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CONCERNING BINDING CATEGORIES

JiIki Rosicky, Brno

(Received January 9, 1974)

A category A is binding if any algebraic category can be fully embedded into it
(see [1]) By an algebraic category we mean in this paper any equationally definable
category of algebras with finitary operations. J. SICHLER has found in [6] a finite
category C such that a category A satisfying the following conditions (0)—(6) is
binding if and only if C can be fully embedded into A:

(0) there exists a faithful functor U : 4 — Ens (it means that (4, U) is a concrete
category),

(1) there are a class E of epis and a class M of monics of A such that 4 is a bicategory
in the sense of Isbell with respect to these two classes,

(2) U(m) is one-to-one mapping for every m € M,

(3) for every object a of 4 and for every bijection b : Ua — x there is an iso-
morphism i of A such that U(i) = b,

(4) A4 has and U preserves equalizers,
(5) 4 is cocomplete,

(6) if D:S — A is a diagram and ae€ A is its colimit with the colimiting cone
7: D a, then

Ua = U U(z,) (UDs).

He has proved it in the following way. Let G be the category of all undirected
graphs and their compatible mappings. Let [ /: G — Ens be the usual forgetful
functor. Denote successively by 1, 2, 3 and 4 the full graph without diagonal having
one, two, three and four vertices. An undirected graph is 3-colourable if it has
a compatible mapping into 3. Let G be the full subcategory of G consisting of all
3-colourable graphs. The category G is binding. Let C be the full subcategory of G
determined by graphs 1, 2 and 4. C is dense (left adequate) in G U {4} and cogenerates
Gu {4_1} because 4 cogenerates G itself. J. Sichler has shown that if C can be fully
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embedded into a category A satisfying (0)—(6), then there exists a full embedding
T: C — A such that a left Kan extension L, of T'is a full embedding of the binding
category of all connected graphs from G U {é} into A.

On the other hand, let B be a category, B, a full subcategory of B which is small
and cogenerates B, and A a cocomplete and co-well-powered category. If T: B, — A4
is a full embedding, then beginning with a left Kan extension L, of T we can trans-
finitely construct a functor L, : B —» A extending T such that whenever B, is dense
in B and A4 has enough isomorphic copies of each of its objects, then L, is a full
embedding if and only if a full embedding extending T exists (see [5])

If we take L, instead of L, in the previous situation, we can enlarge the class of
categories tested for bindability by a small category. First, we can show that any
co-well-powered category A satisfying (0), (3), (5) and (6) is tested for bindability
by C, again. For instance, such categories A cover all comonadic categories. Restric-
tive is the condition (6). However, if we replace C by a certain small category C,,
(6) can be weakened to a condition satisfied by any algebraic category. In this way
we shall solve the problem set in [6] whether there is a small category testing the
bindability of any algebraic category.

All necessary concepts of the category can be found in [2].

1. THE CONSTRUCTION

We shall describe the construction of L, on objects. Let B, be a small full sub-
category of B which cogenerates B, A a cocomplete co-well-powered category and
T: By — A a full embedding. Let b € B and denote by P : (B, | b) — B, the projec-
tion of the comma category (B, | b) into B,. Then L,b is a colimit of the functor

(Bolb) D By A.

Suppose that we have a functor L,_,; for an ordinal «. Then L,b is a colimit of the
following diagram.

‘ Fig. 1.

Arrows of this diagram are all arrows of 4 with the domain in TB, and the codomain
L,_1b. Arrows f, g : Tx — L,_,b have the same domain in this diagram if and only
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if L,_y(h).f = L,_4(h).g for every arrow h: b — y and every y € B,. Denote by
2271 the component of the colimiting cone with the domain L,_,b. Further, let o
be limit and consider the diagram

lg,l A;,Z lg,ﬁ-l*l lg+1’ﬁ+2
(%) Lob 22 b2 . Lyb

Lyyb s .

having objects L;b and arrows 25! for B < «. Then L,b is defined to be a colimit
of this diagram and by A5*: Lgb - L,b we denote components of the colimiting
cone. This process stops at some ordinal y and we put L,b = L,b. We get functors L,
and L, extending T. Moreover, our A’s determine natural transformations A%* :
1Ly L,and A" : L, L, for any f < a. It holds A%*, 2%# = )?*forany d < f < «
and therefore L,b is a colimit of a slight modified diagram ('), which we obtain from
(*+) taking all A3, 6 < B < « as arrows.
The detailed description of this construction can be found in [5].

