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A SET FUNCTOR WHICH COMMUTES WITH ALL HOMFUNCTORS 
IS A HOMFUNCTOR 

VACLAV KOUBEK, JAN REITERMAN, Praha 

(Received February 4, 1974) 

0. INTRODUCTION 

The aim of the present paper is to prove under the GCH (generalized con­
tinuum hypothesis): given a covariant set functor F such that for each covariant 
homfunctor Q, F о Q and ß о F are naturally equivalent, the functor F is itself equi­
valent to a homfunctor. 

The first part contains preliminaries; in the second one we prove the theorem for 
functors from the category S„ of all sets of cardinality less than «, n being a cardinal 
inaccessible in the sense: if a, Ь < n then a^ < n {n is not assumed to be regular). 
In the last part, the theorem is proved for small functors — and, under the generalized 
continuum hypothesis for all functors — from the category of sets into itself. 

L CONVENTIONS, DEFINITIONS AND PRELIMINARY LEMMAS 

Given sets A, В and a mapping/ : Л -> ß, |/4| denotes the cardinality oï A, A ^ В 
{A < В, A^ B) stands for \A\ = |ß | {\A\ < \в\, \A\ ^ |ß | , respectively). The set 
{/(x); xeX] is denoted by I m / . If X c /I then i\ denotes the inclusion mapping of 
X into A. Each cardinal m will be viewed as a set (with m — ]/?i|). 

Q^ denotes the covariant homfunctor from the category Set of sets into itself: 
O4 = Н о т (л, —). Clearly Q^ ^ ß |4 | ( ^ denotes the natural equivalence of 
functors) so that we shall consider Q^ {m is a cardinal) only. If « is a cardinal then S„ 
is the category of sets of cardinality <n. The word functor as well as the letter F 
(or G, H etc.) ш\\ stand for a covariant functor from Set to Set, or from S„ to S„, 
respectively. 

Let F be a functor. Let A, X be sets, A с FX. (A, X) is a reaching couple for F 
if for each set Y and each v e FY there are a G /I and / : X -> Y with F f(a) = y . F 
is said to be small if it possesses a reaching couple; the minimal cardinality of A is 
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denoted by ôF. Clearly, öF is the smallest cardinal m such that there exists a system 
{̂ a ' Qx ~^ P'^ ^^ '^] which is collectively epimorphic, i.e., if f-i о г^ ~ v о e^ for some 
transformations fi,v:F~^ G and for each a then /i = v; equivalently: Im ( e j ^ 
cover FX for each X. 

Cardinal n is called an unattainable cardinal of F provided that there is xe Fn 
such that X ф1т Ff for any f : X -^ n with X < n; sé^ denotes the class of all unat­
tainable cardinals of F. 

For every X and xeFX, put J^f(x) =- {Y ^ X\ xe lmFi j^} . ^^^(л) is a filter 
on X [5] (exp X = { У; У с Jï} is also considered a filter). Denote ^ F = sup X ( ^ F ( ^ ' ) ) 
(if it exists) where / # " (J^ being a filter) is the character of J^, i.e., the minimal 
cardinality of a base of ^ . 

A filter ^ is called trivial if / J^ = 1, i.e., if П-^ e #". 
Let J^ be a filter on a set Л; let #'^ (a e Ä) be filters on a set Z . Denote by 

the fiker whose base consists of sets of the form 

where Z e #" and Z„ E J^^ (a e Ä). 

Lemma 1.1. Let ^ be a trivial filter. Let there exist F^eJ^^ such that {F^; aeA} 
is a disjoint family. Then 

X{J^a= П iX-^a) • 

In particular, if x^a > ^ /^ ' ' each a and m ~ Ç\^ then 

Lemma 1.2. Conversely, if all ^^ ^^^ trivial then 

Lemma 1.3. Let F, G be functors. Then 

^FOG{^)= U ^ G ( « ) ( « e G ^ ) . 

Lemma 1.4. For each fe Q^^X (i.e. f : rn -^ X), 

^Lif) =={Zc:X; ZzDlmf}, 

Thus all the filters ^^J^f) are trivial, 
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Proposition 1.5. Let s : F -^ G be an epiîransformation, x e FX, e^(x) = y. 
Then 

^l{y) ~Щ= и ^ J ( z ) - Щ ^{Z;Ze ^l{z), e^(z) = v) - {0} . 

