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PARTITION OF NONDENUMERABLE CLOSED SETS OF REALS 

ALEXANDER ABIAN, Ames 

(Received July 22, 1974) 

In what follows every set mentioned is a subset of the set of all real numbers. 
Moreover, every item pertaining to measure is in the sense of Lebesgue. As usual, 
m(S), m*(S) and m^(S) denote respectively the measure, the outer and the inner 
measures of the set S. 

Lemma 1. Let С be a closed set. Let В be a subset of С such that В has a nonempty 
intersection with every closed subset of С of positive measure. Then 

(1) m*(ß) = m{C) . 

Proof. Assume on the contrary that m*(5) < m(C). But then there exists 
a covering Я of Б by pairwise disjoint open intervals such that С — (JH is a closed 
subset of С of positive measure. Clearly, В has no point in common with С — U ^ 
which is a contradiction. Thus, (l) is established. 

As usual, we identify every cardinal к with the set of all ordinals preceding k. 
Thus, к is 2L well ordered set and к is greater than the cardinality of every initial 
segment of k. Moreover, if S = к then S is well ordered by virtue of the equipollence 
between S and k. Based on this, we prove: 

Lemma 2. Let n be a cardinal and с be an infinite cardinal such that 

(2) n ^ c . 

Let {Ai)i<„ be a (not necessarily disjoint) family of sets Ai such that 

(3) Ai = с for every i < n . 

Then there exists a family (л,),<„ of pairwise distinct real numbers a,- such that 

(4) a^ e Ai for every i < n , 
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Proof. Clearly, every Ai is well ordered by virtue of (3). We assert the existence 
of the family (a,)i<„ based on transfinite induction given by: 

(5) üi = the first element of Ai— \J {aj} for every i < n . 

The above definition is justified since by (2), we see that i < n implies i < с and 
therefore с — i = c, which by (3), implies that .4, — (J {aj}, in (5), is nonempty. 
But then clearly (5) implies (4), as desired. ^^^ 

R e m a r k . In what follows we let с denote the cardinality of the continuum (i.e., 
the set of all real numbers). We recall that every closed set P of positive measure 
(or for that matter every nondenumerable closed set) is of cardinality c. Moreover, 
the family of all the closed subsets of P of positive measure is also of cardinality c. 
Based on this, we prove: 

Theorem 1. Let P he a closed set of positive measure. Let с be the cardinal of the 
continuum and let к be any positive cardinal such that к ^ c. Then P is a disjoint 
union of k-many subsets Bj of P such that 

(6) m*(ß,.) = m{P) for every j < к .') 

Proof. Since с is infinite and к ^ c, we see that 

(7) /cc = с . 

In view of the Remark, we let (Р/),<с denote the family of all the closed subsets P,-
of P of positive measure. Again, in view of the Remark, we have P^ = с for every 
i < с which, by (7) impHes that every P^ is a disjoint union of ^-many subsets Aij 
such that 

(8) Aij ^ Pi and Äij = с for every i < с and j < к . 

Let us consider the family A given by 

(9) A = {Aij \ i < с and j < k} . 

From (7) it follows that kc ^ с and therefore, from (9) and (8), by Lemma 2 we 
see that there exists a family {aij)i^c with j < к of pairwise distinct real numbers â y 

^) The results presented strengthens some former results of Professor W. SIERPINSKI ( L equi
valence par decomposition finite et la measure extérieure des ensembles, Fund. Math. XXXVII 
(1950), 209 — 212). In this paper Sierpinski proved for example the following assertion: / /K^ = 

n 

= 2**o and E cz i?^ has positive measure, n is positive integer, then E ~ \J ^j (disjoint union) 

and the outer measure of each of the sets Ej is equal to the measure of the set E. (The reviewer's 
remark.) 
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such that 

(10) aijGAij for every i < с and j < k. 

Let 

( i l ) ßo = {«ю I / < с} u (p - {aij \i < с and j < k}) 

and 

(12) В J = [a^j \i < c} with 0 <j < к . 

From (11) and (12) we see that {Bj)j^p. is a family of pairwise disjoint subsets Bj 
0Ï P such that 

(13) P = \JBj. 
J<k 

Moreover, from (10) and (8), it follows that for every j < к it is the case that Bj 
has a nonempty intersection with every closed subset P^ of P of positive measure. 
Hence, from Lemma 1 it follows that 

(14) m*{Bj) = m{P) for every j < к . 

Thus, from (13) and (14) it follows that P is a disjoint union of /c-many subsets Bj 
of P satisfying (6). Hence the Theorem is proved. 

Corollary. Let P be a closed set of positive measure. Let с be the cardinal of the 
continuum and к any cardinal such that 2 ^ /c ^ c. Then P is a disjoint union 
of k-many nonmeasurable subsets Bj of P such that 

(15) f^*{^j) = ^K^) ^"^ ^*{^j) = Ö /^^ every j < к . 

Proof. In view of the hypothesis of the Corollary, from Theorem 1 it follows that P 
is a disjoint union of /c-many subsets Bj of P satisfying (6). On the other hand, since 
к ^ 2 we see that for every7 < A: there exists f < Ä:suchthaty ф /andPj- ^ (P — Bj) 
with 

m*{Bj) = m*{P - BJ) = w(P) 

which implies (15) and the nonmeasurability of Bj for every 7 < k. 
Thus the Corollary is proved. 
We observe that if С is a closed set of positive measure m(C) then for every 

nonnegative extended real number r (i.e., 0 ^ r ^ +00) such that r ^ m(C) there 
exists a closed subset P of С such that m{P) = r. 
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Based on the above observation we prove: 

Theorem 2. Let С be a nondenumerable closed set. Let r be a nonnegative extended 
real number such that r ^ m(C). Then С is a disjointed union of continuumly 
many subsets Cj of С such that m*(Cj) = r. 

Proof. If r = 0 then the conclusion of the Theorem follows immediately since С 
is a disjoint union of (see the Remark) continuumly many of its singletons. Next, 
let 0 < r ^ m[C). Thus, С is a closed set of positive measure and we let (in view of 
the above observation) P be a closed subset of С such that m(P) = r. Let с be the 
cardinal of the continuum then since с g c, from Theorem 1 it follows that P is the 
union of a family (B^j^^ of continuumly many pairwise disjoint subsets Bj of P 
such that m*(Bj) = m{P) = r. Clearly, С — P = e ^ с and therefore С — P is 
equal to the family {bj)j<e of pairwise distinct real numbers bj. But then letting 

Cj = BJ U [bj] if j < e and Cj = Bj if e^j <c 

we see that the above Cfs satisfy the conclusion of the Theorem. Thus, the Theorem 
is proved. 

For related results see the reference below. 
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