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MULTIFUNCTIONS WITH CONVEX CLOSED GRAPH

CoRNELIU URSESCU, Jassy
(Received April 24, 1974)

In this paper we shall establish some properties of multifunctions with convex
closed graph which are in connection with “open mapping theorem’ and “closed
graph theorem”.

Let X, Y be real linear topological spaces, and let %, ¥~ be the families of all
neighbourhoods of the origins in X, Y, respectively.

Let C be a non-empty subset of X, and let F : C —» Y be a multifunction with
non-empty values.

Throughout the paper: core, lin, int, cl denote algebraic interior, algebraic closure,
topological interior, topological closure (see [4]); gr denotes graph.

The main result of the paper is the following

Theorem (see [S]). Let X be a locally convex, complete, semi-metrizable space,
and let Y be a barelled space. Let gr F be a convex, closed set, and let core F(C) + 0.
Then

F(x) n core F(C) < int F(C n (x + U)),

F(x) € linint F(C n (x + U))
forall xeC and Ue%.
Before to make good the theorem, let us prove some lemmas.
Lemma 1. The set gr F is convex if and only if the set C is convex and t, F(x;) +
+ t, F(x,) € F(tyx; + t,x,)forallx,eC,x,e€C,t; 20,t, =20,andt, +t, = 1.

Proof. The demonstration is not difficult.

Lemma 2. Let X be a locally convex space, and let Y be a barrelled space. Let
core F(C) % 0. Then

F(x) n core F(C) < int cl F(C n (x + U))
forallxeCand Ue.
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Proof. Let U € %. There exists 17 € ”Zl convex such that U < U. Let x € C. Denote
C,=Cn(x+ nU). Then C = U C, and ((n — 1)/n)x + (1/n) C, = C,, hence
F(C) = U F(C..) and ((n — 1)/n) F(X) + (1/n) F(C,) € F(Cy).

Let y € F(x) n core F(C). Then F(C,) — y < n(F(C,) — y) and 0 € core (F(C) —
=) But F(©) = » = U (F(C) = ») € Un(F(Cy) - ), hence U n(F(C) = 3) =

= Yand V= cl (F(C,) — y) € ¥ (recall that F(C,) is a convex set) (see [2], p. 3).
Consequently y + ¥V = cl F(C,) and y eint cl F(C,) < intcl F(C n (x + U)).

Lemma 3. (see [3], p. 202). Let X be a complete, semi-metrizable space. Let gr F
be a convex, closed set. Let x € C, let y € Y, and suppose that

yeintcl F(C n (x + U))
forall Ue . Then

yeint F(C n (x + U))
forall Ueq.

Proof. First, let us prove that
tdFCn(x+U)+(A—-1)y< FCn(Kx+tU + 0)))

forallte(0,1), Ue%,and U e %.
Let t € (0, 1). Denote t, = t/*", Then lim ¢, ... t, = t.

n—oo

Let U € %. There exists a fundamental sequence U, € % of closed neighbourhoods
such that U; + U, € U and U,,, + U,,,; < U, (see [1], p. 23). Denote U, =
= (... t;J(1 — 1)) U,. There exists ¥/, € #" such that y + V, = cl F(C n (x + U,)).
Denote V, = (1 — t)/t,) V..

Let Ue, let j ecl F(C n (x + U)), and let us show that

7 +(1—-0yeFCn(x+tU+ D).

We shall construct, step by step, a sequence ue U, u; €Uy, ...,u,€U,, ... with
the following property: '

4

e+ A =t t)yecdd FCn(x+t,...t;,(u + ... + u,_, + U,)).