In particular, ^^p{x) с ^с{у); if moreover e^(x) Ф £^(2) for every z ф x, then 

Proposition 1.6. / / F m c±: m for an infinite m then m ф se p. 

Lemma 1.7. Let F, G he domain-restrictions of F, G : Set -> Set, respectively, 
to S„, where sup j / ^ , sup S^^Q < n. If F ^ G then F ^ G. 

Proofs of the above propositions, except 1,6, are straightforward computations. 
Concerning 1,6: It is proved in [2] that, for any infinite m e se p, F m ^ | D | where T) 
is an almost-disjoint system of subsets of m. It is well-known (e.g. [ l ] ) that Ъ can 
be found such that JT)| > m. 

Lemma 1.8. [4]. F preserves intersections iff each ^^{x) is trivia]. 

Lemma 1.9 [2]. If F f{x) == y for some xeFX, y e FY, f : X -^ Y, then Z e 
E^'^{x)=>f{Z)e.^l{y), 

If, moreover, f is one-to-one on a set of ^^[x), the converse is also true. 

Proposition 1.10 [2]. A functor F : Set -^ Set (or F : S^-^ S„) is small iff s^p 
is a set {or sup s^p < n, respectively). 

Proposition 1.11 [2]. / / X > ?i = sup s/p, then FX ^ max {Fn, X"}. 

2. FUNCTORS FROM S„ TO S„ 

Convention. Throughout this part, F denotes a small functor of S„ into itself. We 
shall suppose 

a, b < n => a^ < n . 

Thus each covariant homfunctor Q^ (a < n) maps the category S„ into itself; we may 
and we shall consider it as a functor from S„ to S„. 

Lemma 2.1. For each set A < n, ô(F о Q^) ^ ôF. 

Proof. If (вд : Qx -^ F; ОСЕ I] is г, collectively epimorphic system, so is {e^Q^ • 
• Qxo QA-^ F о ß^ ; a e / } . As Qx о QA ^ QXXA^ our lemma follows. 
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Lemma 2.2. If öF > I then there exists m < n such that c>(2„, о F) > ôF. 

Proof. Put m = ÔF. Let us suppose ô(Q„^ о F) ^ öF = т. Then there exists 
a reaching couple (Л1, X^) for Ö„, с F, where A^ = {a^; ŒE m}. As X^ can be chosen 
arbitrarily large, we may assume that [FX^^X^) is a reaching couple for F. Write 
each a^ in the form a^ = («f ; ß e m}, a e m, where af e FX^ for a, ß e m. As SF > I 
and (FXj, Xi) is a reaching couple for F, for every x e FX^ there is j^ e FX^ such that 
>' = F f{x) holds for no / : Xi -^ X^. Hence for each a e m we can choose y^ such 
that y^ Ф ^ V « ) for any / : X, -^ X^. Thus, putting y = {y^; a e m} G Q^ о F(Xi) 
we have у Ф Qmo F f{a^ for any f \X^ -^ ^ 1 and a G m which is a contradiction 
because [A^, X^ is a reaching couple for Q^ о F. 

Proposition 2.3. L^r F о Q^ ^ Q^o F for each m e S„. Then F is a factorfunctor 
of some Q„ {a e S„). 

P r o o f follows from Lemmas 2,1 and 2,2. 

Lemma 2.4. For each a e S„, (/)(F о ö j ^ r/}F. 

Proof. See 1,2, 1,3 and 1,4. 

Lemma 2.5. / / n > cpF > \ then there exists m e S^ such that (p{Qm о F) > cpF. 

Proof. As n > (pF > 1, there is F a n d yeFYmih х^Цу) > ^- ^^^ ^^ = ^^• 
Further, (pF is infinite so that we can choose monomorphisms ф^ {t e m) from У to У 
such that I Ф t =>1тф, nlmij/r = 0' Put x, = F ф,{у). By 1,9, x^l{x,) > L 
Thus, putting X = {x^; i e m} E Q^o FY, we get 

Фот о F ^ X ^ L O F W ^ 2 ^ > m = (pF 

(see 1,1 and 1,3). 

