Czechoslovak Mathematical Journal

Alois Švec

On 3-dimensional Lie algebras of vector fields

Czechoslovak Mathematical Journal, Vol. 25 (1975), No. 4, 661-672

Persistent URL: http://dml.cz/dmlcz/101362

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project $\mathit{DML-GZ: The Czech Digital Mathematics Library } \texttt{http://dml.cz}$

ON 3-DIMENSIONAL LIE ALGEBRAS OF VECTOR FIELDS

ALOIS ŠVEC, Praha (Received November 18, 1974)

In series of papers [1]-[5], I devoted myself to the study of real hypersurfaces of the complex space \mathscr{C}^2 . The local differential geometry of such hypersurfaces consists (at least partly) in the study of 3-dimensional Lie algebras of vector fields on a 3-manifold. Because of this I present a more systematic study of such algebras.

Let G be a 3-dimensional Lie group, g its Lie algebra; let X_1, X_2, X_3 be independent left invariant fields on G. Let $\varphi: G \to G$ be a (local) diffeomorphism. If $d\varphi(X_i(x)) = X_i(\varphi(x))$ for i=1,2,3 and each $x \in \mathrm{Dom}\,\varphi,\,\varphi$ is a restriction of a left motion $L_g(x) = gx$ of G; denote by $\mathcal{M}(G)$ the pseudogroup of such diffeomorphisms. Further, denote by $\mathcal{M}^*(G)$ the pseudogroup of (local) diffeomorphisms $\psi: G \to G$ such that $d\psi(X_\alpha(x)) \in \{X_\alpha(\psi(x))\}$ for each $x \in \mathrm{Dom}\,\psi$ and $\alpha=1,2$. I am going to show the infinitesimal version of the fact that generally (the exceptions being singled out) $\mathcal{M}(G) = \mathcal{M}^*(G)$.

1. Let L be a 3-dimensional Lie algebra of vector fields on a 3-dimensional differentiable manifold; everything be of class C^{∞} . Suppose the existence of two 1-dimensional subspaces t, t' of L such that the plane spanned by them is not a subalgebra of L. A basis (v_1, v_2, v_3) of L is called canonical if $v_1 \in t$, $v_2 \in t'$ (or $v_1 \in t'$, $v_2 \in t$ respectively) and $v_3 = [v_1, v_2]$.

Lemma. The canonical basis may be chosen in such a way that we have one of the following cases (here, $p \in \mathcal{R}$ and $\varepsilon^2 = \varepsilon_1^2 = \varepsilon_2^2 = 1$):

$$\left(L_{1}^{p}\right) \qquad \left[v_{1},v_{2}\right] = v_{3}\;,\;\; \left[v_{1},v_{3}\right] = \left[v_{2},v_{3}\right] = pv_{1} \,-\, pv_{2} \,+\, v_{3}\;;$$

$$\begin{bmatrix} v_1, v_2 \end{bmatrix} = v_3, \quad \begin{bmatrix} v_1, v_3 \end{bmatrix} = pv_2 + v_3, \quad \begin{bmatrix} v_2, v_3 \end{bmatrix} = 0;$$

$$\left[v_1, v_2 \right] = v_3 \; , \quad \left[v_1, v_3 \right] = p v_1 \; + \; \varepsilon_1 v_2 \; , \quad \left[v_2, v_3 \right] = \; \varepsilon_2 v_1 \; - \; p v_2 \; ;$$

$$[v_1, v_2] = v_3, \quad [v_1, v_3] = v_1 + \varepsilon v_2, \quad [v_2, v_3] = -v_2;$$

$$[v_1, v_2] = v_3, [v_1, v_3] = \varepsilon v_2, [v_2, v_3] = 0;$$

$$\left[v_1, \, v_2 \right] = v_3 \; , \quad \left[v_1, \, v_3 \right] = v_1 \; , \quad \left[v_2, \, v_3 \right] = \, - \, v_2 \; ;$$

$$(L_7)$$
 $[v_1, v_2] = v_3$, $[v_1, v_3] = [v_2, v_3] = 0$.

