Czechoslovak Mathematical Journal

Bohdan Zelinka

Geodetic graphs of diameter two

Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 1, 148-153

Persistent URL: http://dml.cz/dmlcz/101300

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

GEODETIC GRAPHS OF DIAMETER TWO

Bohdan Zelinka, Liberec

(Received November 19, 1973)

Geodetic graphs were defined by O. Ore [1.] as graphs in which to any pair of vertices there exists a unique path of minimal length joining them. For example, an arbitrary tree is a geodetic graph. Planar geodetic graphs were studied by J. G. Stemple and M. E. Watkins [2]. Here we shall give some results concerning geodetic graphs of diameter two.

If a graph is geodetic of diameter two, then it does not contain multiple edges and any pair of its distinct vertices either is joined by an edge, or is connected by a unique path of the length two.

Theorem 1. Let G be a geodetic graph of diameter two and of vertex connectivity degree one. Then G contains exactly one cut-vertex and each block of G is a clique.

Proof. As G has vertex connectivity degree equal to one, it contains at least one cut-vertex. Suppose that it has two distinct cut-vertices a_{1} and a_{2}. Let G^{\prime} be the union of all simple paths joining a_{1} and a_{2} in G; the graph G^{\prime} is a connected subgraph of G consisting of one or more blocks of G. Let G^{n} be the graph obtained from G by deleting all edges of G^{\prime} and all vertices of G^{\prime} except a_{1} and a_{2}. Evidently $G^{\prime \prime}$ is disconnected and the vertices a_{1}, a_{2} are in different connected components of $G^{\prime \prime}$. As they are cutvertices in G, they cannot be isolated in $G^{\prime \prime}$. Thus let b_{1} or b_{2} be a vertex joined with a_{1} or a_{2} respectively by an edge in $G^{\prime \prime}$. Then any path in G joining b_{1} and b_{2} must contain both a_{1} and a_{2}, therefore its length is at least three, which is a contradiction with the assumption that G has diameter two. Therefore G has exactly one cut-vertex; denote it by a. Let u, v be two vertices lying in distinct blocks of G and both distinct from a. Any path joining u and v must contain a. As G has diameter two, there exists a path joining u and v of length two. This path contains only the vertices u, a, v, therefore there exist edges $a u, a v$. As u and v were chosen arbitrarily, we have proved that each vertex of G distinct from a must be joined by an edge with a. Now let u_{1}, u_{2} be two distinct vertices of the same block of $G, u_{1} \neq a, u_{2} \neq a$. Suppose that they are not joined by an edge. Then their distance is two; there exists a path P_{0} of length two
joining them which has the edges $a u_{1}, a u_{2}$. As G is geodetic, no other path of length two joining u_{1} and u_{2} may exist. However, as u_{1} and u_{2} lie in the same block, there exists at least one simple path joining u_{1} and u_{2} and having no vertex in common with P_{0} except u_{1} and u_{2}. Let P be such a path of minimal length, let this length be l; obviously $l \geqq 3$. Let the vertices of P be $u_{1}=w_{0}, w_{1}, \ldots, w_{l}=u_{2}$ and the edges $w_{i} w_{i+1}$ for $i=0,1, \ldots, l-1$. The vertices $u_{1}=w_{0}$ and w_{2} are not joined by an edge; otherwise by deleting the vertex w_{1} and the edges $w_{0} w_{1}, w_{1} w_{2}$ and by adding the edge $w_{0} w_{2}$ we should obtain a path of length $l-1$ joining u_{1} and u_{2}, which would be a contradiction with the minimality of P. Therefore the distance of w_{0} and w_{2} is two. But they are joined by two different paths of the length two; one of them contains the edges $w_{0} w_{1}, w_{1} w_{2}$, the other contains $a w_{6}, a w_{2}$. We have obtained a contradiction. Thus we have proved that any two vertices of the same block of G are joined by an edge and each block of G is a clique.

Fig. 1 shows examples of such graphs.

Fig. 1.
Theorem 2. Let G be a geodetic graph of diameter two and of vertex connectivity degree at least two. Let G contain a clique K with at least two vertices. Then G contains an induced subgraph L described in the following way: L contains K as as a subgraph and, moreover, it contains the vertices $f(u)$ for each vertex u of K, the vertex w and the edges $u f(u), f(u) w$ for all vertices u of K. The vertices $f(u)$ for all u of K and w are pairwise distinct and do not belong to K.

