_{3} b-3 a b=1, \quad k_{2}=v_{2} v_{2} a-2 v_{3} c+3 a_{c}=1 . \tag{1.15}
\end{equation*}
$$

$\left(v_{1}, v_{2}, v_{3}\right)$ being one of these sections, the other one is $w_{1}=-v_{1}, w_{2}=-v_{2}$, $w_{3}=v_{3}$.
2. Next, suppose

$$
\begin{equation*}
k_{1}=k_{2}=0 \tag{2.1}
\end{equation*}
$$

Consider the system
(2.2) $v_{1} \alpha=-2 \alpha \beta^{-1} \delta, \quad v_{2} \alpha=-\gamma, \quad v_{3} \alpha=\alpha x-\frac{3}{2} \beta^{-1} \gamma \delta-\frac{3}{4} \alpha a$, $v_{1} \beta=\delta, \quad v_{2} \beta=2 \alpha^{-1} \beta \gamma, \quad v_{3} \beta=\beta \varkappa+\frac{3}{2} \alpha^{-1} \gamma \delta+\frac{3}{4} \beta a$,
$v_{1} \gamma=\alpha x-\frac{3}{2} \beta^{-1} \gamma \delta+\frac{1}{4} \alpha a, \quad v_{2} \gamma=\alpha c, \quad v_{3} \gamma=2 \gamma x-\alpha^{-1} \beta^{-1} \gamma^{2} \delta+\frac{1}{2} \alpha v_{2} a$,
$v_{1} \delta=\beta b, \quad v_{2} \delta=\beta \varkappa+\frac{3}{2} \alpha^{-1} \gamma \delta-\frac{1}{4} \beta a, \quad v_{3} \delta=2 \delta \chi+\alpha^{-1} \beta^{-1} \gamma \delta^{2}+\frac{1}{2} \beta v_{1} a$,
$v_{1} x=-\frac{1}{2} \beta^{-1} \delta x+\frac{1}{4} \alpha^{-1} \beta^{-2} \gamma \delta^{2}-\frac{1}{8} \beta^{-1} \delta a+\frac{1}{2} \alpha^{-1} \gamma b-\frac{1}{4} v_{1} a$,
$v_{2} \chi=\frac{1}{2} \alpha^{-1} \gamma \chi+\frac{1}{4} \alpha^{-2} \beta^{-1} \gamma^{2} \delta-\frac{1}{8} \alpha^{-1} \gamma a-\frac{1}{2} \beta^{-1} \delta c+\frac{1}{4} v_{2} a$
obtained from $(1.11)+(1.12)+(1.13)$ by means of the substitution $A=B=C=0$. The integrability conditions of $\left(2.2_{8,9}\right)$ and $\left(2.2_{10,12}\right)$ are $\alpha k_{2}=0, \beta k_{1}=0$, and they are satisfied. The integrability condition of $\left(2_{7,9}\right)$ is

$$
\begin{gather*}
v_{3} \varkappa=\varkappa^{2}+\frac{1}{4} \alpha^{-2} \beta^{-2} \gamma^{2} \delta^{2}-\frac{1}{16} a^{2}-b c+\frac{1}{4} \alpha^{-1} \gamma v_{1} a-\frac{1}{4} \beta^{-1} \delta v_{2} a+  \tag{2.3}\\
+\frac{1}{4} v_{3} a+\frac{1}{2} v_{2} v_{1} a,
\end{gather*}
$$

this being the integrability condition of $\left(2_{11,12}\right)$ as well. The integrability condition of $\left(2.2_{13,14}\right)$ is satisfied identically. Finally, the integrability conditions $\alpha^{-1} \gamma k_{1}+$ $+2 v_{2} k_{1}=0, \quad \beta^{-1} \delta k_{2}-2 v_{1} k_{2}=0$ of $\left(2.2_{11}\right)+(2.3)$ and $\left(2.2_{12}\right)+(2.3)$ are satisfied. The system (2.2) $+(2.3)$ being completely integrable, we obtain the following result: In $B_{G}$, choose a section ( $v_{1}, v_{2}, v_{3}$ ) satisfying (1.6). If $k_{1}=k_{2}=0$, there are, in $B_{G}$, sections ( $v_{1}, v_{2}, v_{3}$ ) satisfying