Proof. Let (v_1, v_2, v_3) , (w_1, w_2, w_3) be two canonical bases of L. Then

(1)
$$[v_1, v_2] = v_3, \quad [v_1, v_3] = a_1 v_1 + a_2 v_2 + a_3 v_3,$$

$$[v_2, v_3] = b_1 v_1 + b_2 v_2 + b_3 v_3;$$

$$[w_1, w_2] = w_3, \quad [w_1, w_3] = A_1 w_1 + A_2 w_2 + A_3 w_3,$$

$$[w_2, w_3] = B_1 w_1 + B_2 w_2 + B_3 w_3;$$

$$v_1 = \alpha w_1, \quad v_2 = \beta w_2, \quad v_3 = \alpha \beta w_3; \quad \alpha \beta \neq 0.$$

From the Jacobi identities,

(3)
$$a_1 + b_2 = 0$$
, $a_1b_3 - a_3b_1 = 0$, $a_2b_3 - a_3b_2 = 0$; $A_1 + B_2 = 0$, $A_1B_3 - A_3B_1 = 0$, $A_2B_3 - A_3B_2 = 0$.

Further,

(4)
$$a_1 = \alpha \beta A_1$$
, $a_2 = \alpha^2 A_2$, $a_3 = \alpha A_3$, $b_1 = \beta^2 B_1$, $b_2 = \alpha \beta B_2$, $b_3 = \beta B_3$,

and the result follows.

Theorem. Let L be as above. Let $\mathcal{L}(L)$ be the Lie algebra of infinitesimal automorphisms of L, i.e., the Lie algebra of vector fields u on M such that [v, u] = 0 for each $v \in L$. Let $\mathcal{L}^*(L)$ be the Lie algebra of vector fields u on M such that $[t, u] \subset t$ and $[t', u] \subset t'$. Then the following conditions are equivalent: (i) $\mathcal{L}(L) \neq \mathcal{L}^*(L)$, (ii) dim $\mathcal{L}^*(L) = 8$, (iii) L is equal to L_1^0 or L_2^p or L_3^0 or L_5 or L_6 or L_7 respectively.

Proof. (1) Consider the algebra L_1^p , and let

$$(5) u = Av_1 + Bv_2 + Cv_3$$

be a vector field. Because of

(6)
$$[v_1, u] = (v_1A + pC)v_1 + (v_1B - pC)v_2 + (v_1C + B + C)v_3,$$

$$[v_2, u] = (v_2A + pC)v_1 + (v_2B - pC)v_2 + (v_2C - A + C)v_3,$$

$$[v_3, u] = (v_3A - pA - pB)v_1 + (v_3B + pA + pB)v_2 + (v_3C - A - B)v_3,$$

 $u \in \mathcal{L}^*(L_1^p)$ if and only if

(7)
$$v_2A = -pC$$
; $v_1B = pC$; $v_1C = -B - C$, $v_2C = A - C$.

662

The integrability condition of $(7_{3,4})$ is $v_3C = v_1A + v_2B + A + B$. Set $D := v_1A$, $E := v_2B$, then

(8)
$$v_1A = D$$
; $v_2B = E$; $v_3C = A + B + D + E$.

The integrability conditions of (7) + (8) are

$$v_3A + v_2D = p(B+C)$$
, $v_3B - v_1E = p(C-A)$,
 $v_3B + v_1D + v_1E = -p(A+B+C) - D$,
 $v_3A - v_2D - v_2E = p(A+B-C) + E$.

