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INTRODUCTION

Let 7 = (T,t) be a finite tournament. If 7 has constant degrees (i.c.,
|{z | {x, z) e t}] is a constant independent on x) we call 7~ homogeneous. It is known
that homogeneous tournaments have certain “regular’ properties, e.g. it holds that
the number of 3-cycles containing a given vertex is constant and maximal in every
homogeneous tournament. Here we consider more ‘“regular” tournaments, calling
them strongly homogeneous ones (briefly S + H tournaments): we say that a tour-
nament 7 = (T, t) is an S + H tournament if |{z | (x,z) et and <y, z) et}| =
= const. for any two distinct vertices x, y of . In this paper we give three different
structural characterizations of S + H tournaments and we show that any further
sharpening of homogeneity makes no sense (§2). We give several constructions of
S + H tournaments and as a consequence we prove that S + H tournaments form
a universal class of tournaments. In § 2 and § 3 we prove theorems on extensions of
tournaments related to the extensions of Fraisé. As S + H tournaments are strongly
connected with Hadamard block designs the general question if there is an S + H
tournament on every set 4k + 3 remains unsolved. We discuss this relationship
in § 4.

We thank to Z. HEDRLIN and J. NESETRIL for the guidance during this work.

This paper is closely related to the paper [3].

1. K-HOMOGENEOUS TOURNAMENTS.
BASIC PROPERTIES OF STRONGLY HOMOGENEOUS TOURNAMENTS.

Definition 1. A tournament J is a couple (T, t», where T is a finite set and ¢ is
a subset of T2 such that the following holds:

1) xeT=<{x,x)et,
2) x,yeT, x+ y=({x, ety x> ¢t).

Weput:v(x) = {z | z + xand (x, z) €1}, f(x) = {z| z + xand (z, x) e 1}, v5(x) =
=Snux),T|s=<S,8*nt),foranxeT,S< T.
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Definition 2. A tournament J = (T, t) is said to be k-homogeneous if there exists
an integer m = 1 such that |{v(x;) | i = 1,..., k}| = m for each k-distinct vertices
Xiy .0 X Of T,

This notion is a natural strengthening of the tournaments with constant score (i.e.
1-homogeneous tournaments) as it is shown by the following:

Proposition 1. Let J = (T, t) be (k + 1)-homogeneous, k = 1. Then T is
k-homogeneous.

Proof. Let ay, ..., a; be k distinct vertices of 7, put N{v(a,) | i = 1,...,k} = T".
By the assumption, we have |v..(b)| = |o(b) N T'| = |o(b) n {v(a)) |i =1, ..., k}l =
= m for every be T', where m is the constant belonging to (k + 1)-homogeneitly

of 7. As (lgl> = |T’|. m holds for the tournament 7 |;. we have |T'| = 2m + 1.

Since we have chosen the vertices a,, ..., a; arbitrarily, 7 is k-homogeneous with the
constant m’ = 2m + 1.

Proposition 2. Let 7 = (T, t) be (k + 1)-homogeneous, k = 1, ae T. Then
9‘},m is k-homogeneous.

Proof. It is |N{vr(a) | i = 1,..., k}| = |[vo(a) n N{v(a;) | i = 1,...,k}| = m for
each k distinct points ay, ..., a, € v(a) = T".

Proposition 3. Let J = (T, t) be a k-homogeneous tournament, m the cor-
responding constant. Then [T, =2 m+2x—-1.

Proof will be done by induction on k. In the case k = 1 we have |v(a)| = m for
T _
5, )=

Let 7 = (T, t) be (k + 1)-homogeneous tournament. Then J is also k-homo-
genecous and |T| =2*.m’ +2* — 1 by induction hypothesis. (Here m' =
= |N{v(a,) | i = 1, ..., k}|. According to Proposition 1 we have m’ = 2m + 1 and
hence |T| = 21 . m + 2¢*1 — 1.

every a € T, hence , T. m and consequently [T[ =2m + 1.

