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COMPLETELY DECOMPOSABLE ABELIAN GROUPS ANY PURE
SUBGROUP OF WHICH IS COMPLETELY DECOMPOSABLE

LADISLAV BicaN, Praha

(Received February 13, 1972)

In this paper we shall study the completely decomposable torsion free abelian
groups any pure subgroup of which is completely decomposable, again. Concerning
the groups the type set of which satisfies the maximum condition we obtain a full
description (Theorem 1). For to describe the class of all such groups it suffices to
know all such groups the type set of which contains an infinite increasing sequence
%, < %, < ... such that for every % e #(G) there is £ < £, for some n and the set
{#,2€%(G), t < 1,} is inversely well ordered for every n (Theorem 2).

All the groups considered below will be torsion free abelian groups. In what follows
we shall use the following notation: h$(g) (z%(g), 2°(g) resp.) denotes the p-height
(the height, the type resp.) of the element g in the group G. If 7 is a height then %
will be the type to which the height © belongs. By T(G) we denote the set of the types

of all direct summands J, of a completely decomposable group G = ). J, (it is well-
acAd

known that T(G) is an invariant of G — see Theorem 46.1 in [1]). #(G) will denote the
type set of the group G, i.e. the set of the t%(g) for all g € G, g + 0. Other notation
and terminology will be essentially that as in [1]. Especially, r(G) is the rank of G
and 7, “ 7, denotes the incomparability of the types %, £,.

We start our investigations with some preliminary lemmas.

Lemma 1. Let J;, i = 1, 2, 3 be three reduced torsion free groups of rank one and
of the types t;, i = 1,2, 3 satisfying %, [I %3, T4 =2 %, v 3. Then the group G =
= J, + J, + J; contains a pure subgroup which is not completely decomposable.

Proof. Let p be a prime for which J, (and hence J,, J5) is not p-divisible. Let us
take the elements 0 & u; e J;, i = 1,2, 3, with h$(u;) = 0, i = 1, 2, 3. We are going
to show that S = {u; + pu,, u; + pus}§ is not completely decomposable. Proving
indirectly let us suppose S = I, 4 I,. Then necessarily #(I,) = %,, #(I,) = £ and
hence u, + pu,el,, u; + pusel,. Further plu, — us) = (uy + puy) —
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- (“1 + Pus)eS, hence u, — u3eS, S being pure in G. Therefore u, — uy =
=hy + hy, hyel,, hyel,, from hich p(u, — u3) = phy + ph, = (u; + pu,) —
— (uy + pus). In view of the form of S we have ph, = u, + pu, which yields a con-
tradiction with hS(u,) = 0.

Lemma 2, Let J,, i = 1,2, 3 be three reduced torsion free group of rank one and
of thetypes %, i = 1,2, 3. If any pure subgroup of G = J{ 4 J, 4+ J3 is completely
decomposable then the set {t; N 1,, t; N 13, 1, N %3, T, N T, N 13} is ordered (in
the natural order of the types) and contains at most two different elements.

Proof. a) If the types £, N %,, T N 13, %, N %5, %, N T, N 5 are pair-wise different
and 0+ u;eJ, i =1,2,3 are arbitrary elements then the pure subgroup S =
= {u, + uy, u, + us}y of G contains the elements u; + uy, uy — uz = (u; + uy) —
— (uy + u3), uy + us, uy + 2uy + uy = (ug + uy) + (uy + u;) of these four
types and therefore it is not completely decomposable.

b) Let the set {£; N %,, T, N %3, %, N %3, %, N T, N £3} contains two incomparable
types. Without loss of generality we can assume £, N %, | £, N t;. For &, N %3 =
=%, n%, wehave t;, n %, =%, n%, n%3 £ %, N %; — a contradiction. Similarly
we show that £, N %5 cannot be equal to 2, N %; so that £, "%, =%, N, N %; by the
part a). Since all the J;, i = 1, 2, 3 are reduced there exists a prime p and the elements
0% ueld, i=1,2,3 with hj(u,) = 0, hj(u,) = 1, h¥(uz) = 1. Let us suppose
that the pure subgroup S = {u; + u,, uy + u3}§ of G is completely decomposable,
S =1, + I,. Then necessarily #(I,) = %, N %,, #(I,) =%, n%; and u, + u, €l,,
u, + usely Now up —uy = (ug + uy) — (u; + us) yields h§(u, — u3) =0 —
a contradiction. Therefore the set {#; N %5, £; N %3, %, N %5, %, N %, N £3} is ordered.

c) If theset {#; N1, 2, N2, 2, N %5, 2,0 %, N f3} contains two different ele-
ments then we can without loss of generality assume that t, N £, > £, N %, N ;.
Then T, Nnt; =1%,n1%; =%, n%, n1T; because the assumption £, N %3 > £, N
N %, N %5 (and similarly £, N %3 > %; N %, N %) leads to a contradiction £, N %, N
Nty = (8 nt)n (i, n%;) >t "%, N t;. Lemma 2 is therefore proved.