Proposition 2.6. Let F о Q^ ^ Q,„ о F for each m < n. Then cpF = 1, i.e. each 
filter ^f{x) is trivial, equivalentJy: F preserves intersections. 

Proof. See 1,8, 2,4 and 2,5, 

Lemma 2.7. Let F be a factorfunctor of some Q^ (a e S j such that F preserves 
intersections. Then there exists Ve S„ and an epitransformation s : Qy -> F such 
that ^'^{e''{\y)) = {V}. 

Proof. Let V : Од -> F be an epitransformation. As F preserves intersections, 
each filter #'f(x) is trivial. In particular, there is V cz a such that ^p[v"{l^)) = 
= {Y cz a; Y :D V}. Define e : Q .̂ -> F by £^(1^) = Î̂ » where и is the (only) element 
of FV satisfying Fi^(u) = v''(lJ. Then г is evidently an epitransformation and 
^^p(u) = {V} (see 1,9). 
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Definition. For F satisfying the assumptions of 2,7 the epitransformation e from 2,7 
will be called the minimal factorization. 

Lemma 2.8. Let e : Qy —> F be the minimal factorization. Let f : V-^ X be 
a monomorphism, g : V-> X an arbitrary mapping {X < n). If 8^(f) = s^{g) 
then hn g =) Im/ . 

Proof. Let x G ( ! m / — \m g). Choose h : X-^ V such that hof= ly and 
\h-'{h{x))\ = 1. As 

(Im h о g) G :^l^Xh о ôf ) , ' 

we get by 1,5 that 

(Im hog)e :F^,{&'{h о g)) = ^^'.{/{X,)) = {v} 

(it is easily seen, that 8^[h о g) = e^(/i of) = E^(iy)). Thus \m h о g = V which is 
a contradiction because h{x) ф1т h о g. 

Lemma 2.9. Let s : Qy -> F be the minimal factorization. Let е^(1к) Ф ß^(/) 
for every f: K-> F, / ф V- ^ '̂̂  и e FX such that {{u},X) is a reaching couple 
for F. Then |(fi^)"^ (w)| = 1 and ((e^)~^ (ti), X) is a reaching couple for Qy. 

Proof. As {{u], X) is a reaching couple for F, there is /Î : X -> F with Fh(u) — 
= £^(U.). Let f^ge (e^)" ' (u). Then 

e^((), /</)) = F % ) = e^( l , ) . 

Thus Qy h(f) = 1 .̂, i.e. h of = ly; analogously h - g = I y. Further, I m / = ^ш g 
by 2,8. Clearly, if two one-to-one mappings have common retraction and the same 
image, then they must be equal; thus / = g. As Qyh{f) = ly, ({ /} , X) is a reaching 
couple for Qy. 

Lemma 2.10. Let G : Qy -> F be the minimal factorization and let |(e^)~^ 
(e^(l^;))| = 1. Given X, meS^^ and a reaching couple ({w}, X) for F о Q,„. Then 
({wj, QtfjX) is a reaching couple for F and there are monomorphisms gi'.m -^ X 
such that Im gi n Im gj = ф for i Ф j and such that 

Proof. To prove that ({w}, Q^X) is a reaching couple for F, consider any Y 
and ye FY. Take an epimorphism к : Q^Y-^ Y and choose z e F o Q ^ Y with 
F k{z) = y. Then z = F о Q,„ h{u) for some h : X -^ Y so that y - F{k о Q^h) (u). 
By 2,9 there exists exactly one element g = (of,-; / e V} such that 

e 
Q'r.X(^ _ (̂ ) = " 

where </,• e 6,„X, i.e. gi'. m -* X for ( e F. Let /i; : m -» Z (/ G F) be arbitrary mono-
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morphisms such that i =¥ j => Im hi n Im hj = 0. Then h = {hii i e V} e Qy{Q^Z) 
so that there is p : X -> Z with Qy о Q^ p{g) = h (by 2,9, {{g], QyJC) is a reaching 
couple for Qy), Thus p о gi = h^, ie V. As /7,. are monomorphisms, so are gi, as /2,. 
have disjoint images, so have ,̂-. 