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=0, \quad\left[v_{2}, v_{3}\right]=0 \tag{2.4}
\end{equation*}
$$

3. Finally, suppose $k_{1} \neq 0, k_{2}=0$, the case $k_{1}=0, k_{2} \neq 0$ is symmetric. In $B_{G}$, there are sections $\left(v_{1}, v_{2}, v_{3}\right)$, satisfying (1.6), (1.7) and

$$
\begin{equation*}
k_{1}=v_{1} v_{1} a-2 v_{3} b-3 a b=1, \quad k_{2}=v_{2} v_{2} a-2 v_{3} c+3 a c=0 . \tag{3.1}
\end{equation*}
$$

$\left(v_{1}, v_{2}, v_{3}\right)$ and ( $w_{1}, w_{2}, w_{3}$ ) being two such sections, we get $\beta=\alpha^{-3}$ from (1.13). From $\left(1.11_{3,4}\right)+\left(1.12_{2}\right)$,

$$
\begin{gather*}
v_{1} \alpha=-\frac{1}{3} \alpha^{4} \delta, \quad v_{2} \alpha=-\frac{2}{3} \gamma,  \tag{3.2}\\
v_{3} \alpha=-\frac{1}{3} \alpha \psi-\frac{1}{2} \alpha^{3} \gamma \delta-\frac{1}{4} \alpha a+\frac{1}{4} \alpha^{-1} A .
\end{gather*}
$$

Comparing with $\left(1.11_{1,2}\right)+\left(1.12_{1}\right)$ we get $\gamma=\delta=0$ and

$$
\begin{equation*}
x=\frac{3}{8} a-\frac{3}{8} \alpha^{-2} A . \tag{3.3}
\end{equation*}
$$

The system (3.2) reduces to

$$
\begin{equation*}
v_{1} \alpha=0, \quad v_{2} \alpha=0, \quad v_{3} \alpha=-\frac{3}{8} \alpha a+\frac{3}{8} \alpha^{-1} A, \tag{3.4}
\end{equation*}
$$

the integrability condition of $\left(3.4_{1,2}\right)$ being

$$
\begin{equation*}
\alpha a=\alpha^{-1} A \tag{3.5}
\end{equation*}
$$

Suppose $a \neq 0$. Then there are, in $B_{G}$, sections $\left(v_{1}, v_{2}, v_{3}\right)$ satisfying

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=\varepsilon v_{1}+b v_{2}, \quad\left[v_{2}, v_{3}\right]=c v_{1}-\varepsilon v_{2} ; \quad \varepsilon= \pm 1 ; \tag{3.6}
\end{equation*}
$$

from (3.5), we get $\alpha^{2}=1$. From (1.7) and (3.1),

$$
\begin{equation*}
v_{2} b=0, \quad v_{3} b=-\frac{1}{2}-\frac{3}{2} \varepsilon b, \quad v_{1} c=0, \quad v_{3} c=\frac{3}{2} \varepsilon c \tag{3.7}
\end{equation*}
$$

The integrability conditions of $\left(3.7_{1,2}\right)$ and (3.7 $7_{3,4}$ ) are $c v_{1} b=0$ and $b v_{2} c=0 \mathrm{resp}$. Suppose $v_{1} b=0$. From (3.7), $b=-\frac{1}{3} \varepsilon$ and $v_{2} c=0$; from (3.73), $c=0$. In $B_{G}$, choose a section $\left(v_{1}, v_{2}, v_{3}\right)$ satisfying (1.6). If $k_{1}=1, k_{2}=0, a \neq 0$, there exist exactly two sections $\left(v_{1}, v_{2}, v_{3}\right),\left(-v_{1},-v_{2}, v_{3}\right)$ satisfying