Lemma 3. Let J,, i = 1,2, 3,4, 5 be five reduced torsion free groups of rank one
and of the types t,,i = 1,2, 3, 4, 5satisfying £, 0 £, | t3 0 tyand t5s = (£, N %)) 0
N (%3 0 2,). Then the group G = J, + J, + J3 + J4 4+ Js contains a pure sub-
group which is not completely decomposable.

Proof.Let0 + u; e J;, i = 1, 2, 3, 4, 5 be arbitrary elements. If the pure subgroup
S = {u; + uy, usy + uy, us}y is completely decomposable then it suffices to use
Lemma 1 for obtaining of a pure subgroup of S (and hence of G) which is not com-
pletely decomposable.
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Lemma 4. (see [7]). Let H be a pure s-ubgroup of a torsion free group G, G = G|H.
The 1%(g) = V %(g + h) forany ge G, g + 0.
heH

Proof. It is clar that 7%(§) = V (g + h). On the other hand, if the equation
heH
p'% = g is solvable in G then p*x = g + h for some h € H and we are ready.

0

Lemma 5. Let H = Z J, be a completely decomposable torsion free group of

n=1
infinite countable rank and J be a torsion free group of rank one such, that
#(J) || #(J,) and #(J,) = #(J,41)s n = 1,2, ... Then the group G = H } J contains
a pure subgroup which is not completely decomposable.

Proof. For the sake of simplicity we shall write simply %, £, instead of %(J), #(J,).
For the types %, ,, £, we can with respect to Lemma 2 assume that the types £ n £,
and %, = 7, n %, are comparable. Since £ = 2 n £; = %, for some n is impossible
wegett Nt < f,foralln = 1,2,... We must consider two cases:

a) There exists a prime p such that J is p-divisible and J,, for some n, is not p-
divisible. Without loss of generality we can assume n = 1. Let us take 0 + ue J
arbitrarily and 0 = u; € J; such that h$(u;) = i. If the pure subgroup S = {u + u,,
Uy — Uy Uy — Uz, ..oy Uy — Upyy, .. )5 if G Of completely decomposable then neces-
sarily S¥(2 N %;) = {u; — uy, uy — us, ..y Uy — Uyyq, ...}5 must be a direct sum-
mand of S. But any element of S ~ S*(% N %) is clearly of the type £ N £,(= % N 2,),
hence it is of finite p-height, while the factor-group S/S*(¢ N £,) is p-divisible owing
to Lemma 4. This contradiction shows that S is not completely decomposable.

b) Now we can assume that if J is p-divisible then so is H. Let p,, p,, ... be the
sequence of all primes in increasing order of magnitude and 0 % u € J is an arbitrary
element. In this case, it is easy to see that we can choose the elements 0 % u; € J;
with kS (u;) = h§(u). Asin the part a)let us take S = {u + uy, uy — Uy, uy — us, ...

coy Uy — Upyq, ...} Any element from S + S*(¢ N £,) is of the type £ N %, while
the factor-group S/S*(% N %) is of the type ¥’ = £ by Lemma 4. The same arguments
as in the part a) show that S is not completely decomposable.

Lemma 6. Let £, 7' be two incomparable types and J be a torsion free group of
o)

rank one and of the type t. Further, let H = Z J, be a completely decomposable
n=1

torsion free group of infinite countable rank where #(J,) = %, 2 ¥ and 1, % =
=2 ntforalln=1,2,... Then G = H 4 J contains a pure subgroup which is
not completely decomposable.

Proof. For any n = 1, 2, ... there is £ " %, since the assumption £ > £, leads to

A

a contradiction £ = ¥ n % = £, n % = £, = ¢’ while the assumption £, = % leads to

178



A

a contradiction?’ = T n £ = £, n ¥ = £. Asin the preceding proof we shall consider
two cases:

a) There exists a prime p such that J is p-divisible and H is not p-divisible. Taking
0 % u e J arbitrarily and 0 # u; € J; such that hg(ui) = i we easily obtain that the
group S = {u + u;, Uy — Uy, Uy — Uz, ..., Uy — Uyyq, ...}y contains only the
elements the types of which are either greater than or equal to %’ or equal to £ N %'.
If S is completely decomposable then S(#) is a direct summand of S. But any element
of S = S(#) is of the type £ N #’, hence it is of finite p-height, while the factor-group
S/S(#) is p-divisible owing to Lemma 4. This contradiction shows that S is not com-
pletely decomposable.

b) We shall assume now that if J is p-divisible then so is H. We omit the proof of
this part since it is similar to the proof of the corresponding part of the preceding
Lemma.

Lemma 7. Let G be a completely decomposable torsion free group having the
property that for any four not necessarily different elements %, i =1,2,3,4
from T(G) with &, " %, | #5 0 %, there is G(2; N %,) N G(t3 N &) = 0. Then for
any three elements %, %5, t; from T(G) the set {t; N 7,,T; N 13,2, N T3, T, N T, N
N 13} is ordered and contains at most two different elements.

Proof. If the considered set is not ordered then we can without loss of generality
assume that 2, N £, | £, N %5 which implies 0 + G(¢,) = G(%; N %,) N G(%; N %;) —
a contradiction. Now if in the considered set is 2, n %, > £, N %, N £, then neces-
sarily 2, N %3 = %, N t3 = %; N £, N %3 (see the part ¢) of the proof of Lemma 2).