Given / : F-> F and 711 (F, m e S„), denote by J\ (/ G m) mappings from V x m 
defined as follows: 

/;(x, 7) = (x, j) for j Ф i , /f(x, i) = (/(x), / ) . 

Lemma 2.11. Let e : Qy -^ F be a transformation. Let f, g : V-^ V with e^(/) = 
= e^{g). Then 

Ô . O F ( / , ) ( ( M ' " ^ 4 U X K ) ) = QmoF{g;){{Q^e)-^^{\^^y)). 

Proof. Straightforward computation. 

Lemma 2.12. Let г : Qy -^ F be the minimal factorization such that e^(/) = 
= г^{\у) for some f : F-» V. If F о Qj„ ^ ß ^ о F for every m < n, then f = ly. 

Proof. Put Y= {teV; f{t) ф t}. Choose m > V\ Let fi:Q^oF -^ F о Q,„ 
be a natural equivalence. Put v = //'"''^(м), where 

By 2,11, Q^ о F ( / , ) (W) = I/ so that F{Q^fi) (v) = v for each г G m. As follows easily 
by 1,9, for any 

and for any / e m there is 

with g = Qf„fi{ki) = / / о k^ (i e m). Let i G m. Evidently, if ki = kj for some j Ф / 
then fiog = g, because ftog =fio (Л о /с,) = /^ oki = д. Thus {/; Л о Ö' Ф ö̂ } c: 
с: {/; ki Ф Ä:y for everyj Ф /} a {/c,-; j G m} с Ж Further, IF g Fas for any x G FX, 
П^р(^) й V{sec 1,5 and 1,6). We get {/;/^ о g Ф g} S I^so that 

{ / ; U I m ^ n ( { / } X У ) Ф 0 } S V^ 
geW 

and finally 
\Jlmg n{m X V) ^ Y X V^ S V^ • 

On the other hand, using 1,3 and 1,4 we get 

и Im 3 = n^"X(î ) = f)-^â:M • 
gsW 
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Since for any minimal factorization s, Q^E is a minimal factorization, too, so that 
the last intersection is m x V. Hence 

\J\m g n (m x У) = m x Y. 
geW 

As shown above, the former set has cardinality ^ F^ < m; we get У = 0, i .e . / = ly. 

Theorem 2.13. Let F be a small functor of S„ into S„ such that for every m < n 
P ^ Qm "^ Qm ° P- Then F ^ Qj. for some r. 

Proof. Let e : OK -^ ^ be a minimal factorization. By 2,12, |(e^)~^ (£^(1F)) | = b 
It suffices to prove the following: if e^(/) = e^(^) for some/ , ^ : F-> Z , t h e n / = g. 
Choose w, n > m > F^, and put и = (Qm^y^Cl^xv)- Let /x : ßm о F -> F о ß ^ 
be a natural equivalence. As ({w}, m x F) is a reaching couple for ß ^ о F, so 
({fi(u)},m X F) is a reaching couple for F о Q^, By 2,10 ({//(«)}, б Д т x F)) 
is a reaching couple for F, and there are monomorphisms /i,- : m -^ m x V with 
disjoint images such that h = {/Ï,; / e V} is the only element of Qy о Qj^m x F) with 

By 1,4, 

contains 
и Im //,• 
i 

and so does 

(see 1,5). By 1,4, the last filter is equal to 

^QvoQShu.v) = {m X V] 
so that 

и Im hi = m X F . 

Further, / i о h J Ф /,• о hj, for every /,y, /c, j Ф /c (indeed,/i(x) = /.(j;) for at most F^ 
couples X, у with x + j ; the equality/,- о hj = /,• о hj, would require m such couples, 
namely the couples hj{t), hjj) for Г e m). Analogously ^^ о hj Ф ^. о A ,̂ /,• о hj Ф 
^Siohk for / , ; , /c as above. Let PuP2^Qv{Qm{^ ^ ^% Pi{j)=Iiohj for 

