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1. A locally compact commutative semigroup S is a locally compact Hausdorf 
space together with a continuous associative binary operation. We will assume that 
on such a semigroup S there is a non negative regular Borel measure, m, satisfying 
the condition that for each Borel set £ in S with m(E) = 0, m(x~^E) = 0, where 
x~^E = [^y : xy e É]. The semigroup algebra of the locally compact commutative 
semigroup S is taken as those finite regular Borel measures (Hnear functional) in 
M{S) ( = CO(S)*) which are absolutely continuous with respect to the measure m, 
and is denoted by Ü{S, m). Addition and scalar multiplication are defined pointwise 
and multiplication (convolution) is given by fi*v(f) = ^jf{xy) //(dx) v(ây), where 
/ G C O ( 5 ) and /г, veM(S). 

A multiphcative function т on S is a complex valued function on S satisfying 
т(ху) = T(X) Т(У) for all x and in S and with т ф 0. A semicharacter on S is a bounded 
m-measurable multiplicative function on S. We denote by 5* the set of semicharacters 
on S. If S possessesan identity element, then S* is a semigroup under multipHcation 
T e(x) = T(X) e{x). If S is a locally compact abelian group and m is Haar measure 
on S then the semigroup algebra is the known Ü algebra and S* is the dual group of 
continuous characters on S. 

Some of the results of this paper are dependent on the work in [2], [4] and [6]. 
Furthermore, the work of COMFORT [3] on discrete semigroups is a base upon which 
this paper is built. It was shown in [5] that the set A of non trivial multiphcative 
linear functional on L}{S, m) is in one to one correspondence with the elements of S* 
(identified modulo equal almost everywhere). In particular, if т e S*, the hnear 
functional /î̂ (ju) = JT âfi is a multiplicative hnear functional and т(х) = h^^fi * x)lhjiji) 
{hj^li) Ф 0 and /X * X e L^(S, m)) is such that the mapping of т -> /i is the desired 
correspondence. 

The topology on S* will be taken to be the Gelfand topology that S* inherits via 
the above correspondence with the maximal ideal space of the Banach algebra 
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Ü{S, m). Thus a net { T J in 5* converges to т in S* if and only if for each /л in 
Ü{S, m), / Î (TJ -^ я(т) (/î.J^u) -^ /T,(JU) or JT^ d̂ u -^ fi d/z). 

A fundamental neighborhood of т in 5* is a set 

[/ = j o e S* : I I (Ö - T) d/i J < e , {iij}\ с L^(S, m)j 

where e > 0. In this topology, S* is locally compact and is compact if and only if 0 
is not in the closure of the multiplicative linear functional in the w* topology on 
Ü{S, m)*. 

It will be assumed from here on that S has an identity element, so that S* is 
a semigroup. It follows readily from the above remarks on the topology of S* that 
multiphcation is continuous in S*. 

The algebra of Gelfand transforms of Ü[S, m) is a separating sublagebra of the 
space of continuous functions vanishing at infinity on the locally compact HausdorfF 
space S*, hence the Silov boundary д induced by 5* exists and satisfies 

(i) 5 is a closed subset of S* 

(ii) if /i G I}{S, m) then |/x| assumes its maximum on д 

(iii) no proper closed subset of д satisfies (ii). 

In this paper, the boundary will be determined for a class of semigroups. In 
particular, for compact hnearly-quasi ordered semigroups [4] we will show that 

5 = [T e S* : |T| is idempotent] . 

2. Let S be a compact commutative topological semigroup with identity element 1 
and let m be a non negative regular Borel measure on S such that for each set E of 
m-measure zero, 

x~^E = \^y : xy G E^ 

is also of m-measure 0. Let К be the minimal ideal of S. Since К is a compact abehan 
topological group, for each т G K, т a continuous character on K, the mapping т'(х) = 
= т{хе) (e the identity of K) is a continuous semicharacter on S and thus Borel 
measurable. We identify К then as a subset of S*. It is clear that 

К = [T G S* : |T| = 1] . 

Lemma 2.1. Let S be as above and let д denote the Silov boundary of the maximal 
ideal space of l}{S, m), i.e. S*, then К a д. 
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Proof. Let iE К and let [/ be a neighborhood of % in 5*. Without loss of generahty 
we let 

L̂  - [T : \liiT) - Çi.iy)\ < s , jüi e Ü{S, m) and 1 ^ i ^ n] 

We need to find v e Û(S, m) such that |v] assumes its maximum only on U. We 
shall find a complex valued measurable function a, with m-finite support, on S and 
take dv = ОС dm. 

For each /i^, let Ai be the compact support of jii and let Б^ = [x^ : x e Л J , note 
that ВI is the image under multiplication of A(S x S) n (A^ x Ai) and is thus 

n 

compact and hence a Borel set. Let A = [J (A^u B^ and define 
i = 1 

^{^) = Zyi(^) %(-̂ ) foi* all X in S. 