Set $F := v_3 A$, $G := v_3 B$, then

(9)
$$v_3 A = F; \quad v_3 B = G;$$

$$v_1 D = -p(2A + B) - D - 2G, \quad v_2 D = p(B + C) - F;$$

$$v_1 E = p(A - C) + G, \quad v_2 E = -p(A + 2B) - E + 2F.$$

The integrability conditions of (7)–(9) are

$$\begin{split} v_1 F - v_3 D &= p^2 C + p D + F \;, & v_2 F &= p^2 C - p (A + B + E) + F \;, \\ v_1 G &= p^2 C + p (A + B + D) + G \;, & v_2 G - v_3 E = p^2 C - p E + G \;, \\ v_3 D + v_1 F - 2 v_2 G &= -p^2 C + p E - F \;, \\ v_3 E - 2 v_1 F + v_2 G &= -p^2 C - p D - G \;. \end{split}$$

Set $H := v_1 F - \frac{1}{2} pE$, then

(10)
$$v_3D = -p^2C - pD + \frac{1}{2}pE - F + H;$$

$$v_3E = -p^2C - \frac{1}{2}pD + pE - G + H;$$

$$v_1F = \frac{1}{2}pE + H, \quad v_2F = p^2C - p(A + B + E) + F;$$

$$v_1G = p^2C + p(A + B + D) + G, \quad v_2G = -\frac{1}{2}pD + H.$$

The integrability conditions of (9) + (10) are

$$\begin{split} v_1 H &+ 2 v_3 G = -\frac{9}{2} p^2 A - 4 p^2 B - \frac{3}{2} p^2 C - 2 p D + \frac{1}{2} p E - p F - \frac{11}{2} p G + H, \\ v_2 H &+ v_3 F = -\frac{1}{2} p^2 A - p^2 C - p D + p E - p F - p G + H, \\ v_1 H &- v_3 G = -\frac{1}{2} p^2 B - p^2 C - p D + p E - p F - p G + H, \\ v_2 H &- 2 v_3 F = -4 p^2 A + \frac{9}{2} p^2 B - \frac{3}{2} p^2 C - \frac{1}{2} p D + 2 p E - \frac{11}{2} p F - p G + H, \end{split}$$

and we get

(11)
$$v_{3}F = -\frac{3}{2}p^{2}A - \frac{3}{2}p^{2}B + \frac{1}{6}p^{2}C - \frac{1}{6}pD - \frac{1}{3}pE + \frac{3}{2}pF;$$

$$v_{3}G = -\frac{3}{2}p^{2}A - \frac{3}{2}p^{2}B - \frac{1}{6}p^{2}C - \frac{1}{3}pD - \frac{1}{6}pE - \frac{3}{2}pG;$$

$$v_{1}H = -\frac{3}{2}p^{2}A - p^{2}B - \frac{7}{6}p^{2}C - \frac{4}{3}pD + \frac{5}{6}pE - pF - \frac{5}{2}pG + H,$$

$$v_{2}H = p^{2}A + \frac{3}{2}p^{2}B - \frac{7}{6}p^{2}C - \frac{5}{6}pD + \frac{4}{3}pE - \frac{5}{2}pF - pG + H.$$

The integrability conditions of $(10_3) + (11_1)$ and $(11_3) + (11_4)$ are

(12)
$$v_3 H = \frac{1}{2} p^2 (A+B) + \frac{1}{12} p (4-15p) (D+E) - \frac{1}{2} p (F-G),$$
$$v_3 H = \frac{1}{2} p^2 (A+B) - \frac{1}{12} p (8+3p) (D+E) - \frac{1}{2} p (F-G)$$

respectively. Thus

(13)
$$p(1-p)(D+E)=0.$$

Suppose $p \neq 0, 1$; then

$$(14) D+E=0.$$

Applying v_1 , v_2 , v_3 to (14), we get

(15)
$$p(A + B + C) + D + G = 0$$
, $p(A + B - C) + E - F = 0$
 $2H = 2p^2C + \frac{3}{2}pD - \frac{3}{2}pE + F + G$.