Lemma 8. Let G be a completely decomposable torsion free group satisfying the
condition of the preceding Lemma. If %,, %, are elements of T(G) such that %, N
Nty =1%,and t, > %, > ... then for any n = 1,2, ... there is either 1, = 1] N 1,

Al

ort, =% 01,

Proof. For n = 1 there is nothing to prove. For n > 1 we have ] = £, n %,
> %, and hence t; n %, = %,. For i n %, > £, Lemma 7 gives {1 n %, > 1, =

n =
A N

=1, n 1, = 1] N 1, and we are ready.

AL
Tn

o

Lemma 9. Let G = J |+ Z J, be a completely decomposable torsion free group
n=1

satisfying the condition of Lemma 7 where J, J,, n = 1,2, ... are of rank one and
of the types #(J) =1, #(J,) =%, and t Nt =2, £, > 1,0, n=1,2,... If S is
a rank one pure subgroup of G such that SnJ=0,SnJ,=0,n=1,2,...
then #(S) = %, for some n.
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k
Proof. If an element 0 + s S has a non-zero component in J, s = u + ) u,,
Kk i=1

O+ueld, O+u;eld,, ny<m<..<m, kz1 then t%s) =2 N1, =
k i=1

%

k
= N %,, = %, If the component of s in J is zero, s =) u;, 0+ u;eJ,, n; <
i=1 i=1

<n,<..<m, kz2 then tnt, >1tnt, =1, yilds %,

N —1 Mic— 1
N, by Lemma 7 and %%s)=1%, nt,n...N¢%

N -1
& A A A A A
.0t ,ntnt, =1, nt,n...0%, _,nt, =1,.

A

Al
Nt =%n
Nt =%, 0t n..

Lemma 10. Let G be a completely decomposable torsion free group having the
property that for any four not necessarily different elements £, i =1,2,3,4
from T(G) with %, N %, || %5 N %, there is G(2; N %,) N G(t3 N £,) = 0. Then any
finite set ©(,%,, ..., %, of elements of T(G) contain two elements having the same
intersection as this set.

Proof. We shall use the induction by n. For n = 3 our assertion follows immedi-
ately from Lemma 7. Let us suppose n > 3 and our assertion is true for n — 1. By
the induction hypothesis we can without loss of generality assume 2, N1, 0 ...
...n?_; =% nthencet; nt, n...n%, =%, n%, n%,and our lemma follows
by the induction hypothesis.

Lemma 11. Under the hypothesis of the preceding lemma the set {t', %' e #(G),
%' < t} where % is an arbitrary element of %(G) contains at most one maximal
element.

Proof: Suppose that £, £, are two maximal elements of the considered set. Then
necessarily %, || £, and the inclusion 0 + G(%) = G(%,) N G(%,) together with the
preceding lemma yields a contradiction.

Lemma 12. Let G = ZJa be a completely decomposable torsion free group

acAd

where J, is of rank one and of the type %,. If A is uncountable and for any o, € A,
o % f there is %, ” %5 and t, 0 Ty = 1 then G contains a pure subgroup which is not
completely decomposable.

Proof. Let B be any infinite countable subset of A. We can clearly assume that B

0

is the set of all ordered couples (i, j) of natural integers. Hence H = Z J, = Z Ji
aeB i,j=1

is a countable direct summand of G. If py, p,, ... is the sequence of all primes in

increasing order of magnitude then we can choose 0 % u;;€J;;, i,j=1,2,...

with hS(u;;) = j. Let J be one of the J,, « ¢ B and 0 + u € J an arbitrary element.

Taking 0 #+ u, e J,, J, + J, a¢ B arbitrarily let us put S = {u — u,, u — uy,
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coeA =B i,j=1,2, }f,f Supposing S is completely decomposable we get that
{fu—uij=12,.. }f,f is contained in a countable completely decomposable direct
summand S’ of S. On the one hand the factor group S/S’ is homogeneous of the
type % since so is S. On the other hand from the uncountability of S it follows the
existence of u — u, ¢ S’. Further, if k; is a natural integer, k; < h%(u,) + 1 (here
we put oo+ 1=o0) then hS(u, —u;y) = hi((u —ux) — (u — u,)) 2 k.
Therefore, by Lemma 4, the coset (v — u,) + S’ is at least of the type %, > £ —
a contradiction proving our lemma.

Lemma 13. Let G be a completely decomposable torsion free group of finite
rankn, G = J, + J, + ... + J, and let S be a pure subgroup of G of rank r < n.
Then S contains a maximal linearly independent set sy, s, ..., S, of the form

(1) Sp = Xy + Z ll,ixia

i=r+1

S = X3 +212u X; 5

i=r+1

where x; € J; in a suitable enumeration of J;’s.