Lemma 1. Let x € By, be Band f, g : Lyx — Lyb in A such that Ly(h) f = Ly(h) g
forany h:b — yand any y € By. Then f = g.

Proof immediately follows from the construction of L,b.

Lemma 2. In addition, let B, generate B. Then L, is faithful.

Proof. Let xe By, be B and f =+ g : x — b. Since B, cogenerates B, there exist
yeBy and h:b — y such that hf + hg. Since T is faithful, Ly(hf) + L.(hg) and
therefore Ly(f) + L4(g9). Now, faithfulness of L, follows similarly from the fact
that B, generates B (see [5] Prop. 1).

Now, we are going to give some sufficient conditions for L, to be a full embedding.
A subcategory B, of a concrete category (B, | [) projectively generates B if for any
b, c € B and any mapping f : [b] — [c[, f = |f1] for an arrow f; : b — ¢ of B if and -
only if for every x € B, and every arrow h : ¢ — x of B there is an arrow A’ : b — x
of B such that [k’ = [h/.f. Choose the following classes of small categories: % is
the class of all well-ordered sets without the greatest element taken as categories,
%, consists of all connected small categories S containing an object ¢ such that any
non-identity arrow of S has the codomain ¢ and finally %,(B,, B) consists of all
comma categories (B, | b) for b e B. Put 4(B,, B) = €, U %, U %3(B,, B). Clearly
any colimit needed in the construction of L, is a colimit of a diagram D :S — 4
with S € 4(Bo, B). Namely, () for S € %, and (++') for S € €.

The crucial part of the following proof, the proof of fulness of L, with respect to
arrows of 4 having a domain in L,B,, is a modification of Lemma 4 from [6].

Theorem 1. Let (B, | |) be a concrete category and By a small dense full sub-
category of B which cogenerates and projectively generates B. Let B, contains an

object e such that card [e/ = 1 and for any x € B and any mapping u' : [e] — [x]
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there exists u :e — x in B, with [u] = u'. For any zeB,, be B and g :z > b
in B let there exist d € B, with the following properties:

a).d is a cogenerator of B,

b) for any permutation s’ of [d| interchanging two elements of [d| there exists
s:d—d in B with [s| = s,

c) there is an hy : b — d in B such that for any h:b — d in B, ans:d — d in B
with hg = shyg can be found,

) card (Jd] — [hog(/z]) > 1.

Let (A, U) be a co-well-powered concrete category having colimits of functors
D :S — A for S € %(B,, B), satisfying (6) for these colimits and fulfilling the con-
dition (3). Let T: By — A be a full embedding.

Then Ly : B — A is a full embedding.

Proof. By the previous lemma and Corollary 2 from [5] it suffices to prove that
for any ye By, be B and f: L,y —» L,b in A there is an arrow f':y - b in B
with L*(f') = f.

Denote by u, ; the arrow u, ;:e — x of B for which [u, [ (/e[)) = {i}, where
x€B and ie[x|. Let us have a d € B, satisfying a)—d). Let pe ULe such that
ULy(u,;) (p) = UL4(uy;) (p) for some i,je/d], i +j. Take keld], i +k =+ j
and s : d — d such that s/ is the permutation of /d/ interchanging i and k. We get
ULy(ua,) (p) = ULy(suy;) (p) = ULy(suy ;) (p) = ULy(ua;) (). Thus there exists
p e ULye such that ULy(u,;) (p) + ULy(u, ;) (p) for any i,j€ [d], i + j. Suppose
that ULy(u, ;) (p) = UL4(u,,;) (p) for some x € B, and i,j € [x[, i + j. Since d is
a cogenerator, there exists h:x —d in B such that wu, ;) = hu,; + hu,; =
= Uy sy Further, ULy(ug i) (P) = ULy(ug sy;)), Which is a contradiction.