Then a is Borel measurable with compact support and a dm e L^(S', m). Let v be 
this measure. Then 

If 9 фи then there is a j , 1 < j < n, such that |/^Хо) - ßj{x)\ ^ £, that is 

- X\ àfij ^ f {0~x)àfij ее, 

hence there is a subset Б of Aj such that т (Б) > 0 and \в ~ x\ > ^ > 0 on B, i.e. 
ö(x) Ф x{^) foî* all X in Б. 

If ö(x) = 0 on a set of positive measure С a В then 

\m\ = ö(x) a(x) dm ö(x) a(x) dm < m{A \ C) < т(Л) = [v(x)[ . 

On the other hand, if Ö | Б is zero only on a set of measure zero, then without loss 
of generahty в{х) Ф 0 for all x in Б. If \Щ\ = т(Л), then Щ = m{A) é"", 0 < cp < 
< In. Let dl = e''"^ a?{x)e{x)dm and dy = ^~'*^a(x)dm and let pi = y + L 
Then \ß{e)\ = | J e -^>ö + a^ö^)dm| < 2m{A) since |a + ев^\ < 2 ard |/î(x)| = 
= \^e-'''{ax + x̂ %) dm| = \e-''' m{A) + Je'^'^aö dm| = 2т(Л). Hence for вфи, 
Щ\ <\ß{x)\2.ndxed. 

Let Г = [x e 5* : |x| = 0 or 1]. Note that Г is the set of all those elements of 5* 
which have an inverse with respect to some idempotent in S* and hence that Г is 
a union of groups, the maximal groups containing each idempotent element in 5*. 
For X = Z^ i^ *̂ * and H{x) the maximal group with identity x, ti{x) is a locally com-
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pact topological group, since inversion in H(x) is complex conjugation, H{x) is closed 
in S* and multiplication is continuous. Now Г is closed since S* is closed under 
complex conjugation and the idempotent elements of a semigroup are a closed set, 
thus {xa} a net in Г with x<x-^ X implies Xa-^ X and hence XaL "^ XX- Thus since XaXa 
is an idempotent, xx is then an idempotent and x^ ^-

Lemma 2.2. Let S, д and Г be as above. Then д cz Г. 

Proof. We will show that for ф e S^ and ф ф Г that ф ф д. Let ФЕ8^\ Г. Then 
there is an £ > О and a Borel set Б in 5 of finite positive measure (m) such that 
Is < \ф{х)\ < 1 ~ 2s for all X e Б. Let v = Хв{^) àm (хв(х) is the characteristic 
function of Б), then v e I}(S) and U = [6 e S^ : \v(9) — v(\j/)\ < e] is an open neigh
borhood of Ф in 5*. Note that OeU implies that г < Щ < 1 - e and \Х{ф)\ = 
= \^ф dm| < (1 — 2s) m(B). In order to show that ф ф ô, it suffices to show that 
for each fi e Ü{S, m), Щ attains its maximum outside of U. Let Ö e S* such that 

for all Ф e S*. If в e S^ \U there is nothing to prove hence we assume в eU. If 
\ß{e)\ = 0 then \ß\ = 0 and since the identically 1 valued semicharacter is not in U 
(i.e. и Ф S*) again we are finished. Thus we can assume that 0 < |Д(о)| and Ö is 
an element of C/. We will now construct a semicharacter not in V where [/2| also attains 
its maximum value. 

Since li e Û(S, m), fi is absolutely continuous with respect to m and hence dß = 
= / (x ) dm. Let 

Л = [х:/{х)в{х)фО]. 

We wish to consider the function of a complex variable 

9{^) = '^(^)^(i.z)in,ö(.)i^^ = f/(x)ö(x)e^'"^^'""'^'' 

/(x)ö(x)e<i+^)^"l^(^>ldm 

dm = 

Let X„ = [x : |0(x)| > Ijn] and consider 

g^[z) = j e(x)e(i+-)i«l^^^^'d/^ 
JXn 

Then 

g{z + h)- g{z) = - | в{х) g(i+-)i"!ö^^>' [̂  
,̂„|ö(x)l--. l ] d / i . 
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For |/î| small, Re (h) is small and the difference quotient is 

Ö(x)e^^^^>>"'̂ ^^>'[ln|ö(x)| +/i[...]]d/i 
Xn 

and thus 

lim ^(^ +h)-9M =Ç ö(x) ^(î ^)'"l̂ (-)I in \e{x)\ dfi 
IM-o h jx^ 

and g„ is analytic. Now 

Г 0(x), 
J S\Xn 

, ( l + z ) l n | 0 ( x ) | dfi < \e{x)\\e^'-'^^'^^'^'^^\dfi = 
S\Xn 

|0(x)||e<^+^'">^"W^'l|d^t. 
S\Xn 

Now for Re z > - 1 , g(i+R -̂)̂ "lö(̂ )l < i and 

\9n{z) ~ g{z) < - Щ\ 
n 

hence gj^z) converges uniformly to g(z) for Re z > — 1 and g is analytic in 
Rez > - L 

We define semicharacters 9^ on S for Re z > — 1 by 

e,{x) = 0 if e{x) = 0 
0^(x) = ö(x)e^ '̂-̂ '̂"l'̂ ">l if в{х)фО. 