Thus

$$(16) F-G=2p(A+B)$$

from (14), (15_{1,2}). Applying v_1 , we get

$$(17) D = -pC, E = pC$$

because of (14) and (16). Applying v_2 to (17₁), we get

(18)
$$F = p(A + B), G = -p(A + B)$$

because of (16). Finally,

$$(19) H = -\frac{1}{2}p^2C$$

664

from (15_3) . Thus

(20)
$$v_1 A = -pC$$
, $v_2 A = -pC$, $v_3 A = p(A+B)$, $v_1 B = pC$, $v_2 B = pC$, $v_3 B = -p(A+B)$, $v_1 C = -B - C$, $v_2 C = A - C$, $v_3 C = A + B$,

and $u \in \mathcal{L}(L_1^p)$ for $p \neq 0, 1$, i.e., $\mathcal{L}^*(L_1^p) = \mathcal{L}(L_1^p)$ for $p \neq 0, 1$. Suppose p = 1. Then

(21)
$$v_1A = D$$
, $v_2A = -C$, $v_3A = F$;
 $v_1B = C$, $v_2B = E$, $v_3B = G$;
 $v_1C = -B - C$, $v_2C = A - C$, $v_3C = A + B + D + E$;
 $v_1D = -2A - B - D - 2G$, $v_2D = B + C - F$,
 $v_3D = -C - D + \frac{1}{2}E - F + H$;
 $v_1E = A - C + G$, $v_2E = A - 2B - E + 2F$,
 $v_3E = -C - \frac{1}{2}D + E - G + H$;
 $v_1F = \frac{1}{2}E + H$, $v_2F = -A - B + C - E + F$,
 $v_3F = -\frac{3}{2}A - \frac{3}{2}B + \frac{1}{6}C - \frac{1}{6}D - \frac{1}{3}E + \frac{3}{2}F$;
 $v_1G = A + B + C + D + G$, $v_2G = -\frac{1}{2}D + H$,
 $v_3G = -\frac{3}{2}A - \frac{3}{2}B - \frac{1}{6}C - \frac{1}{3}D - \frac{1}{6}E - \frac{3}{2}G$;
 $v_1H = -\frac{3}{2}A - B - \frac{7}{6}C - \frac{4}{3}D + \frac{5}{6}E - F - \frac{5}{2}G + H$,
 $v_2H = A + \frac{3}{2}B - \frac{7}{6}C - \frac{5}{6}D + \frac{4}{3}E - \frac{5}{2}F - G + H$.

The integrability conditions of $(21_{17}) + (21_{18})$ and $(21_{19}) + (21_{21})$ are 2C = D + 3E and 2C = -3D - E respectively, i.e.,

$$(22) D = -C, E = C.$$

Applying v_1 , v_2 , v_3 to C + D = 0, we get

(23)
$$G = -A - B$$
, $F = A + B$, $H = -\frac{1}{2}E$,

i.e.,
$$\mathscr{L}^*(L_1^1) = \mathscr{L}(L_1^1)$$
.

Let p = 0. Then

(24)
$$v_1A = D$$
, $v_2A = 0$, $v_3A = F$;
 $v_1B = 0$, $v_2B = E$, $v_3B = G$;
 $v_1C = -B - C$, $v_2C = A - C$, $v_3C = A + B + D + E$;
 $v_1D = -D - 2G$, $v_2D = -F$, $v_3D = -F + H$;
 $v_1E = G$, $v_2E = -E + 2F$, $v_3E = -G + H$;
 $v_1F = H$, $v_2F = F$, $v_3F = 0$;
 $v_1G = G$, $v_2G = H$, $v_3G = 0$;
 $v_1H = H$, $v_2H = H$.