Proof. We shall use the induction by r. For r = 1 there is nothing to prove. For

n
r > 1 we can assume that 0 & s = xj + Y Aix}, xje J,, i =1,2,...,n, x; £ 0is
i=2
"

an arbitrary element of S. The group Sn (z J;) is of rank r — 1 since the factor-

group S/S N (Z J) = {SZ Ji} Z J; is non-zero of rank one. By the induction

hypothesis it clearly contams a max1mal linearly independent set s5, ..., s, of the form
(J2, ..., J, are suitably enumerated)

, "
S; =X -+ ZA‘Zl Xi s

i=r+1

s, = x + Z i

i=r+1
Now it is easy to see that if we add a suitable linear combination of s5, ..., s, to a suit-
able multiple of s} (rewritten in a new enumeration of J,, ..., J,) we get a maximal

linearly independent set of S having the form (1)
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n2

Lemma 14. Let G; = Z J;and G, = ZIJ- be completely decomposable torsion
=1

i=1
free groups of finite ranks n,, n, resp. If S is a pure subgroup of G = G, + G,
of rank r < ny + ny, SNnG)=r,i=1,2r=r +r,+r then S contains
a maximal linearly independent set s, s,, ..., Sy Tis oy eeny by Uy, Ugy ooy U Of
the form

ny

(2) 51 =X + Z Ay,iXi s
i=r;+1
ny
S = X, + Y A,
i=ri+1
ny
Sre T Xp + ApyiXis
i=ri+1
n2
= + Y M
. i=ry+1
n
, = Y2 + Z H2.iYis
. i=ra+1
: "
trz = yrz + Z :urz,iyia
i=ra+1
ny n2
Uy = X, 41 + Y vexi Y %L
i=ry+r'+1 i=ra+1
ny n
U, = Xy 42 + Y v+ Y %Yo
i=ri+r+1 i=ra+1

ny

nz
ritr’ + Z VeriXi + Z e LiVi

i=ry+r+1 i=ra+1

u, = X

where x; € J;, y; €1; in a suitable enumeration of the groups J; and I;.

Proof. We shall use the induction by r'. For r' = 0 it suffices to use Lemma 13
for SN G, i =1,2. For v > 0 let S’ be any pure subgroup of S of rank r — 1
containing S n G;, S n G,. By the induction hypothesis S’ contains a maximal
linearly independent set 3, 52, ..., S, 11, 5, ..., b, U3, Uy, ..., U, having the form

like (2) (where instead of x;, y; are xi, y; etc.). It is easy to see that one can choose

ny ny
an element u,. in S = S’ having the form u;. = Y . xi+ Y 2.y Here
i=ry+r’ i=ra+1

not all v, ; are equal to zero since for v, ; = 0, i = r; + ¥/, ..., ny the element u;.
lies in S N G, and therefore in S’. Now the proof can be easily finished.
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Lemma 15. Let

ay11, 449, ..., Ay,
A= |20 .z

be a regular matrix over the ring of integers and let us denote its determinant

by D. If for some integers y,, 7, ..., Vs G pnme p divides all the Z) i j =1,
2,...,n then p divides all the y;,D,i =1,2,.

Proof. Considering a row vector y = (y, 95, ...,7,) as a (1, n)-matrix we can
multiply the matrix product y . A by the adjoint matrix of A on the right from which
the assertion easily follows.

Lemma 16. Let G, = Z J;and G, = ZI be completely decomposable torsion
=1
free groups of finite ranks ny, n, respectively satisfying t, n1t, =% for any
#,€1(G;),i = 1,2. Let S, S’ be pure subgroups of G = G, + G, suchthat(S n G, +
+ SN G,) = S & S. Then the factor-group S|S’ is homogeneous of the type %.

Proof. If we denote (SN G)=r, i=1,21S)=r,r=r +r, +r, then
by Lemma 14 S’ contains a maximal linearly independent set of the form (2). Any
non-zero element from S = S’ has a non-zero multiple which is a linear combination
of the elements Xy, X5, -.., X,,, V1, Y2, +-., ¥, and the corresponding coset of S/S’
clearly contains an element s # 0 of the form

ni

na
3) s= 3 exi+ Y oy,

i=rp+r'+1 i=ry+1

where not all g; and not all ¢; are equal to zero. From the linear independence of
S15 825 cens Sy iy b2y cony By Uy, uz, .., U, s it immediately follows the linear in-

n2 n2
dependence of the elements Z %y, V0 Z X2,iVir oo O, Hpidi O, 0:y; and
i=ry+1 i=r2+1 i=ra2+1 i=rp+1
therefore the vectors #; = (%11, .. %) j = 1,2, .., rvand 6 = (0,44 -, Gy,

are linearly 1ndependent as rational vectors. Without loss of generality (taking a suit-
able enumeration of y’s) we can assume that the determinant

1%1 r2t1s Xira+2s -0 Xippaprtd

|

I Ko+ 1> J{2 a2+2 e X i

b D=|: : :

|

H

|

i kr',rz+1’ A2 +2s - ves J{r',rz-!'r'-f-l
[ Op+1s Opp+2s s Oyt |
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is non-zero. Now for an arbitrary element s’ € S’ there exist the integers a, oy, a3 - --
r2

ry
cees 00 ﬁla ﬁ27 ceey ﬂrz’ Veit1s oo Yoy 4o with « 0 and as’ = Z a;s; + z Biti +
r’ i=1 i=1

+ Y 7y, + ;. Using (2) and (3) one easily get
=1

rytr’ ry
(4) (s+s)—Zocx + Z+(Zoc, Aji + y:) % +
i=rit+1 j=1 .

ny

+ Z (Z‘XJ Ji + Zyrl*‘jvji + o{Qi) X; +

i=ry+r'+1 j=1

+253’1+ Z (Zﬂj#ﬂ +Zvr1+1%ﬂ+ “‘7))’:-

i=r2+1

From the fact that any type from #(G,) has with any type from #(G,) the same inter-
section £ we conclude that for almost all primes pandalli =1,2,...,n;j =1,2,...