Theorem 1. There exist no 3-homogeneous tournaments.
Proof. Let 7 =<T, t), [Tl =n=28m +7 be a 3-homogeneous tournament. It is
2{|v(a,) N v(a,) 0 v(as)| | ay, az, a3 € T, a; pairwise distinct} = X {(lf(;)l) ae T}

(as both expressions denote the number of 3-claws in ). From this equation we
can successively derive: :

(;’).m _ n(%(n; 1)>,

n=2.8m=m0-3(n-5), (m-=2)(n—T)=(n-3)(n=25)

which is a contradiction.
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Proposition 1 implies:
Corollary. There exists no k-homogeneous tournament for any integer k = 3.

Notation. A 1-homogeneous tournament is called homogeneous, a 2-homogeneous
tournament is called strongly homogeneous (shortly S+H tournament*)).

By Proposition 3 every S + H tournament has 4k + 3 vertices. Thus the smallest
example of an S + H tournament has 7 vertices: see Theorem 9.

Other examples of S + H tournaments are given in § 4.

Theorem 2. (First characterization of S + H tournaments.) 7 = (T, t) is strongly
homogeneous iff  is a homogeneous tournament and .“/"Lw) is a homogeneous
tournament for every a € T.

Proof. The necessity of the above conditions follows by Propositions 1 and 2.
Let a, b be distinct vertices of 7, (a, b) €1, v(a) = T,. Then

[aR = |v = I_lialL_—_l — 1Tl -3
|o(a) n o(b)| = [v; (b)] ; et

Proposition 4. Let 7 = (T, t) be an S + H-tournament, ]T' =4k + 3, a, b two
distinct vertices, {a, by € t. Then

i) |v(a) n v(b)| = k,

i) |v(a) 0 £ ()| = k,
i) |f(a) no(®)| = k + 1,
iv) |f(a) n f(b)] = k.

*) By the courtesy of Spejbl & Hurvinek Puppet Theatre of Prague.
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Proof. i) Follows by the definition.

ii) It is [v(a)| = 2k + 1, [v(a) 0 o(b)| = k and v(a) = [v(a) N v(b)] U [v(a) N
N f(b)] v {b} (here the righthand side is disjoint union). Hence it follows |v(a) N
N f(b)] = k.

iii) and iv) can be proved similarly.

Proposition 5. Let = (T,t) be an S + H-tournament, ]TI = 4k + 3. Then
every two distinct vertices of I belong to exactly k + 1 3-cycles.

Proof follows from Proposition 4 iii).

Theorem 3. Every two distinct vertices of an S -+ H tournament with 4k + 3

1
vertices belong to exactly 6. (k —2’- > 4-cycles.

Proof. Let a, b be distinct vertices of an S + H tournament 7 = (T, t), |T| =
= 4k + 3, <a, b) e 1. Determine the number of sets {x, y} for which 7 |¢,, ., is
a cyclic tournament. There are exactly 10 possibilities for vertices x, y:

1) x, y e v(a) n v(b),

2) x, yef(a) n f(b),

3) x, y e v(a) n f(b),

4) x, y e f(a) n ov(b),

5) x e v(a) N v(b), yeuv(a) n f(b),

6) x e v(a) N f(b), yef(a) nf(b),

7) x e f(a) nv(b), yeuv(a)nf(b),

8) x ev(a) nov(b), yef(a)n f(b),

9) x ef(a) nv(b), yef(a)nf(b),

10) x € v(a) N v(b), yef(a) N v(b).

Deﬁne only for the purpose of this proof: a set M consisting of two vertices of I is
said to be admissible if |, ;). is the cyclic tournament on 4 vertices.

In the cases 1),2), 3), 5), 6) none of the sets {x, y} is admissible. According to

Proposition 4, there are exactly k ; 1 admissible sets {x, y} in the case 4).

Obviously the number of admissible sets {x, y} is k . (k + 1) in the case 7). Denote
the number of admissible sets {x, y} A(B, C) in the case 8) (9), 10), respectively).