The integrability conditions of this system reduce to

$$(25) v_3 H = 0.$$

The system (24) + (25) being completely integrable, we have dim $\mathcal{L}^*(L_1^0) = 8$. (2) Let $L = L_2^p$. Then

(26)
$$[v_1, u] = v_1 A \cdot v_1 + (v_1 B + pC) v_2 + (v_1 C + B + C) v_3 ,$$

$$[v_2, u] = v_2 A \cdot v_1 + v_2 B \cdot v_2 + (v_2 C - A) v_3 ,$$

i.e., $v_1C = -B - C$, $v_2C = A$ for $u \in \mathcal{L}^*(L_2^p)$. The integrability condition being $v_3C = v_1A + v_2B + A$, our starting point are the equations

(27)
$$v_1 A = D$$
, $v_2 A = 0$; $v_1 B = -pC$, $v_2 B = E$; $v_1 C = -B - C$, $v_2 C = A$, $v_3 C = A + D + E$.

The integrability conditions are

$$v_3A + v_2D = 0 , \quad v_3B - v_1E = pA , \quad v_3A - v_2D - v_2E = 0 ,$$

$$v_3B + v_1D + v_1E = pA - D .$$

For $F := v_3 A$, $G := v_3 B$, we get

(28)
$$v_{3}A = F; \quad v_{3}B = G;$$
$$v_{1}D = 2pA - D - 2G, \quad v_{2}D = -F;$$
$$v_{1}E = -pA + G, \quad v_{2}E = 2F.$$

The integrability conditions of (27) + (28) are

$$v_3D - v_1F = -F$$
, $v_2F = 0$, $v_1G = -p(A + D) + G$, $v_3E - v_2G = 0$, $v_3D + v_1F - 2v_2G = -F$, $v_3E - 2v_1F + v_2G = 0$.

Set $H := v_3 D$, then

(29)
$$v_3D = H$$
; $v_3E = F + H$; $v_1F = F + H$, $v_2F = 0$; $v_1G = -p(A + D) + G$, $v_2G = F + H$.

The integrability conditions of (28) + (29) imply

(30)
$$v_3F = 0$$
; $v_3G = 0$; $v_1H = pF$, $v_2H = 0$;

the integrability of conditions (29), (30) reduce to

$$(31) v_3 H = 0.$$

The system (27)-(31) being completely integrable, we have dim $\mathcal{L}^*(L_2^p) = 8$. (3) Let $L = L_3^p$. Then

(32)
$$[v_1, u] = (v_1A + pC)v_1 + (v_1B + \varepsilon_1C)v_2 + (v_1C + B)v_3,$$

$$[v_2, u] = (v_2A + \varepsilon_2C)v_1 + (v_2B - pC)v_2 + (v_2C - A)v_3,$$

$$[v_3, u] = (v_3A - pA - \varepsilon_2B)v_1 + (v_3B - \varepsilon_1A + pB)v_2 + v_3C.v_3.$$

Let $u \in \mathcal{L}^*(L_3^p)$, then

$$v_1B + \varepsilon_1C = 0$$
, $v_2A + \varepsilon_2C = 0$, $v_1C + B = 0$, $v_2C - A = 0$.

From the last two equations, $v_3C = v_1A + v_2B$, and our starting points is the system

(33)
$$v_1 A = D$$
, $v_2 A = -\varepsilon_2 C$; $v_1 B = -\varepsilon_1 C$, $v_2 B = E$; $v_1 C = -B$, $v_2 C = A$, $v_3 C = D + E$.