.» n all the min (hS(x;), h$(y,)) are equal to the same k (depending on p, of course),
where k is either a natural integer, or 0 or co. If p is such a prime then either all
hS(x;),i = 1,2,...,nyorall k§(y;),j = 1,2, ..., n, are equal to k. For such a prime p
which moreover does not divide D and all non-zero ¢;, 6;, i =ry + 1 + 1,...,ny,
j=r,+ 1,..., n, we now consider two cases.

a) h(x,) = hS(x,) = ... = hS(x,,) = k + oo. If h§(a(s + 5')) = k + I then from
(4) one get p' |y, i = 1,2,..., 7y, hence p' | y,,45 i = 1,2,..., " and finally p' | ag;
and p'| «. Therefore h(s + s') < k.

b) hS(yy) = h(ys) = ... = hG(y,,z) =k + oo. If hi(a(s +s') =k + I then

7

P Bni=1,2..r,. HencepI(Zy,1+lxj,+cxa)l—12+1 ., . By Lemma

15 p'| aD and p | a. Therefore hG(s + 5) £ k, again.

Let p be a prime from the remaining set of primes. If the component of 7 at the
prime p is finite then either all hS(x,), i = 1,2,...,ny or all hy(y;), j =1,2,....n
are finite. We consider these two cases separately.

«) All the h$(x,), i = 1,2, ..., n, are finite. Let k be the greatest element among
the hJ(x;) and  the maximal exponent for which p divides some of non-zero integers
005 i=ri+r+1,.. 0, j=r,+1,...,n, Ifh(a(s+s’))=k+l+m
then p'*™|a;, i=1,2,... r, hence p'+"‘|yn+,, i=1,2..,r and p"*"|ag
Therefore p™ | & and hG(s +5)<k+ 1

B) All the h(y i) =1,2,..., n, are finite. I k is the greatest element among the
h3(y;) and 1 is the greatest exponent for which p'| D then for hj(a(s + s') = k +

+ 1+ m we get p"™|B i _12 ... r, hence p'*™ | (Zy”ﬂx,, + agy), i =

: ]';2 +ll, -+ 112 50 that p'*m | 4 P by Lemma 15 and p" | a. Therefore hy(s + s') <
sk+ L
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Finally, if the component of  at the prime p is infinite then S is clearly p-divisible
and hence S/S’ is p-divisible, two. To finish the proof of Lemma 16 it suffices now to
apply Lemma 4.

ny n2

Lemma 17. Let G, = Z J; and G, = ZIJ- be completely decomposable torsion
i=1 j=1

free groups of finite ranks ny, n, respectively satisfying t, nt, =1 for any
t,€%(G;), i = 1,2.If S is a pure subgroup of G = G; + G, then S is a direct sum
of (S0 Gy) + (S n G,) and a completely decomposable group.

Proof. It suffices to use Lemma 16 and Theorem 46.4 from [1].

In the following it will be useful this simple consequence of Theorem 1 from J. S. P.
Wang’s paper [2].

Wang’s theorem. Let a torsion free group G be of the form G = G, + G, where G,
is completely decomposable with inversely well-ordered type set and for any
t,€%(G)), i = 1,2 there is t; = ,. Then any pure subgroup S of G is a direct sum
of S n G, and a completely decomposable group.

Now we are ready to prove the main result.

Theorem 1. A completely decomposable torsion free group G the type set of
which satisfies the maximum condition has the property that any its pure sub-
group is completely decomposable if and only if G = D + H where D is divisible
and H reduced and

a) for any four not necessarily different elements %, i = 1,2, 3,4 from T(H)
with £, (2, | 25 0 2 there is H(2, 0 %,) 0 H(t; 0 25) = 0,

b) for any two incomparable elements %', 2" from T(H) the set {, N %,, %, € T(H),
%, 2 % N1, i=1,2} satisfies the minimum condition,

c) for any three not necessarily different elements %, %5, %3 from T(H) with
T3 H %, N %, the subgroup H(%; N %,) is of finite rank,

d) the set of all maximal elements of T(H) is at most countable.

Proof. 1) Necessity: If the completely decomposable group G = D 4 H has the
property that any its pure subgroup is completely decomposable then H has the same
property.

Condition a): We must consider three cases.

«) If 2, || %, are from T(H), then H(%,) N H(%,) = 0 by Lemma 1.