Since <k;1) +k(k +1) = 3.(k;_1>, it is enough to show 4 + B + C =

:3.('«;1).
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We have:
‘ A = X{|v(z) nf(a) 0 f(b)]|zev(a) nv(b)} =
= X{|/(z) 0 v(a) 0 o(b)| | z€f(a) 0 f(B)}
B = x{|v(z) 0 f(a) 0 f(b)||zef(a) nu(b)} =
= x{|/(z) n f(a) 0 (b)] |zef(a) nf(B)},
C = X{[u(z) 0 f(a) 0 v(b)| | z€v(a) 0 v(b)} =
— 2{6)  ola) o o(8) | €1(0) o)

We shall prove 4 + B=C + B= A + C = k(k + 1), which will complete the
proof.

i) It is |f(a)nu(z)| =k +1 and f(a) nf(z) = [f(2) n f(a) 0 f(b)] L
U [f(z) 0 f(a) nv(b)] for every zewv(a)nu(b). Hence A + C = |f(a) nv(z)].
Jo(a) ()| = (k +1). k.

ii) 4 + B = (k + 1). k can be obtained similarily as i).

iii) As 7 ;) 7 |os) are homogeneous tournaments it is |v(z) N f(a) N v(b)| +
+ [o(z) n f(a) 0 f(b)| = k and (k — |v(z)  f(a) n v(b)]) + |£(2) A v(a)  o(b)]| =
= k for every z e f(a) n v(b). Hence |v(z) N f(a) nv(b)| + |f(z) N v(a) n v(b)| =
=kand B+ C=k.(k +1).

Corollary. In every S + H tournament with 4k + 3 vertices there are exactly

(4k2+ 3) (k ; 1) 4-cycles. This is the maximal number of 4-cycles in a tournament

with 4k + 3 vertices.

2. EXTENSIONS OF STRONGLY HOMOGENEOUS TOURNAMENTS

We shall describe two recursive constructions of S + H tournaments and prove as
a consequence that S + H tournaments allows universal object.
We shall give another characterization of S + H tournaments.

Proposition 6. Let 7 = (T, t) be an S + H tournament on n = 4k + 3 vertices.
Then there exists an S + H tournament on 2n + 1 vertices such that I is its
subtournament.

Proof. The construction: Let T" be a set, |T| = [T, TnT' =0, 0¢ Tu T
Let x —» x' be a bijection of T onto T’. Define the tournament # = {U, u) by
U = Tu T U {0}; we have six kinds of u:

1) {x,p> eu<<{x,y>et for x,yeT,
2) (x,yyeuw{y,xyet for x',y €T,
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3) <0, x> eu for xeT,

4) (x',0yeu for x' €T,

5) (x,x'Y>euforxeT, {x,x)euforxelU,

6) <x,y'> euand {x’, > e u for every x #+ y, {x, y) €.

It is a matter of routine to check |v(a) N o(b)| = 2k + 1 any distinct vertices a, b
of %.

Theorem 4. Let I = {T,t) and U = (U, u) be S + H tournaments, let I be
subtournament of U, |T| # |U|. Then |[U| = 2|T| + 1. (Thus the construction given
in Proposition 6 is the minimal one.

First we prove an easy lemma to make the paper selfcontained:

Lemma. Let N be a set with n elements. Let By, B,, ..., B, be subsets of N such that

i) IBiI =k fori=1,...,r
ii) i +j, B,nB, =1,

where k, A are positive integers, k + A. Then r < n.

Proof. Let N = {1, ..., n}, let 4 be the incidence matrix of the above set-system
(i.e. an (n, r)-matrix (a;;) with a;; = 1if x; € B}, otherwise a;; = 0). The statement
easily follows if we consider the matrix 4TA4.

Proof of Theorem 4: We can suppose T U. Put T' =U — T. It is |T| = 4m
for an integer m > 0. Denote B, = {ye T’ | {x, yy eu} for every xe T. Let ]T[ =
= 4k + 3. Now it is |B,| = [vg(x) — vs(x)| = 2k + 2m + 1) — (2k + 1) = 2m
and |B, N B,| = [va(x) n va(y)| = |v7(x) nv-(y)] = k + m — k =m for every
pair of distinct vertices x, y of 7. Itis 4k + 3 < 4m by the above lemma and hence
|U] 2 2|T|. As |U| = 3 (mod 4), it is |U| = 2|T| + 1.

Definition 3. A tournament J = (T, t) is called invertible if there exists a bijection
@ : T— Tsuch that {x, y> € t iff {p(x), p()> ¢ 1. ¢ is called an inversion.

Proposition 7. Let = (T, t) be an invertible tournament. Then there exists an
inversion ¢ such that ¢ o ¢ = 17 (the identity mapping on T).