Its integrability conditions are

$$v_3A + v_2D = \varepsilon_2B, \quad v_3B - v_1E = \varepsilon_1A,$$

$$v_3B + v_1D + v_1E = \varepsilon_1A - pB, \quad v_3A - v_2D - v_2E = pA + \varepsilon_2B.$$

Set $F := v_3 A$, $G := v_3 B$, then the prolongation of (33) is

(34)
$$v_3A = F; \quad v_3B = G;$$

$$v_1D = 2\varepsilon_1A - pB - 2G, \quad v_2D = \varepsilon_2B - F;$$

$$v_1E = -\varepsilon_1A + G, \quad v_2E = -pA - 2\varepsilon_2B + 2F.$$

Set $H := v_1 F - \frac{1}{2}pD$; the integrability conditions of (33) + (34) imply

(35)
$$v_3D = \varepsilon_1\varepsilon_2C - \frac{1}{2}pD + H; \quad v_3E = \varepsilon_1\varepsilon_2C + \frac{1}{2}pE + H;$$
$$v_1F = \frac{1}{2}pD + H, \qquad v_2F = \varepsilon_2pC - \varepsilon_2E;$$
$$v_1G = -\varepsilon_1pC - \varepsilon_1D, \quad v_2G = -\frac{1}{2}pE + H.$$

The integrability conditions of (34) + (35) are

(36)
$$v_{3}F = \left(\varepsilon_{1}\varepsilon_{2} - \frac{1}{2}p^{2}\right)A - \frac{3}{2}\varepsilon_{2}pB + \frac{3}{2}pF;$$

$$v_{3}G = \frac{3}{2}\varepsilon_{1}pA + \left(\varepsilon_{1}\varepsilon_{2} - \frac{1}{2}p^{2}\right)B - \frac{3}{2}pG;$$

$$v_{1}H = -\frac{1}{2}p^{2}B + \varepsilon_{1}F - pG, \quad v_{2}H = \frac{1}{2}p^{2}A - pF - \varepsilon_{2}G.$$

The integrability condition of $(36_3) + (36_4)$ is

$$(37) v_3 H = \varepsilon_1 \varepsilon_2 (D + E);$$

the integrability condition of $(36_3) + (37)$ reduces to

$$(38) p(pA + \varepsilon_2 B - F) = 0.$$

Let $p \neq 0$; then

$$(39) F = pA + \varepsilon_2 B.$$

Applying v_1 and v_2 to this equation, we get

$$(40) H = -\varepsilon_1 \varepsilon_2 C + \frac{1}{2} p D, \quad E = p C$$

respectively. Applying v_1 and v_3 to (40₂), we get

$$(41) G = \varepsilon_1 A - pB, \quad D = -pC$$

respectively. Thus $u \in \mathcal{L}^*(L_3^p)$, $p \neq 0$, implies $u \in \mathcal{L}(L_3^p)$.

In the case p = 0, it is easy to see that the system (33)-(37) is completely integrable. Thus dim $\mathcal{L}^*(L_3^0) = 8$.

(4) Let $L = L_4$. Then

$$[v_{1}, u] = (v_{1}A + C)v_{1} + (v_{1}B + \varepsilon C)v_{2} + (v_{1}C + B)v_{3},$$

$$[v_{2}, u] = v_{2}A \cdot v_{1} + (v_{2}B - C)v_{2} + (v_{2}C - A)v_{3},$$

$$[v_{3}, u] = (v_{3}A - A)v_{1} + (v_{3}B - \varepsilon A + B)v_{2} + v_{3}C \cdot v_{3}.$$

From $v_1C = -B$, $v_2C = A$, we get $v_3C = v_1A + v_2B$, and we may write

(43)
$$v_1 A = D$$
, $v_2 A = 0$; $v_1 B = -\varepsilon C$, $v_2 B = E$; $v_1 C = -B$, $v_2 C = A$, $v_3 C = D + E$

for $u \in \mathcal{L}^*(L_4)$. The integrability conditions of (43) allow us to write

(44)
$$v_3A = F$$
; $v_3B = G$; $v_1D = 2\varepsilon A - B - 2G$, $v_2D = -F$; $v_1E = -\varepsilon A + G$, $v_2E = -A + 2F$.

and a further differentiation yields

(45)
$$v_3D = H - \frac{1}{2}D \; ; \quad v_3E = H + \frac{1}{2}E \; ;$$

$$v_1F = H + \frac{1}{2}D \; , \quad v_2F = 0 \; ; \quad v_1G = -\varepsilon(C+D) \; , \quad v_2G = H - \frac{1}{2}E \; .$$
 Finally,