B) Let £,, £,, t5 be different elements from T(H), £; N %, || £;. Let us suppose one
of the %4, %,, say %, is greater than or equal to 5. Then i3 =%, n %3 > %, N1, N
N %3 = %, N %, by Lemma 2, which contradicts to £, n %, ]] %5. Hence no of the 7,, %,
is greater than (£, N %,) v %; and it suffices to use Lemma 1.
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7) Let the types %,, %5, %3, £,, be different elements from T(H), £, N %, || £5 N 2.
Let us suppose that one of the %;, say %, is greater than or equal to (3, N %,) Vv
v (%3 N t,). Taking arbitrarily the non-zero elements u; € J5, u, € J, and denoting
Js = {uz + u,}§ we get %(Js) = 5 = £; n %,. For the pure subgroup S = J, +
+J,+ Jsof Hitholdst, nts > %, nt, =%,n%s =%, n%, n%s owing to the
hypothesis and Lemma 2. But then the inequality 2, N %5 =%, Nt N %, = t; N
N1, > 1, N %, contradicts to the incomparability of £; n 2, and £; N £,. Hence no
of the £, i = 1,2, 3,4 is greater than (2, n%,) v (£; N %) and it suffices to use
Lemma 3.

Condition b): Proving indirectly let us suppose that T(H) contains two in-

comparable elements %', ” such that there exist the elements %, %, in T(H ) satisfying
Nty =%,%,>%,,>t=%tn1,n=12,... By Lemma 8 we can clearly

An

assume that all the %), are equal to the same %;. Let Jg, J4, J5, ... be the rank one
direct summands of H (of a given complete decomposition) of the types 5, £, %5, ...
andletu;e J;, i = 0, 1, 2, ... be arbitrary non-zero elements. By hypothesis, the pure
subgroup S = {uo —u;,i=1,2, }f,f of H is completely decomposable.

From the linear independence of the elements ug, uy, u,, ... it easily follows that
SnJ;=0,i=0,1,2,...s0 that by Lemma 9 S contains the elements of the types
%, 5, ..., only. The types %', £” cannot be both comparable with infinitely many £,
since they are incomparable (¢’ < £,, " < %, cannot happen by a) while the other
possibilities lead to the comparability of #’, £”). Therefore one of the #, " is in-
comparable with infinitely many £,. Without loss of generality we can assume ' || £,
n=1,2,... Let J' be a rank one direct summand of H of a given complete decompo-
sition of the type #'. Since ¥’ % 2,, n = 0, 1, 2, ... we have that the subgroup S + J’

of H is pure in H. By applying of Lemma 5 to S 4+ J’ we get a contradiction.

Condition c): First, let us have two incomparable elements %,, %, from T(H).
For 2> %, we have 1, =%t nt%, >%tnt nt, =%, n%t, =14n%, by Lemma 2
and it suffices to use Lemma 6. Now let %, %,, £; be three different elements from
T(H), , n %, | t; and let ' € T(H) be an element satisfying ¥ = £, 0 £,. Using
Lemma 7 we have ' n%, 2%, nt, >% nt,nt; =%, nt;=%2,n%; and
Nnt,>tn%;=%,nt; =1, n%, n%; from which it easily follows that any
type e #(H(t; n %,)) has with £; the same intersection %, n %, N £;. Hence
H(%, n %,) is necessarily of finite rank by Lemma 6.

Condition d): Proving indirectly let us suppose that the set of all maximal elements
of T(H) is uncountable.

At first, let us assume that no element of T((H) is comparable with all other elements
of T(H). In this case we consider two cases:

) #(H) does not satisfy the minimum condition. Let £, > %, > ... be any infinite
decreasing sequence of elements of #(H) and let £ be any element of T(H). The
inequality £ < £,, n = 1,2, ... is clearly impossible. If 7 is incomparable with in-
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finitely many %, then using Lemma 10 we get a contradiction by applying of the same

method as in b). Therefore £ > %, for some n and H = J H(%,). Any H(%,) is of
n=1

finite rank by c) so that H is countable contradicting to our hypothesis.

B) #(H) satisfies the minimum condition. In this case #(H) contains the least
element # since the intersection of two minimal elements of #(H) lies in #(H). Let
{#,, x € A} be the set of all minimal elements of the set {#', %' € #(H), ' > %}. We
shall divide the index set A into two disjoint subsets A,, A, in such a way that « € A4,
iff t,e T(H) and a € A, iff ¢, ¢ T(H). If « + B are elements from A,, then %, =
=1, 01, =101, 1,1, e T(H) by Lemma 10, and the condition a)
implies 2, || %; o

25, 2, || 25, ta || #5, %4 | £5. By the condition c) just proved, every H(%,),
a € A is of finite rank so that 4 is uncountable by the condition a). Now we can take
rank one direct summands J,, a € 4;, Jp, Jy, f € A, of a given complete decomposi-
tion of H such that #(J,) = %,, #(J}) = 5, 2(J}) = tj. I upe J;, uye Jj, pe A, are

arbitrary non-zero elements then S = ) J, + Y {u; + uj}§ is a pure subgroup of H
. acAy PeAd;

and Lemma 12 yields a contradiction.

In the general case let there exist elements in T(H) comparable with any other
elements of T(H) and let £ be a maximal one with this property. If we put H; = Y J,

acA;

where #(J,) > tand H, = ¥ J,where #(J,) < # then the set of all maximal elements

acAz

of T(H) coincides with the set of all maximal elements of T(H,) and hence it is count-
able by the preceding part.

The proof of the necessity is therefore finished.