For a.beS iî в{а) = О or в{Ь) = О then в{аЬ) = О and e,{ab) = О = оДа) ö,(b). 
If в{а) Ф О, then 9{аЬ) Ф О and 

Further Re(z) > - 1 implies |ö,(x)| = |ö(x) ê '•"">'"''̂ ">1| < 1 and ö, e S* since Ö, 
is clearly measurable. 

Note that pi{9^ = g{z), arid that for Re z > ~ 1 , в^еЗ^ and |/î| attains its 
maximum at 9 i.e. |Д(0)| = j^(0)| is maximum value of the analytic function g in 
a neighborhood of 0 and hence g is constant thus \ß\ attains its maximum also at 9^ 
for Re z > —1 and we choose z real such that 9^ e S* and Щ'''^^ > (1 -- г) m(ß), 
i.e. 9^ фи and we see that x is not in the boundary д. 

3. Linarly Quasi-ordered semigroups. A general discussion of hnearly quasi-
ordered semigroups can be found in [4] and [6]. The existence of a measure on such 
semigroups satisfying the conditions in section 1 is to be found in [6]. We show in 
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this section that the boundary д of the maximal ideal space S* of 1}{S, m), where S 
is a compact commutative hnearly quasi-ordered topological semigroup with identity 
is Г the set of those semicharacters (measurable) whose absolute values are idem-
potent elements of the semigroup S* of all measurable semicharacters. From lemma 
2.2 we know that д a Г and need only the reverse inequahty. 

Let 5 be a compact commutative hnearly quasi-ordered topological semigroup 
and X ^ ^^^ the measurable semicharacters on S. Now %~^(0) is a prime ideal of S 
and is identical with |x|~^(0). Since \x\ can also be considered as a multiplicative 
function on iS/£, it is readily seen that %~ ^(0) either is equal to Se for some idempotent 
element e in S or is equal to Se \ И{е) for some idempotent element e in S. In the 
following (p is the natural mapping (p : S -^ Sj2. 

Lemma 3.1. Let S and x be as above and let e be such that (p(e) is the zero of 
a unit thread in S/£, then x ii^ Г implies x is in д. 

Proof. Let / be the idempotent element of S such that (p(f) is the identity of the 
unit thread for which (p(e) is the zero then since x is a measurable semicharacter 
on S, X I '̂ Z \ Se is a continuous semicharacter on Sf \ Se and hence is the restriction 
of a character on the group H(f) x Rtoa, subsemigroup and as such is in the bound
ary of the maximal ideal space of Ü(Sf\ Se) [1]. Since Ü(Sf\ Se) can be considered 
as a subalgebra of L^{S), we see that x e ^. 

Lemma 3.2. Let S and x be as above and let e be such that the connected com
ponent containing e in E, the set of all idempotent elements, is a point. If ç(e) is 
not the zero of a unit thread and x is in Г then x is in д. 

Proof. Since the component of E containing e is {e}, there exists a linearly 
ordered net f^ of idempotent elements /« i e such that each f^^ is such that (p{fa) is 
the zero of a unit thread. Define 

Za | , 
X on S\Sf,, 
0 on Sf,, 

then by lemma 3.1 Xa^^- Thus we need only show that Za -^ Z to obtain x^^-
Now Za "^ Z if and only if for each v e L^{S), v(x<z) ~^ ^(z)- We need consider only 
those V with support contained in S \ Se, thus 

Iv(Za) - V{X)\ = (Za - z) ày (Za - Z) dv 
J Sfo,\Se 

<v(SA\Se) . 
/ Sf^\Se 

Since V is a regular Borel measure a n d / , -> e, v(Sf, \ Se) -> 0 and % e 5. 

Lemma 3.3. Let S and x be as above and let e be such that (p(e) belongs to a non-
trivial idempotent interval in 5/£, then x iw Г implies x^^-
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Proof. Since (p(e) is in an idempotent interval x is equivalent to a semicharacter 
on S defined uniquely by extension of a character on H(e) to S. For any idempotent/ 
with (p(f) in the same interval and (p(f) > (p(e), there is an involution on Ü(Sf\Se) 
so that the algebra is self-adjoint and hence the boundary of the maximal ideal 
space of this algebra is the whole maximal ideal space. It then follows that x is in д. 

We thus have the following 

Theorem 3.4. Let S be a compact commutative linearly quasiordered topological 
semigroup such that 5/£ contains no nil thread. The natural measure m on S is 
such that I}{S,m) is a Banach algebra and the Silov boundary of the maximal 
ideal space corresponds in a one to one fashion with those m-measurable semi-
characters on S whose absolute values are idempotent semicharacters. 
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