Proof. Denote by A(J) the set of all automorphisms of J. Put B(7) =
={¢:T> T, ¢ is an inversion} U A(7). Then B(Z") with the operation of com-
position of mappings is a group and A(7) is its subgroup. Furthermore, 4(7) are
precisely the elements of an odd order in B("). From this it is easy to conclude the
statement.

Proposition 8. Let 7 = (T, t) be an S + H tournament, let % = {U, u) be an
invertible S + H tournament. Then there exists an S + H tournament on (|T| + 1) .
.(Ju] + 1) — 1 points.
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Proof. We can assume that the sets T, U and T x U are disjoint. Put V= Tu
VU U T x U. Let ¢ be an inversion of % with ¢ - ¢ = 1,. Define the relation v on V:

Ditcv,uco xeV=><(x,x)eV,

2) xeT, yeU = (y,x)ev, {x,{x, y)) €,

3) Xp % Xy Xy, X0 €1, yeU = {xy, (X2, YD €0, {{xy1, VD> X2) €V,

4) xeT, {yp, yoy eu = {{x, y1)s <X, X)) €V,

5)xeT, yeU = x, y), o(y)y €v,

6) 1 * ¢(y2), <1, 0(y2)> €u, x € T= (X, Y1) ¥2) €0, Lp(y1) <x, @(¥2)>> € v,

7) Xy F Xy, {Xy, xz) et, yeU = {{xq, ¥, {X2, (P(Y)>> Ev,

8) X1 F Xy, (X1, X5) €L, Yy + (P(YZ), {yis @()’2)) eu=>{{xy1, ¥1),{Xp, Y20V €V,
x @(11))s <x15 @(02)0) € 0.

By checking all possibilities one can prove that ¥~ = (¥, v) isan S -+ H tournament.
Now we can prove:

Theorem 5. Let k be a positive integer. Then there exists an S + H tournament 7,
which contains every tournament on k vertices as its subtournament.

Proof. The statement being for k = 1 trivial, we prove the theorem by induction
on k.

Let 7,1 be the tournament which we get by applying the construction described
in Proposition 6 to the tournament 7. Let 7 = (T, t) be a tournament, |T| =
=k + 1. Let xoeT be an arbitrary fixed vertex. Put 7' = (T — {x,}, [t —
— (f(x0))*T v [(f(x0))* n t~*]>. By the induction hypothesis there exists a one-to
one homomorphism g : T — {xo} — T,. We define an embedding §: 9 — T 4 :
2 G(x0) = 0, g(x) = g(x) for all x € v(x,), §(x) = g(x)" for all x € f(x,). (We use the
notation from the construction in Proposition 6). It is clear that g is a homomorphism
from J into I . ;.

Remark. Consequently, 7, is a k-universal tournament which is the notion studied
e.g. in [4]. In [4] it is introduced T(k) = the smallest cardinality of a k-universal
tournament. Denote by S + H(k) the smallest cardinality of k-universal tournament
which is strongly homogeneous.

Clearly T(k) < S + H(k). From Theorem 5 it follows that S + H(k) is asymp-
totically bounded by c.2* Furthermore S + H(1) =S + H(2) =S + H(3) =7,
S + H(4) = 11, S + H(5) = 15. This can be very probably continued.

Definition 4. We say that the tournament I = (T, t) and % = {U, u) are degree
equivalent if there exists a bijection ¢ : T—> U such that |v;(x)| = [v,(e(x))| for
every x € T. We denote this by 7 ~ %.

Convention. In the following theorem we shall use the following notation: Let
T = (T,t) be a tournament, ieN. Put T; = {x e T| [v(x)| = i}, ¢, = |T}|, 7, =
=Tt TF = {ye T= {x} [Jor- ()| = i}, @7 = |T3|.
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Proposition 9. Let 7 = (T, t) be a tournament. It is T, ~ , for every two
distinct vertices of 7 iff there are p,qeN such that q4 = q, =

=y =
=qu-p=...={qy—1 = 0and foreveryi,j,p<i<j=<n—p—1and for every
xeT, yeT; it holds |v(x)nT; =1(q — 1) =|f(y) n T where q = q, =

= qp+l = e = qn—p—-l'

Proof of the sufficiency of the conditions: Let us choose xe T, ie N (i < |T])
Then TF = [T; n v(x)] U [Tisy 0 f(x)].

a) Either i < p — 1 ori = n -- p. Then obviously T} = 0, ¢q7 = 0.
b)i=n—p—1Then T,;_,_, = T,_,_, nv(x), hence g;_,_{ = Hq — 1).
¢) i =p-— 1. Then T, = T, n f(x), hence q5_, = 3(q — 1),

dpsi<n—p—1, xeT. Then |T}|=|T. o) + |Tis; 0 f(x)] =
=1(q +1) 4+ Hq — 1) = qif j > i and similarily IT,"[ =qifj<i.