2) Sufficiency: We divide this part into several cases:

) G is a reduced group of finite rank and no element from T(G) is comparable
with all other elements from T(G). In this case #(G) contains the least element £.
Let %,(G) be the set of all maximal elements of #(G). If ,(G), £5(G), ..., %,(G) are
defined then let %, ,(G) be the set of all maximal elements of #(G) not belonging to
2,(G) N 2,(G) U ... U £,(G). In view of our hypothesis there exists a natural integer n
such that £,(G) = 2. Now we shall use the induction by n. For n = 1 G is homo-
geneous of the type © and therefore any its pure subgroup is completely decomposable
by Theorem 46.6 in [1] Forn > 1let%,, %,, ..., %, be all the minimal elements of the
set {#, %' € %(G), £ > %} and let S be any pure subgroup of G. Any G(%;),i = 1,2, ...
..., k is a direct sum of those rank one direct summands J, of a given complete decom-

position of G the types of which are greater than or equal to £;. By hypothesis, % ¢ T(G)
k

so that by a) and Lemma 12 we have G = Z G(t). Let 2; > %, £} > %;,i + j be two
i=1

elements from #(G). By a) and Lemma 7 we have t;n %, > £, n %, = %; n %; and
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tint; >80t =101 =% N1t} Therefore Lemma 17 yields S n (G(¢;) + ...
e+ 6#i) =80 (G(E) F+ ... +G(E) + SN G(ti4y) + Tpi=1,2,..,k—1,

where T; is completely decomposable. From this it immediately follows that S =
oo k—1

=SnG=YSnAG(t)+ Y T. Hence S is completely decomposable since
i=1 i=1

SN G(t),i=1,2,..., k are so by the induction hypothesis.

B) G is a reduced group, no element from T(G) is comparable with all other ele-
ments from T(G) and #(G) satisfies the minimum condition. In this case £(G) clearly
contains the least element 2. The set M of all minimal elements of the set of all types
from %(G) greater than % is at most countable by the conditions a) and d). Assuming M
finite we are led to the case a) owing to the condition a), and Lemma 10. Hence we
can assume that M = {%,, ,, ...} is infinite countable. If S is a pure subgroup of G

then as in the part «) we have G = Y. G(2,) and S A (G(£)) + ... + G(2;,,)) =
i=1
=Sn(G(#) +...+6G(E#)+SNnG(tisy) + T, i =1,2,... The usual routine
in the theory of completely decomposable groups gives S = Z SnG(*) + Z T;
i=1 i=1

which finishes the proof of this part since any S n G(2;), i = 1, 2, ... is completely
decomposable by the part «).

y) G is a reduced group, no element from T(G) is comparable with all other elements
from T(G) and #(G) does not satisfy the minimum condition. Let £, > %, > ...
be an infinite decreasing sequence of elements of #(G). If 2,., € T(G) then there is
te T(G), | %,41. > 1%, is clearly impossible and % > 2, is impossible by the
condition a) (and Lemma 10). Thus £ || 2,. If £, ¢ T(G), then £,,4 = 4,41 N %14y,
where %, 1, 2,1 € T(G) by Lemma 10 and %, || £/, . It is easy to see that at least
one of the elements %, , £, is incomparable with %,. Hence G(%,) is of finite rank
by the condition c). Since G(%,) has a finite type set we can assume %, ; is the maximal
element in the set of all elements from #(G) less than £, (it is unique by Lemma 11).
If 2, 4, %425 -+ +» Tu are all the minimal elements of the set of all elements of %(G)
greater than or equal to %, then one of them, say %, ;, is ,_;. The part a) shows that
S N G(%,) is a direct sum of S N G(%,_,) and a completely decomposable group T,,_,.
Further, no element £ from T(G) can be less than all the %, owing to the condition b).
If £ is incomparable with infinitely many £, then we can without loss of generality
assume that % " , n=1,2,... Lemma 7 yields £, =%, n%,>%,nt =%, n1
which contradicts to the condition b). Therefore ¢ > £, for some n and G = U G(%,).

© n=1
As in the preceding part the usual routine yields S = S n G(%,) + Z T, which finishes
the proof of this part. =1

8) G is reduced. Let £ be the maximal element of the set of all elements of T(G)
which are comparable with any other element of T(G). If G, is the direct sum of
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those rank one direct summands of a given complete decomposition of G the type of
which is greater than £ and G, is the complementary direct summand then %(G,) is
clearly inversely well-ordered by a) and %, > %, for £, € %(G,), i = 1, 2. If S is a pure
subgroup of G then S is a direct sum of S N G and a completely decomposable group
by Wang’s theorem. S N G, is pure in G, so that it suffices to use the part ) resp. 7).

€) G = D + H where D is divisible and H reduced. If S is a pure subgroup of G
then we can assume that S = S n D 4+ S’, S’ < H owing the well-known properties
of divisible groups (see [1] § 18, p. 63). Here S’ is clearly pure in H so that it suffices
to use the part ).

The proof of Theorem 1 is therefore complete.
Now we are going to the general case.

Lemma 18. Let G be a reduced completely decomposable group of the form

=]

G=1J+ ZJi where J, Ji, i = 1,2,... are of rank one and %, = #(J,) < 1, =
i=1

=1J,)<...<%,=%J,) <..<t=1*%J). Then G contains a pure subgroup

which is not completely decomposable.