(46)
$$v_{3}F = -\frac{1}{2}A + \frac{3}{2}F; \quad v_{3}G = \frac{3}{2}\varepsilon A - \frac{1}{2}B - \frac{3}{2}G;$$
$$v_{1}H = -\frac{1}{2}B + \varepsilon F - G, \quad v_{2}H = \frac{1}{2}A - F.$$

The integrability conditions are

$$v_3H = 0$$
, $v_3H = -\frac{1}{2}(C - E)$, $3D = -2C - E$.

Thus

$$(47) D = -C, E = C.$$

Applying v_1 , v_2 , v_3 to (47_2) , we get

(48)
$$G = \varepsilon A - B, \quad F = A, \quad H = -\frac{1}{2}C$$

respectively. Thus $\mathscr{L}^*(L_4) = \mathscr{L}(L_4)$.

(5) Let $L = L_5$. We have

(49)
$$[v_1, u] = v_1 A \cdot v_1 + (v_1 B + \varepsilon C) v_2 + (v_1 C + B) v_3,$$
$$[v_2, u] = v_2 A \cdot v_1 + v_2 B \cdot v_2 + (v_2 C - A) v_3.$$

By the same procedure, we get successively

(50)
$$v_1 A = D$$
, $v_2 A = 0$; $v_1 B = -\varepsilon C$, $v_2 B = E$; $v_1 C = -B$, $v_2 C = A$, $v_3 C = D + E$:

(51)
$$v_3A = F; \quad v_3B = G;$$

$$v_1D = 2\varepsilon A - 2G, \quad v_2D = -F; \quad v_1E = G - \varepsilon A, \quad v_2E = 2F;$$

(52)
$$v_3D = H$$
; $v_3E = H$; $v_1F = H$, $v_2F = 0$; $v_1G = -\varepsilon D$, $v_2G = H$;

(53)
$$v_3 F = 0$$
; $v_3 G = 0$; $v_1 H = \varepsilon F$, $v_2 H = 0$,

$$(54) v_3 H = 0$$

for $u \in \mathcal{L}^*(L_5)$. The system (50)-(54) being completely integrable, dim $\mathcal{L}^*(L_5) = 8$. (6) Let $L = L_6$. Then

(55)
$$[v_1, u] = (v_1 A + C) v_1 + v_1 B \cdot v_2 + (v_1 C + B) v_3,$$
$$[v_2, u] = v_2 A \cdot v_1 + (v_2 B - C) v_2 + (v_2 C - A) v_3,$$

and we get the completely integrable system

(56)
$$v_1 A = D$$
, $v_2 A = 0$; $v_1 B = 0$, $v_2 B = E$;

$$v_1C = -B$$
, $v_2C = A$, $v_3C = D + E$;

(57)
$$v_3 A = F ; v_3 B = G ;$$

$$v_1D = -B - 2G$$
, $v_2D = -F$; $v_1E = G$, $v_2E = -A + 2F$;

(58)
$$v_3D = H - \frac{1}{2}D$$
; $v_3E = H + \frac{1}{2}E$;

$$v_1F = H + \frac{1}{2}D$$
, $v_2F = 0$; $v_1G = 0$, $v_2G = H - \frac{1}{2}E$;

(59)
$$v_3F = -\frac{1}{2}A + \frac{3}{2}F; \quad v_3G = -\frac{1}{2}B - \frac{3}{2}G;$$

$$v_1 H = -\frac{1}{2}B - G$$
, $v_2 H = \frac{1}{2}A - F$,

$$(60) v_3 H = 0$$

for $u \in \mathcal{L}^*(L_6)$. Thus dim $\mathcal{L}^*(L_6) = 8$.