Proof of the necessity of the conditions: Claim A: Let T; + 0, i = j, xe T,
Then |T, n f(x)| = 3(g; — 1). Proof of the Claim will be done by induction on j.
Let p be the smallest number with T, + 0. Then given an x € T}, it is g;_; = fr,(x),
hence 7|;, is a homogeneous tournament and vy (x)| = 3(q, — 1). Let yeT,
then ¢, = |T, n f(y)| = 4(q, — 1). This proves the Claim for j = p. Assume the
statement holds for every k < j — 1. Supposing g; # 0 it is for every x e T; either
-1 = |f-,j(x)| or gj_y = |ij(x)] + Timy no(x)| = [ij(x)[ + 3(gj-y + 1). Thus
T |r,is homogeneous and | fr(x)| = 3(q; — 1).1f i = j,y € Tythengq;_, = |f;(y)] +
+ IUT,-_I(J’)‘ = |f'r,-(Y)[ + %(41—1 + 1) and hence lfT,-(J’)I =3q,-1-

Quite analogously we can prove:

Claim B: Let T; + 0, i < j, x € T;. Then |T; n v(x)| = ¥(q; — 1)
Claim C: Let p < k < r, T, £ 0. Then T, + 0.

Suppose in the way of contradiction T, = @. Choose r such that T, = 0, T,_; =
Then 7|1, is homogeneous as g7, = |, (x)| for every x € T, consequently g7_, =
= 3(q,-1). By Claim A X{|f, () | ye T,} 2{|o, ()| | y€ T} = 34,8541 It is
|/r.(x)| = ¢7-y = 3(q, — 1) for every xe T, and hence g, + g, = 0, which is
a contradiction.

Claim D: Itis q; = q, forevery T; + 0 + T,.
Suppose e.g. i > j, then according to A and B it is

1

0,25 = 2llor ()] x e T = 2] [ x e T = 0,2

and hence ¢q; = q;.
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This completes the proof of Proposition 9.

Theorem 6. Let 7 = (T, t) be a tournament and let t not be an ordering of T.
Then

a) there is no tournament U = (U, u) such that 7'T—{x;,...,xk) ~ U for each
set of k distinct vertices of J and for every k = 3.

b) If there exists a tournament U = {U, u) such that FIT_(N,) ~ U for every
set of two distinct vertices of 7, then |U| = 4m + 1 for an meN and |U,| =
= |U1| == |U2m~z| = |U2m+2| == lUn—ll = 0’]U2m—1l = IUZm—-:I(:
=m, ]Uz,,,| =2m + 1.

In this case I is a homogeneous tournament.

Proof follows by the above Proposition and by the fact that the degree sequence
is determined by the maximal proper suntournaments.

Theorem 7. (Second characterization of strongly homogeneous tournaments).
Let 7{=T,t) be a tournament, let t not be an ordering of T. Then the following
two statements are equivalent:

a) 7 isan S + H tournament

b) T |r=eny ~ T |1 -, Jor every pair of distinct vertices x, y (u, v respectively)
of 7.

Proof. a = b follows by Proposition 4. .

If b) is satisfied, then by the above Theorem 6 J is homogeneous and |T| =
= 4k + 3. Let x, y be two distinct vertices of 7. Then obviously |v(x) N v(y)| =
= |{ze T - {x, y}| |o(z) 0 T = {x, y}| = 2k + 1}| and thus by Theorem 6 |v(x) N
no(y)| = k.

Remark. Theorem 7 is related to the notion (Fraisé) k-extension, see [2] and the
literature quoted there. We can formulate the above results as follows:

A tournament J = (T, 1) has a |T|-extension to |T| + k points for a k = 3
iff ¢ is an ordering of T.