Proof. First suppose that K is a maximal clique of G, i.e., that it is not a proper subgraph of another clique. The clique K must be a proper subgraph of G; otherwise G would have diameter one. As G is connected, there exists at least one vertex of G not belonging to K and joined by an edge with a vertex of K; if the latter is u_{1}, then the former will be denoted by $f\left(u_{1}\right)$. As the vertex connectivity degree of G is at least two, there exists a path P connecting $f\left(u_{1}\right)$ with a vertex of K which does not
contain u_{1}. If we go along P from $f\left(u_{1}\right)$, let u_{2} be the first vertex of K which we meet. Let the vertex of P preceding u_{2} be $f\left(u_{2}\right)$. Suppose $f\left(u_{2}\right)=f\left(u_{1}\right)$. If the clique K consists only of two vertices u_{1}, u_{2} then the vertices $u_{1}, u_{2}, f\left(u_{1}\right)$ form a clique containing K as a proper subgraph, which is a contradiction with the maximality of K. If K has more than two vertices, let v be a vertex of K distinct from u_{1} and u_{2}. There exist two paths of length two between $f\left(u_{1}\right)$ and v; one of them has the edges $f\left(u_{1}\right) u_{1}$, $u_{1} v$, the other $f\left(u_{1}\right) u_{2}, u_{2} v$. Therefore $f\left(u_{1}\right)$ and v cannot have distance two, they must be joined by an edge. As v was chosen arbitrarily, $f\left(u_{1}\right)$ must be joined by edges with all vertices of K and K is a proper subgraph of the clique induced by all vertices of K and $f\left(u_{1}\right)$. We have proved $f\left(u_{1}\right) \neq f\left(u_{2}\right)$. Now suppose that $f\left(u_{1}\right)$ and $f\left(u_{2}\right)$ are joined by an edge. Then the vertices $u_{1}, f\left(u_{2}\right)$ are joined by two paths of length two. One has the edges $u_{1} f\left(u_{1}\right), f\left(u_{1}\right) f\left(u_{2}\right)$, the other has the edges $u_{1} u_{2}, u_{2} f\left(u_{2}\right)$. This means again that u_{1} and $f\left(u_{2}\right)$ must be joined by an edge. Analogously u_{2} and $f\left(u_{1}\right)$ must be joined by an edge. If K contains only two vertices, the vertices u_{1}, u_{2}, $f\left(u_{1}\right), f\left(u_{2}\right)$ induce a clique properly containing K. If K contains a vertex v distinct from u_{1} and u_{2}, then v is connected with $f\left(u_{1}\right)$ by two paths of length two; one contains the edges $v u_{1}, u_{1} f\left(u_{1}\right)$, another the edges $v u_{2}, u_{2} f\left(u_{1}\right)$. Therefore also v is joined with $f\left(u_{1}\right)$. Analogously we prove that v is joined with $f\left(u_{2}\right)$. Therefore all vertices of K are joined with both $f\left(u_{1}\right)$ and $f\left(u_{2}\right)$ and the vertices of K together with $f\left(u_{1}\right)$ and $f\left(u_{2}\right)$ induce a clique properly containing K. We have proved that $f\left(u_{1}\right)$, $f\left(u_{2}\right)$ are not joined by an edge. They must be connected by a path of length two; let its inner vertex be w. Suppose that w belongs to K. We have either $w \neq u_{1}$ or $w \neq u_{2}$; without a loss of generality let $w \neq u_{1}$. Then $f\left(u_{1}\right)$ is joined by edges with two vertices of K, namely, u_{1}, w. Analogously as in the case $f\left(u_{1}\right)=f\left(u_{2}\right)$ we prove that $f\left(u_{1}\right)$ is joined with all vertices of K and we have again a clique properly containing K. Thus w is not in K. Evidently also $w \neq f\left(u_{1}\right), w \neq f\left(u_{2}\right)$. Suppose that w is joined by an edge with a vertex v of K. Without a loss of generality let again $v \neq u_{1}$. Then the vertices $v, f\left(u_{1}\right)$ are connected by two paths of length two; one contains the edges $v u_{1}, u_{1} f\left(u_{1}\right)$, the other the edges $v w, w f\left(u_{1}\right)$. Therefore v and $f\left(u_{1}\right)$ must be joined by an edge, which is not possible as proved in the case when w was supposed to be in K. The vertex w has distance two from all vertices of K. Let x be a vertex of $K, x \neq u_{1}$, let $f(x)$ be the inner vertex of the path of length two connecting w and x. The vertex $f(x)$ is not in K, because otherwise w would be joined by an edge with a vertex of K, which was proved to be impossible. If $f(x)=f\left(u_{1}\right)$, then this vertex would be joined by edges with both u_{1} and x, which is also impossible; the proof is analogous to that of the inequality $f\left(u_{1}\right) \neq f\left(u_{2}\right)$. In the same way we prove that $f(x) \neq f\left(u_{2}\right)$. Analogously to the above proofs we can prove that for any x and y of K (not excluding u_{1} and u_{2}), $x \neq y$, we have $f(x) \neq f(y)$ and these vertices are not joined by an edge. We can prove also that for $x \neq y$ the vertices $f(x), y$ are not joined by an edge; this is analogous to the proof that $f\left(u_{1}\right)$ is not joined with u_{2}. We have obtained the induced subgraph L of G. It remains to prove the assertion in the case when K is not a maximal clique. Then there exists a maximal clique K_{0} containing K
as a subgraph. We construct the graph L_{0} for K_{0} analogously as L for K in the previous case. The subgraph of L_{0} induced by the set of vertices of K, by the vertices $f(u)$ for u from K and by w is the required subgraph L.