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=\varepsilon v_{1}+b v_{2}, \quad\left[v_{2}, v_{3}\right]=\varepsilon v_{2} ; \varepsilon= \pm 1 ;}  \tag{3.8}\\
 \tag{3.9}\\
v_{2} b=0, \quad v_{3} b=-\frac{1}{2}-\frac{3}{2} \varepsilon b .
\end{gather*}
$$

Suppose $a=0$. The system (3.4) reduces to $v_{1} \alpha=v_{2} \alpha=v_{3} \alpha=0$. In $B_{G}$, there exist sections $\left(v_{1}, v_{2}, v_{3}\right)$ satisfying

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=b v_{2}, \quad\left[v_{2}, v_{3}\right]=c v_{1},}  \tag{3.10}\\
v_{2} b=0, \quad v_{3} b=-\frac{1}{2}, \quad v_{1} c=0, \quad v_{3} c=0 . \tag{3.11}
\end{gather*}
$$

From (1.115,6),

$$
\begin{equation*}
c=\alpha^{-4} C, \quad b=\alpha^{2} B . \tag{3.12}
\end{equation*}
$$

The integrability conditions of the system (3.11) are $c v_{1} b=0, b v_{2} c=0$. From $v_{1} b=$ $=0$ and (3.11 ) it follows $v_{3} b=0$, this being a contradiction. Thus $v_{1} b \neq 0$ and $c=0$. From (3.12), $v_{1} b=\alpha^{2} v_{1} B=\alpha^{3} w_{1} B$, i.e.,

$$
\begin{equation*}
b\left(v_{1} b\right)^{-2 / 3}=B\left(w_{1} B\right)^{-2 / 3} . \tag{3.13}
\end{equation*}
$$

The following result follows: In $B_{G}$, choose a section ( $v_{1}, v_{2}, v_{3}$ ) satisfying (1.6). If $k_{1}=1, k_{2}=0, a=0$, there are sections satisfying

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=b v_{2}, \quad\left[v_{2}, v_{3}\right]=0 ;}  \tag{3.14}\\
v_{2} b=0, \quad v_{3} b=-\frac{1}{2} .
\end{gather*}
$$

The section $\left(w_{1}, w_{2}, w_{3}\right)$ satisfying analoguous equations.

$$
\begin{equation*}
\left[w_{1}, w_{2}\right]=w_{3}, \quad\left[w_{1}, w_{3}\right]=B w_{2}, \quad\left[w_{2}, w_{3}\right]=0, \tag{3.15}
\end{equation*}
$$

we have

$$
\begin{equation*}
v_{1}=\alpha w_{1}, \quad v_{2}=\alpha^{-3} w_{2}, \quad v_{3}=\alpha^{-2} w_{3} ; \quad \alpha=\text { const. } \tag{3.16}
\end{equation*}
$$

and (3.13).
4. Let us consider the transitive $G$-structure $B_{G}$. First of all, suppose the case (1.6), (1.7) and (1.15). The functions $a, b, c$ being now constant, we have $b=-\frac{1}{3} a, c=\frac{1}{3} a$ from (1.15). Next, let $k_{1}=1, k_{2}=0, a \neq 0$. From $b=$ const., we get $b=-\frac{1}{3} \varepsilon$ because of (3.92). Finally, consider the case (3.14). Applying $v_{2}$ to $b\left(v_{1} b\right)^{-2 / 3}=$ $=$ const. and taking regard of $(3.14)_{4}$, we get $v_{2} v_{1} b=0$. From (3.144), $v_{1} v_{2} b=0$, i.e., $v_{3} b=0$, this being a contradiction. Our result is as follows: Let $B_{G}$ be transitive. Then there exist sections $\left(v_{1}, v_{2}, v_{3}\right)$ of $B_{G}$ such that