Since (j — V;) n F(C n (x + U)) + 0, there exist v, €V; and ueU such that
x+ueCandj —v,eF(x +u),hencet,j + 1 —t)y=t,( —v)+ A —1ty).
SO+ @A - ) v)etuF(x +u) + (1= 1) + (/L = 1)) V). But y +
+ (I = t)Vy =y + Vi SdFCA(x+ 0)) = FICa (x + (t/(1 = 1) -

U,)) which means that t,5 + (1 — t,) yecl F(C n (x + t,(u + U)))).
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Suppose that we haveu e U, ..., uy—1 € U, -y with the desired property. Since

W tyg+ A=t 1)y — Ver1) O
AFCA(x+t,...tu+ ... +u, +U)))*0,

there exist v,+1 € Va+1 and u, e U, such that

X+ t,...t;u+...+u)eC

and
oo i+ A =ty )y — v €F(x + 1, t(u + ... +u)),

hence t,y1 ...t 7+ (U =ty . t)y =t (... 37+ (L=t t)y — Uyy) +
+ (1 = ty21) 0 F rt/(l = t,40) Vps1) Elys Fx + 1y oo ty(u + ..o+ u,) +
+ (=t ) 0+ s /(L = 1,00) Vasy)- But y + (ty/(L = 1,40)) Vo =y +
+ Vi1 SdFC(x+ 0,,) = F(CA(x + (tysy - t/(1 = 1,41)) Upsy))
which means that ¢, ... t,7 + (1 —t,yq ... t)yeEclFC(x + t,4y...
. ty(w + ... + u, + U, 1)) and the desired sequence is obtained.

0
Since 4,4y + ... + u, €U,y + ... + U, S U, the series ) u, is convergent.

n=1
Denote by 4 its limit. Since u; + ... + u,eu, + U, iieu, + U; = U.
Let now U’ € %, V' € ¥" be arbitrary open neighbourhoods. There exists n such that

X4+t tu+ . +u,_, +U)sx+tu+d)+U
and
by i3+ (A —t,...t)yety+ L =Dy + V.

Since t, ... 1§ + (1 —t,...t;) yec F(C n (x + t(u + @) + U")), it follows that
t+A -0y +V)nF(Cn(x+ tu+ @) + U’)) + 0 hence there exist u" e U’
and v' eV’ such that x + #(u + @) + u'eC and tJ + (1 — )y + v eF(x +
+ tw + @) + ') that is (x + tw + @), t§ + (1 — 1) y) + (', v)egr F. Con-
sequently (x + t(u + @), ty + (1 —¢)y)egrF, i€, x + t{u + ) e C and tj +
+ (1 —=0yeF(x + tlu + @) < F(Cn (x + (U + 0))).

Finnaly, let us prove the lemma. Let U € 4. There exists U € % such that U + U <
< 2U. There exists Ve such that y + ¥ < ¢l F(C n (x + U)). Denote V =
=@ V.Theny + V= QDG+ N+ @ys®AFCnx+0)+By<
S FCn(x+ &)U+ 0) < FCn(x + U)) and yeint F(C n (x + U)).

Let now return to the theorem.

Proof of the theorem. Let x € C and U € %. The first inclusion follows by lemmas
2 and 3. Let us prove the second inclusion. Let y € F(x). Since F(C) < lin core F(C

(recall that F(C) is a convex set) there exist j € Y and r; > 0 such that y + sje
€ core F(C) for all se (0, r;]. Moreover there exists X € X such that x + rXeC
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and y 4+ rjeF(x + r%). Then y + sj = ((ry — s)/r)y + (s/r) (v + 1P e
e((ry — 9)ry) F(x) + (s/r) F(x + r%) < F(x + s%) forallse (0, r,]. Let U e %
such that 0 + U < U, let r, > 0 such that s% e U for all s € (0, r,], and denote r =
= min (r, 7,). Let se(0,7]. Then y + sj € F(x + s%) n core F(C) < int F(C N
N (x + s% + 0)) < int F(C n (x + U)) and y elinint F(C n (x + U)).

Remark 1. The first inclusion of the theorem contains an “open mapping theorem”
(i.e., the multifunction F is open at every x € C with F(x) < core F(C)), and a “closed
graph theorem” (i.e., the multifunction y e F(C) —» F~(y) = {x e C; ye F(x)} is
lower semi-continuous at every y € core F(C)).

Remark 2. The first inclusion of the theorem becomes uninteresting if, accidentely,
F(x) n core F(C) = § (accidentaly, since, denoting C = {x € C; F(x) n core F(C) #
% (D}, we have C < lin C). The second inclusion of the theorem removes this trouble.

Remark 3. From the second inclusion of the theorem it follows int F(C n
N (x + U)) # 0 for all x e C and U € %, hence int F(C) # 0.
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