Note that any L is itself a geodetic graph of diameter two and vertex connectivity degree at least two. For any $n \geqq 5$, finite or infinite, we can construct L with n vertices. We conclude

Corollary. A geodetic graph of diameter two and of vertex connectivity degree at least two can have an arbitrary number of vertices greater than or equal to five.

Some graphs L are in Fig. 2.
Nevertheless, there are also geodetic graphs of diameter two and of vertex connectivity degree at least two which have not this form. The well-known Petersen graph in Fig. 3 is such a graph.

Fig. 2.

Theorem 3. Let C be a circuit of length five of a geodetic graph G of diameter two. Then either C has no diagonal edges or the set of vertices of C induces a clique of G.

Fig. 3.

Proof. Let the vertices of C be $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}^{\prime}$ and the edges $u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}$, $u_{4} u_{5}, u_{5} u_{1}$. Suppose that C has a diagonal edge; without a loss of generality we may suppose that this edge is $u_{1} u_{3}$. Then u_{1} and u_{4} are connected by two paths of length two; one contains the edges $u_{1} u_{3}, u_{3} u_{4}$, the other contains $u_{1} u_{5}, u_{4} u_{5}$. Therefore u_{1} and u_{4} must be joined by an edge and the vertex u_{1} is joined by edges with all vertices of C. But analogously, from the existence of the diagonal edge $u_{1} u_{3}$ or $u_{1} u_{4}$ we can prove that also u_{3} or u_{4} respectively is joined with all other vertices of C. Now we have edges $u_{2} u_{4}, u_{3} u_{5}$ and their existence implies that also u_{2} and u_{5} are joined with all vertices of C (except itself). The vertex set of C induces a clique of G.

Theorem 4. Let G be a geodetic graph of diameter two and of vertex connectivity degree at least two. Then to any two distinct vertices of G there exists a circuit of length five without diagonal edges containing both of them.

Proof. If these two vertices are joined by an edge, they induce a clique K and according to Theorem 2 there exists an induced subgraph L of G which contains K and is a circuit of length five (the first graph in Fig. 2). Now let u, v be two vertices of G not joined by an edge. There exists a path P_{0} of length two joining them; let its inner vertex be w. As G has the vertex connectivity degree at least two, there exists at least one path joining u and v and not containing w. Let P be such a path of the minimal length l; evidently $l \geqq 3$. If $l=3$, we have obtained a circuit of length five which is the union of P_{0} and P. If $l>3$, then let the vertices of P be $u=x_{0}$,
$x_{1}, \ldots, x_{l}=v$ and let the edges of P be $x_{i} x_{i+1}$ for $i=0,1, \ldots, l-1$. The vertices x_{0}, x_{3} must have distance one or two; therefore there exists a path P_{1} of length one or two joining x_{0} and x_{3}. The union of P_{1} and of the subpath of P joining x_{3} and x_{t} is a path of length $l-1$ or $l-2$ joining u and v, which is a contradiction with the minimality of l. Therefore $l=3$ and we have a circuit C of length five which is the union of P_{0} and P. It remains to prove that C has no diagonal edge. If C had some diagonal edge, then according to Theorem 3 the vertex set of C would induce a clique of G and u and v would be joined by an edge, which would be a contradiction.

References

[1] O. Ore: Theory of Graphs. Providence 1962.
[2] J. G. Stemple and M. E. Watkins: On planar geodetic graphs. J. Comb. Theory 2 (1968), 101-117.

Author's address: 46117 Liberec, Komenského 2, ČSSR (Vysoká škola strojní a textilní).