Let be Band f: Lye — L,b. Since L,b is defined by colimits of functors D : S —
— A, where S € 4(B,, B) and any A** is a natural transformation, (6) enables us to
find ze By, g : z — b in B and q € UL,z such that U(f) (p) = UL(g) (9). Take d
for this g. We shall denote u, ; for d just taken briefly by u;.

Consider h, from c). We can find u, such that Ly(ho).f = Ly(u,). Suppose that
k¢ [hog| (]z]). Let s : d — d be an arrow in B such that [s/ i$ the permutation of /d/
interchanging k with an element i€ [hog/ (/z/). Then there exists u,,:e — z in B
with u, = shogu,,. It holds UL4(u,)(p) = U(Ly(ho)f) (p) = UL4«(hog) (9)- By d)
and b) there exists an s’ : d — d such that s’/ is the permutation of /d/ interchanging i
with some je [d] — (|hog/ (/z]) U {k}). We have ULy()(p) = UL«(s'w,) (p) =
= ULy(s'hog) (q) and therefore UL,(u;) (p) = ULy(su;) (p) = ULy(ss'hog) (q) =
= UL4(s'hog) (q) = ULy(w,) (p), which is a contradiction. Thus k € [hog/ (/z[) and
there exists a u, , : e = z such that u, = hogu, ,. Put f' = gu, ,.

Suppose that there exists x € B, and h : b — x in B such that Ly(h) f + Ly(hf").
Let u :e — x with Ly(h)f = Ly(u). There is h’ : x > d with the property h'u =+
+ W'hf’ and s : d — d such that h'hg = sheg (see c)). Thus h'hf = shof’. Hence
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ULy(su,) (p) = UL4(shof") (p) = UL4(h'hf") (p) % UL4(h'u) (p) = U(L(W'h)f) (p) =
= ULy(h'hg) (q) = ULy(shog) (q) = UL4(su,) (p), a contradiction. Therefore
Ly(h) f = Ly(h) Li(f") for any xe B, and any h:b — x and by Lemma 1, f =
= L*(f/)-

Now, let y € By, be Band let f : L,y — L,b be an arrow in 4. Define f : /y/ - /b/
by fLy(u,.;) = Ly(uyy() for i€ [y]. Let x € By and h : b — x. Then Ly(h) f = Lu(t)
for some t:y — x and we have Ly(tu, ;) = Ly(h)fLy(u,;) = Ly(huy 7). Thus
[tuy ;| = [h] f|u, | for any ie[y|. Hence [h|f = [t| and f= [f'| for an arrow
f':y— b because B, projectively generates B. Moreover, Ly(hf’) = Ly(t) =
= Ly(h) f and Lemma [ yields Ly(f’) = f. The proof is complete.

Note. Using p from the previous proof we may define a natural monotrans-
formation « : [ [ > UL, by a(i) = ULy(u, ;) (p). If we want to avoid the axiom of
choice for classes, which is used in the proof of Corollary 2 of [5], we can suppose
that [t/ = id;,, implies t = id, for any isomorphism ¢ : b — b in B and apply Lemma
1.5 of [4].

2. TESTING CATEGORIES

It is easy to see that B = G U {4} and B, = C fulfil all suppositions of Theorem 1.
Indeed, e = 1, 4 is the only d and 4 projectively generates G U {4_1} by Lemma 1
of [6].

Theorem 2. A co-well-powered category A satisfying (0),(3), (5) and (6) is binding
if and only if C can be fully embedded into it.