3. SIMPLE TOURNAMENTS

Definition 5. We call a tournament simple if every its non-constant endomorphism
is automorphism.

Proposition 10. A tournament J = T, t) is simple iff there exists no at least
two-point set K = T, K =+ T such that either K < v(a) or K < f(a) for every ae
eT— K.

Proof. Let J not be simple. Then there exists a non-constant endomorphism ¢
such that ¢(a) = ¢(b) for two distinct vertices of . As ¢ is non-constant it is
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¢~ '(a) + Tand we can put K = ¢~ (a). If there exists a set K with the above pro-
perties then the mapping ¢ defined by ¢(x) = x for all xe T — K and ¢(x) = k
where k is an arbitrarily fixed point of K for all x e K is a non-constant endo-
morphism of 7.

The following definition gives a measure for simplicity:

Definition 6. Let 7 = (T, t) be a tournament. The arrow-simplicity s(J) is the
least number ]Ml where M < t is a set of arrows for which the tournament J' =
=(T,(t — M)u M~ is not simple. (i.e. s(J) is the least number of arrows
chasing of which yields a non-simple tournament).

Theorem 8. (Third characterization of strongly homogenous tournaments.)
A tournament is strongly homogeneous iff S(ﬂ') = %(iT| — 1).

Proof of the sufficiency of the condition: Let s(77) = 3(|T| — 1). If there exists
x € T such that v(x) < 4(|T| — 1), then let us denote M = {(x, y> e T* | y e v(x)}.
Clearly |M| < 4(|T| — 1), and the tournament <7, (t — M) U M~') is not simple
which is a contradiction. Hence 7 is homogeneous. Let x, y be distinct vertices of 7.
It follows from the homogeneity of 7~ that |v(x) N v(y)| = |f(x) n f(y)| and from
the simplicity number s(7) it follows that |f(x) n v(y)| + |v(x) n f(y)| = 3(|T| — 1)
and consequently

(1) |o(x) no(y)| =
On the other side

T -3
o(x) o) |x yeT, x + y} = z{(f(zx))

4
xeT} _ (lTI)ITI -3
2 4
and consequently

) 2{|o(x) 0 o) | x. y € T, x + y} = (\T1> 7| -3

2 4

Combining (1) a (2) we have |v(x) N v(y)| = 4(|T| — 3) for each couple of distinct
vertices x and y.

Proof of the necessity of the condition: Let 7 = (T, t) be an S + H tournament,
put |T| = 4k + 3. Suppose in the way of contradiction s(7) < 2k, hence there
exists a set M < t, |[M| < 2k such that the tournament 7’ = (T, (t — M) U M™")
is not simple. Then according to Proposition 10 there exists a set C, |C| > 1, C<= T,
C # T such either v,(x) o C or f5(x) o C for every vertex x € T - C. Denote

V(O) = x| xeT= C. f() > C}, F(O)={x|xeT~C u,(x)>C}.

Put z(x) = {y | <y, x) e M vel {x, y> e M} for every xe T. Then obviously
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2{|z(x)| | x € T} £ 4k and we can assume without loss of generality that X{z(x)| | x €
eC} = 2{|z(x)| | xe T — C} < 2k.
Let us prove a few simple formulas:

a) (| = 2k + 1)) . (W(O)] + |F(C)]) = 2k.
7 is homogeneous and that is why the inequality holds for every point
xeT— C=V(C)uF(C):|z(x)| = |C| - 2k + 1).
Then we have:
(] = 2k + 1)) . (JV(C)| + |F(C) = 2{|z(x)| | xe T — C} £ 2k.
b) |C|([V(C) + |F(C)| — 2k) < 4k.

This can beseen as follows: it is [v,(c) N vy(c )| = |fo(c) 0 f7(c))| = k for any two
distinct vertices ¢, ¢’ € C. Hence

|z()] + [2(<)] 2 V(C)| = k + [F(C)| - k
and

(el = ) 2= e ) 2 (15 (v + ) - 20,
which is b).
o) (I¢] = (k + 1)) (V(C)| + |F(C)]) = 4k.
For any two points x, ye T — C, x * y itis |vz(x) 0 v,(y)| = |f(x) 0 f7(y)| = k
and k £ |v;(x) 0 f7(y)| £ k + 1, thus we have:
|z()]| + |20 = [€] = (k + 1),
(el - e+ .19 5 F9) 5
(V@) + [F©)| = 1). 2{z(x) | xe T = C} = (W(C)] + [F(C)| — 1). 2k.