(7) Let $L = L_7$. Then

(61)
$$[v_1, u] = v_1 A \cdot v_1 + v_1 B \cdot v_2 + (v_1 C + B) v_3,$$
$$[v_2, u] = v_2 A \cdot v_1 + v_2 B \cdot v_2 + (v_2 C - A) v_3.$$

The result follows from the complete integrability of the system

(62)
$$v_1 A = D$$
, $v_2 A = 0$; $v_1 B = 0$, $v_2 B = E$; $v_1 C = -B$, $v_2 C = A$, $v_2 C = D + E$:

(63)
$$v_3 A = F; \quad v_3 B = G;$$

$$v_1 D = -2G, \quad v_2 D = -F; \quad v_1 E = G, \quad v_2 E = 2F;$$

(64)
$$v_3D = H$$
, $v_3E = H$; $v_1F = H$, $v_2F = 0$; $v_1G = 0$, $v_2G = H$;

(65)
$$v_3F = 0$$
; $v_3G = 0$; $v_1H = 0$, $v_2H = 0$,

$$(66) v_3 H = 0$$

for $u \in \mathcal{L}^*(L_7)$; namely, dim $\mathcal{L}^*(L_7) = 8$.

- 2. Let us add two remarks.
- (1) Let G be the group of matrices of the form

(67)
$$\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ \gamma & \delta & \varphi \end{pmatrix}, \quad \alpha\beta\varphi \neq 0 ,$$

and let L be one of the algebras of the type $L_1^p, ..., L_7$. Denote by $B_G(L)$ the G-structure on M^3 generated by the section (v_1, v_2, v_3) . Then it is possible to prove the following theorem:

The conditions (i)—(iii) of our Theorem are equivalent to the following one: (iv) the G-structure $B_G(L)$ contains a section (w_1, w_2, w_3) satisfying $[w_1, w_2] = w_3$, $[w_1, w_3] = [w_2, w_3] = 0$.

(2) Let $M^{2n-1} \subset \mathscr{C}^n$ be a real hypersurface of the complex space, and let $\Gamma(M^{2n-1})$ be the pseudogroup of (local) biholomorphic mappings of \mathscr{C}^n preserving M^{2n-1} . One of the problems is to determine hypersurfaces which are transitive with respect to $\Gamma(M^{2n-1})$. It turns out that the problem to determine all possible numbers dim $\Gamma(M^{2n-1})$ is equivalent to the following one:

Let M^{2n-1} be a differentiable manifold, and let L be a Lie algebra of vector fields on M^{2n-1} . Suppose that dim L=2n-1 and that there are two subalgebras $K_1, K_2 \subset L$ such that dim $K_1 = \dim K_2 = n-1$, $K_1 \cap K_2 = \{0\}$, $[K_1, K_2] = L$. Denote by $\mathcal{L}^*(L; K_1, K_2)$ the Lie algebra of vector fields u on M^{2n-1} satisfying $[K_1, u] \subset K_1$, $[K_2, u] \subset K_2$. We have to determine all possible values of dim $\mathcal{L}^*(L; K_1, K_2)$.

Bibliography

- [1] A. Švec: On transitive submanifolds of \mathscr{C}^2 and \mathscr{C}^3 . Czech. Math. J., 23 (98) 1973, 306—338.
- [2] A. Svec: On certain groups of holomorphic maps. Acta Univ. Carolinae, Vol. 13, 3—27.
- [3] A. Švec: On a partial product structure. Czech. Math. J., 24 (99) 1974, 107—113.
- [4] A. Švec: On a group of holomorphic transformations in \mathscr{C}^2 . Czech. Math. J., 24 (99) 1974, 97—106.
- [5] A. Švec: On a partial complex structure. Czech. Math. J. 25 (100) 1975, 653-660.

Author's address: 118 00 Praha 1, Malostranské nám. 25, ČSSR (Matematicko-fyzikální fakulta UK).