We shall define a small category C, testing bindability of any algebraic category.
Let N, be the full graph with the diagonal having countably many vertices. Let C,
be the full subcategory of G containing N,, 4 and all graphs decomposing into a finite
number of components of the form 1 or 2.

Lemma 3. A comma category (C, | x) is filtered for any graph x € G.

Proof. Let xe G and put S = (Co | x). We have to prove that any diagram
in S of the form ,

is a base for a cone.

Let f,f € S. It means that f:z — x and f’:z — x are compatible mappings
and z, z’ € Cy. Since x is 3-colourable, 4 =+ z, z’ # N,. Let z” be the coproduct of z
and z’ in G with injections i 1z = 2", i : 2’ — z” and f” : z” — x the unique arrow
of G such that f"i = f and f"i' = f". Since [z"| = [z| U |z’| and any edge of z" is
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an edge of z or z’, we have z” € C,. Therefore f"eSand i:f — f", i :f' — f" are
arrows of S.

Letf,geS,g:z—- xandleti,j:f — g be a parallel pair of arrows of S. Define
a compatible mapping k : z — z such that two components of z have the same image
in kif and only if they have the sameimagein g. Thereis an h:z — x such that g = hk,
which means that k : g — h is an arrow in S and moreover, ki = kj holds.

Theorem 3. Let A be a co-well-powered category satisfying (0), (3) which has
colimits of functors D :S — A for S filtered or Se %, and fulfils (6) for these
colimits. Then A is binding if and only if C, can be fully embedded into it.

Proof. Put B = G U {4,N,}and By, = C,. Then all suppositions of Theorem 1
are satisfied. Namely, e = 1 and N, is the only d. Since any category belonging to @,
is filtered and by Lemma 3 the same holds for %,(B,, B), Theorem 3 follows from
Theorem 1.

Lemma 4. Let (4, U) be a concrete category having kernel pairs and let Uf be
epi for any coequalizer f in A. Then A satisfies (6) for any S € €,.

Proof. Let Se€%, and let ae A be a colimit of a functor D : S — 4 with the
colimiting cone . Denote by f the component of T with the domain t. Let f5, f, : a; —
— t be a kernel pair of f. We shall prove that f is a coequalizer of f; and f,. Suppose
that gf, = gf, for an arrow g in A. Let hy, h, : s > t be a parallel pair of arrows
of S.Since f. D(hy) = f. D(h,), there is a unique arrow k : D(s) — a, in A such that
fik = D(h;) for i = 1, 2. Therefore g. D(h;) = g. D(h,) and g determines a cone
from the base D. Thus, there is a unique arrow k' in A with k'f = g. Hence f is
a coequalizer and Uf is epi. But it means that (6) is satisfied.

Corollary 1. An algebraic category A is binding if and only if C, can be fully
embedded into it.

Proof. The usual forgetful functor U : A — Ens preserves filtered colimits (see
[2, p. 209]). Further, A is cocomplete, complete and Uf is epi for any coequalizer
fin A. The last fact can be found in [3], Lemma 6. The result follows from Lemma
4 and Theorem 3.

The infiniteness of C, plays no role because we can take instead of C, the full
subcategory C’ of G having objects 1, 4, N, and the graph having countably many
copies of 1 and countably many copies of 2 as components. In this case we have to
use only the graphs from G having at least one edge instead of the whole G. After
computation that C’ is dense in G U {4, X,} nad that (C’ | x) is filtered for any
x € G having at least one edge, we obtain that this four-object category C’ tests
bindability of any algebraic category. It seems to be an interesting problem to find
such a testing category with the smallest possible number of objects.
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The method presented does not work for categories of algebras of arbitrary arities
because categories from %, needed for the construction of L, are not m-filtered for
a cardinal m > N,.

Added in proof. This difficulty is avoided and further results are given in the
following author’s papers: On extensions of full embeddings and binding categories
(Comm. Math. Univ. Carol. 15 (1974), 631—653) and Codensity and binding cate-
gories (to appear in Comm. Math. Univ. Carol.).
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