Now we show that the assumption |C| = 2 leads to a contradiction. We divide the
proof into nine cases according to the cardinality of C:

i) |C| = 2. By b) it is 2(|V(C)| + |F(C)| — 2k) £ 4k. As |[V(C)| + |F(C)| — 2k =
= 2k + 1 we have a contradiction.

ii) The case |C| = 3 can be handled similarly as i).

iii) 4 < C < k. We get from b): k + 3 < [V(C)| + |F(C)| — 2k < 4k/|C| < k,
a contradiction.

iv) k + 1 £ |C| £ 2k — 1. By b) |V(C)| + |F(C)| — 2k < 4k[|C| hence |V(C)| +
+ |F(C)| < 2k + 3 which is a contradiction.

v) C = 2k. By b) 2k . 3 £ 4k, which is a contradiction.
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vi) 2k + 1 < |C| < 4k — 2. By ¢) Kk([V(C)| + |[F(C)]) < 4k, while [V(C)| +
+ |F(O)| =z 5.

vii) C = 4k — 1. For k = 1itis by b) 3.2 < 4, a contradiction. For k = 2it is by a):
(2k — 2) .4 < 2k and consequently k < 4, which is a contradiction.

viii) |C] = 4k. By ¢) (3k — 1) (JV(C)| + |F(C)|) < 4k and consequently [V(C)| +
+ |F(C)| £ 2, a contradiction with |C|.

ix) 4k + 1 < |C| £ 4k +2, C+ T By a): 2k(|V(C)| + [F(C)|) < 2k and as
[V(C)| + |[F(C)| > 0,itis |[V(C)| + |F(C)| = 1. If|[V(C)| = 1 we get a contradic-
tion with the homogeneity of 7 as |C| < 4k + 2 and X{|z(x)| | xe T— C} =
< 2k. Similarly if [F(C)| = 1.

This completes the proof of the theorem.

Remark. Obviously s(7) < 1(|T| — 1) for every tournament = (T, ).

Hence we can reformulate Theorem 8.

Strongly homogeneous tournaments are precisely the tournaments with maximal
simplicity.

4. STRONGLY HOMOGENEOUS TOURNAMENTS AND BLOCK DESIGNS

Definition 7. Let M be a set, # < exp M (= the power set of M). Define the map-
pings by, hy, hy:

b, : # > N by b,(B) = |B|,
hy: M — N by hy(x) = |{B|Be#® and x € B}|,

hy:P,(M) >N by ({x,»}) = I{B ] Be# and {x,y} < B}[, where P,(M) =
={{x,y}|x,yeM and x + y}.

In the case that the mappings by, hy, h, are constant we say that (M, %, by, hy, h,)
is a block design of the type (M, &, by, hy, hy) (we denote the corresponding constants
by the same symbol as the mappings themselves).

Every S + H-tournament determines a block-design in the following way: Let
J = (T, t)beanS + H-tournament. Put # = {v(x) | x € T}. Then b, = }(|T| — 1)
J =<(T,ty be an S + H-tournament. Put # = {v(x)|xe T}. Then b, =
= 3(|T| — 1) = h, and h, = }(|T| — 3) as can be seen easily. It is also clear that
every such block design satisfies all the properties of Hadamard block designs.

There is anothe way to derive a block design from an S + H-tournament; namely
by putting %' = {v(x) U {x} | x e T}. Obviously in this case b; = h; = 2k + 2
and h, = k + 1.

Let  be an S + H-tournament, denote by BI(Q’ ) the block design given by the
former construction and by B,(7 ) the block design given by the latter one.
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It is not clear whether for every block design of Hadamard type or of the type
{4k + 3, 4k + 3,2k + 2,2k + 2, k + 1) there exists an S + H-tournament which
determines the given block by one of the above constructions. Here we give a partial
answer to this question.

Proposition 11. Let {M, &, by, hy, hy,> be a Hadamard block design. Then there
exists a tournament I = (M, t) such that B,(7) = (M, &, by, hy, h,> iff there
exists a bijection q : M — & such that (M, %', b', h}, hy) is a block design of the
type <4k + 3, 4k + 3, 2k + 2, 2k + 2, k + 1) where #' = {q(x) U {x} | x e M}
and b', h}, h’, are the corresponding mappings.