Proof. Let p be a prime for which J (and hence J,, J,, ...) is not p-divisible. Let
us take the elements 0 + ue J, 0 + u;e J,, i = 1,2, ..., with hS(u) = hy(u;) = 0,
i=1,2,...and let us put S = {u + puy, u + pu,, ..., u + pu,, ...}5. If S is com-

pletely decomposable then S can be written in the form S = Z S, where S, is a homo-
n=1

geneous completely decomposable group of the type %,, and 2, < 2,44, 7 = 1,2, ...
Then u + pu;e Hy = S; + S, 4 ... + S;. By hypothesis there exists an element

©

u + pu,; the type of which is greater than %, so that u + pu;e H, = Y, S;.
j=k+1

Further, p(u; — u;) = (u + pu,) — (u + pu;) e S. Hence u; — u; € S, S being pure
in G. Therefore u; — u; = hy + hy, hy e Hy, h, € H, from which p(u; — u;) =
phy + ph, = (u + pu;) — (u + pu;). From the form of S it follows ph; = u + pu,
which yields a contradiction with h$(u) = 0.

Let us denote by M the class of all completely decomposable groups G having two
following properties:

1) the type set of G contains an infinite increasing sequence £; < £, < ... such that
for every % € #(G) there is £ < %, for some n and the set {£, £ € #(G), © < %,} is inverse-
ly well-ordered for every n,

2) any pure subgroup of G is completely decomposable.

Theorem 2. Any pure subgroup of a completely decomposable torsion free group G
is completely decomposable if and only if either (G) satisfies the maximum con-
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dition and therefore G is of the form of Theorem 1, or G is of the form G = D +
+ Gy + G, where D is divisible, G, € M, T(G,) is inversely well-ordered and
%, 2 1, for any £,€%(G)), i = 1,2.

Proof. For to prove the necessity we can clearly restrict ourselves to the case G
reduced and the type set #(G) of G does not satisfy the maximum condition. Thus
let £, <%, < ... be an increasing sequence of elements of #(G) and let t e T(G),
%> %, for all n = 1,2, ... If infinitely many of %, ly in T(G) then Lemma 18 gives
a contradiction. Thus we can assume no %, lies in T(G). Since the condition a) from
Theorem 1 does not depend on the maximum condition of the type set £(G) we can
use Lemma 10. Thus for every n = 1, 2, ... there are elements £,, £, in T(G) such that
ot =1,1% |t ByLemma7wehavee1ther‘cr\r Nl =2nt =1 nt <
<1r\1: ortnt,ni, =tnt, =1,n1, <%n 1, sothat we canassume ? N %,

» N2, =1, Asis easy to see, G satlsﬁes the condition c) of Theorem 1, so that

( ,,) is of finite rank and we can assume %, < %, for no k < n. Let us suppose %, < £
for some k < n. Then rkzrr\rk—r,‘n“f;: and 1, =1tn%,=4%4,n1%, and 3, =
=4 n%,=tnt,nit, =1n1%, =1, a contradiction showing %, are pairwise
incomparable. Now for n > k Lemma 7 gives £, =1 n %, >4, =1nt =% n1%,.
We choose the rank one direct summands J, J, of G such that #(J,) = 1, #(J) = %,
n=12,... For 0+ u,eJ, we consider the pure subgroup S’ = {u1 — Uy,
u, — us, ...}5. By the above the type set of S” is just {#;, %,, ...}. Since S’ is completely
decomposable we can select a direct summand S of S” + J satisfying all the conditions
of Lemma 18. The obtained contradiction shows that no element of T(G) can be

greater than some infinite increasing sequence of elements of #(G).

Now let #(G) contains an infinite increasing sequence £; < £, < ... and let £ € #(G)
be an arbitrary element. If ¢ € T(G) then £ H %, is impossible by the condition c) of
Theorem 1. If £ ¢ T(G) then © = ¥ n¢", ' | %", ¥, %" € T(G) by Lemma 10. No
of #', #” is greater than all £, by the precedlng part and " < %, %" < 1, is impossible
by the condition a) of Theorem 1. Thus at least one of the #', £” is incomparable with
infinitely many £,, which contradicts to the condition c) of Theorem 1. Hence either
% < %, 0ort = t,. We can write G = G, 4+ G, where G, = G(%,) and G, is the com-
plementary direct summand. By the preceding part, for every %,€%(G;), i = 1,2
there is £, > %,. #(G,) is ordered by the condition a) of Theorem 1 and it is inversely
well-ordered by the beginning of this proof. By the above, every £ > %, is comparable
with any %, so that #(G,) is ordered and the necessity follows easily.

The sufficiency follows from Theorem 1 in the first case while in the second case
any pure subgroup of G can be written in the form S =S~ D + S, S < G; + G,
(by the well-known properties of divisible groups). Since S’ is pure in G; + G,,
Wang’s theorem implies that S’ is a direct sum of S’ N G, and a completely decom-
posable group. Finally S’ n G, is pure in G,, hence S’ n G, is completely decom-
posable by hypothesis and we are ready.
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