J ^ К JPiO) = ö̂ i ° ^j ^^^ J ^ ^' where i e m is arbitrary but fixed. As noted above, 
j =^ k=> Pi{j) Ф Pi{l<^) and analogously for p2- "Thus Pi, Pz are monomorphisms. 
By 2,11, e . о F/,(w) = e . о F g{u) so that F о О ^ Я / х ' " ^ » ) = i^ о Q^ ^,<A^'' '^»). 
Further бк о е Д / 0 (/Ъ) = Pi^ Qv о еД^О (/̂ у) = Pi'^ hence 

,о.(-хП(р^) ^ Fo e.J ,( /z-^4t .)) = F e ô .^~. ( /^ ' "^») = e^-^-^^Xp,). 
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By 2,8, Im Pi = Im ^2- ^^ other words, the set of all g^ о hj (/ e V) is equal to the 
set of all/f о h J (j e V). In particular, each/, о hj is equal to some gio h,^; then neces­
sarily / = к (see above), i.e. gi о hj = /,• о hj for e a c h / As 

и Im h J = f?/ X V, 
y 

we get gi = / ; t h u s / = g which completes the proof. 

3. FUNCTORS FROM Set TO Set 

Let us define a transfinite sequence {a,} of cardinals by the transfinite induction: 

^0 = ^0 » ^i + i = 2*' > ^i = sup ay provided i is limit. 

Lemma 3.1. Let i be an ordinal such that either i is limit or i = 0. Then a'' < oci 
provided a, b < a,-. 

Proof. The case / = 0 is easy. Let / be hmit, a, b < a,-. Choose j with a, b < 

a^ < ay = 2̂ '̂ = ay+i < a,-. 
< (Xj < Oil. W ^ ^2i\Q 

Lemma 3.2. Let F : Set -> Set be a small functor. Then there is a cardinal n 
such that n > sup s/p and 

a) F maps S„ into S„; 
b) the restriction of F to S„ is a small functor: 
c) for any two cardinals a, b, a^ < n provided a, b < n. 

Proof. Let {A,X) be a reaching couple for F. Choose / such that a,- > FX and 
either / = 0 or i is a hmit ordinal. Put n = a,. Now, c) and a) follow by 3,1 and 1,11; 
b) is obvious. 

Lemma 3.3. Assume the GCH. Let 

Let F : S„ -^ S„ be a functor such that F oQ^ ^ Q^oF for each m < п. Then F 
is small. 

Proof. For any natural к such that F 2 ^ K̂ +̂ r. ^^ Ы\е 

F{K+k + i) - ^"(2^*"') ^ (F2f*^'^ ĉ  2"̂ '*"" ^ K + k + i 

and so K +̂ĵ  + i ^ j^f by 1,6. Hence sup j^f < n and F is small by 1,10. 
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Lemma 3.4. Assume the GCH. Let F : Set -> Set be a functor such that F о Q^ ^ 
^ Qrtjo F for any m. Then a), b), c) of 3,2 take place for every n = K^ + ĴQ, where 

Proof, a) follows by 1,10, b) by a) and 3,3, c) by the GCH. 

Theorem 3.5. Let F : Set -^ Set be a small functor such that F о Q^^ ^ Qm ° F 
for every m. Then F ^ Qnfor some n. 

Proof. See 1,7, 2,13 and 3,2. 

Proposition 3.6. Assume the GCH. Let 

'Î = K + coo » 

arbitrary. Let F : S^ -^ S„ be a functor such that F о ö,„ ^ Qm о F for every m < п. 
Then F ^ Qr for some r. 

Proof. See 2,13 and 3,3. 

Theorem 3.7. Assume the GCH. Let F : Set -^ Set be a functor such that F о Q^ ^ 
'^ Q^ о F for every m. Then F ^ Qrfor some r. 

Proof. According to 3,4 and 3,6, for every a with K^ ^ F 2 the restriction F 
of F to S„, where 

is naturally equivalent to some 0^ restricted to S„. The cardinal r does not depend 
on a, since it is uniquely determined by 

2' 2=i Q^2^ F2. 

Thus, r = sup s^p and our theorem follows by 1,7. 

Remark. The above theorem can be proved under a little weaker set-theoretical 
assumptions than the GCH, viz: There is a proper class of cardinals a such that 
a+ = 2^ and a^"^ = 2""̂  ( + denotes the follower). 
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