$$
\begin{gather*}
{\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=a v_{1}-\frac{1}{3} a v_{2}, \quad\left[v_{2}, v_{3}\right]=\frac{1}{3} a v_{1}-a v_{2} ;}  \tag{4.1}\\
a=\text { const. } ;
\end{gather*}
$$

or

$$
\begin{equation*}
\left[v_{1}, v_{2}\right]=v_{3}, \quad\left[v_{1}, v_{3}\right]=\varepsilon v_{1}-\frac{1}{3} \varepsilon v_{2}, \quad\left[v_{2}, v_{3}\right]=-\varepsilon v_{2} ; \quad \varepsilon= \pm 1 ; \tag{4.2}
\end{equation*}
$$

resp.
The problem of the construction of models of transitive $G$-structures turns now to be a (non-trivial!) exercise. Consider a flat product structure $\mathscr{R}^{4}=\mathscr{R}_{1}^{2} \oplus \mathscr{R}_{2}^{2}$ and its hypersurface $M^{3} \subset \mathscr{R}^{4}$. On $M^{3}$, there is induced the $G$-structure of the considered
type: let $m \in M^{3}$, the frame $\left(v_{1}, v_{2}, v_{3}\right)$ belongs to $B_{G}$ if and only if $v_{p} \in T_{m}\left(M^{3}\right) \cap S_{p}^{2}$; $p=1,2 ; S_{p}^{2}$ being determined by $m \in S_{p}^{2} \| \mathscr{R}_{p}^{2}$. Now, be given a transitive $G$-structure on $M$. In local coordinates ( $u^{i} ; i=1,2,3$ ), let $v_{1}=a^{i}(u) . \partial / \partial u^{i}, v_{2}=b^{i}(u) . \partial / \partial u^{i}$ be the vector fields satisfying (4.1) or (4.2) resp. Let ( $x^{\alpha}, y^{\alpha} ; \alpha=1,2$ ) be the coordinates in $\mathscr{R}^{4}$ such that $\mathscr{R}_{1}^{2}$ or $\mathscr{R}_{2}^{2}$ is given by $y^{\alpha}=0$ or $x^{\alpha}=0$ resp. Let $\Phi: M \rightarrow \mathscr{R}^{4}$ be an embedding given by $x^{\alpha}=x^{\alpha}\left(u^{i}\right), y^{\alpha}=y^{\alpha}\left(u^{i}\right)$. Then

$$
\begin{align*}
& \Phi_{*} v_{1}=a^{i}(u) \frac{\partial x^{\alpha}(u)}{\partial u^{i}} \frac{\partial}{\partial x^{\alpha}}+a^{i}(u) \frac{\partial y^{\alpha}(u)}{\partial u^{i}} \frac{\partial}{\partial y^{\alpha}}=v_{1} x^{\alpha}(u) \frac{\partial}{\partial x^{\alpha}}+v_{1} y^{\alpha} \frac{\partial}{\partial y^{\alpha}}  \tag{4.3}\\
& \Phi_{*} v_{2}=b^{i}(u) \frac{\partial x^{\alpha}(u)}{\partial u^{i}} \frac{\partial}{\partial x^{\alpha}}+b^{i}(u) \frac{\partial y^{\alpha}(u)}{\partial u^{i}} \frac{\partial}{\partial y^{\alpha}}=v_{2} x^{\alpha}(u) \frac{\partial}{\partial x^{\alpha}}+v_{2} y^{\alpha} \frac{\partial}{\partial y^{\alpha}}
\end{align*}
$$

Our condition says

$$
\begin{equation*}
v_{1} y^{\alpha}(u)=0, \quad v_{2} x^{\alpha}(u)=0 ; \quad \alpha=1,2 \tag{4.4}
\end{equation*}
$$

The problem is thus reduced to the exhibition of independent solutions of (4.4).
Author's address: 11800 Praha 1, Malostranské nám. 25, ČSSR (Matematicko-fyzikální fakulta UK).