Proof. The necessity of the condition is obvious. Let there exist a mapping g
with the above properties. Define the relation t € M x M by (x, y) e tiff y € q(x).
First we shall prove that (M, t) is a tournament. As hj({x, y} — hy({x, y}) = 1,
either x € g(y) or y € g(x), hence either (x, y> €t or {y, x) € t. On the other hand
xeq(y) and yeqg(x) is impossible because hy({x, y}) — hy({x, y}) <2, and we
get {x, y) ¢t <<y, xy et. The rest of the statement is clear as (M, %, by, hy, h,)
is a Hadamard block design. Now we shall show that to a Hadamard block design
constructed in a a very special way there exists the corresponding S + H-tournament.

Definition 8. Let (G, +) be an Abelian group, D = G. We say that Dis a (v, p, s)-
difference set if |G| = v, |D| = ¢ and if for every a € G, a = 0 there exist exactly s
couples x, v € D such that a = x — y.

Proposition 12. Let {G, +) be an Abelian group, let D < G be a (v, ps S)-
difference set. Then {G, &, by, hy, h,) is a block design of the type {v, v, p, p, s)
where B = {i + D|ieG}.

See [1] for the proof.

~ Proposition 13. Let {T, +, .) be a finite field and let T = g™ = 4k + 3 for q
prime, k positive integer. Then D = {a*|aeT, a 0} is a (4k + 3, 2k + 1,
k + 1)-difference set.

This can be proved by a standard method via quadratic residues. See e.g. [1].

Theorem 9. Let {T, +, .) be a finite field of the order p™ = 4k + 3 for a p prime,
k positive integer. Let D = {a*|aeT, a = 0}. Define the relation t = T x T
by (i,j>etiffj — i€ D. Then (T, t) is an S + H-tournamen twhich is invertible.

Lemma. Let T, +, .> be a finite field, |T| = 4k + 3, ae T, be T. Then a* +
+ b* % 0.

Proof. Supposing the contrary we derive easily a***2? = —b**2 and consequently
a = —b which is a contradiction (T is not even).

Proof of Theorem 9. Itis D n —D = @ and —D = T — ({0} U D) by the above
lemma. The strong homogeneity of  follows by Proposition 12.
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Thus we have an invertible S + H-tournament with prime power of vertices (and
of course with 4k + 3 vertices). Hence starting from any one or two of these tourna-
ments we can apply the constructions given in Propositions 6 and 8.

5. CONCLUDING REMARKS

1. As the general question whether there exists a Hadamard block design on very
set of 4k + 3 points is not yet settled it is not surprising that it is not known whether
there is an S + H-tournament on every set 4k + 3. Theorem 9 gives the affirmative
answer on every set of prime power cardinality and the constructions given by Propo-
sitions 6 and 8 provide another partial affirmative answer.

2. The structure of S + H-tournaments being so restricted it is not clear what is
the behaviour of the groups of their autormorphisms. It is not even known if there is
an S + H-tournament which has the identity mapping as its only automorphisms.

APPENDIX

While finishing this paper, we have got acquainted with a paper by E. SZEKERES:
Tournaments and Hadamard matrices which contains some of the results given here:
It contains the definition of a 7y, tournament (which is a tournament with the
property |\uo(x;)| = m for any k distinct vertices x, ..., x;). It is proved that a T, ,-
tournament contains at least 2%(m + 1) — 1 vertices.

Ty With 25(m + 1) — 1 vertices are studied for k = 2. It turns out that they are
precisely S + H-tournaments. Szekeres proved our Proposition 6 and gave the con-
nection with Hadamard block designs. Theorems on existence of T, ,, tournaments
with prime power vertices are proved via complementary difference sets. The method
is similar to that employed here. Szekeres also exhibited an example of a Hadamard
block design which cannot be constructed from an S + H-tournament (using the
construction B,). Nevertheless, it seems that Proposition 8 and the fact that there are
invertible S 4+ H-tournaments with prime power vertices yield a few Hadamard
block designs. (Particularly it follows from Theorem 1 that there are no extremal
T m-tournaments for any k > 3.)
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