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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

ON THE INVARIANT METHOD IN DIFFERENTIAL GEOMETRY 
OF SUBMANIFOLDS 

IVAN KOLAR, Brno 

(Received February 25, 1975) 

The invariant method for the investigation of submanifolds of homogeneous 
spaces was established by E. CART AN, [1]. One part of the evaluations used in 
Cartan's method of moving frames is a "prolongation" procedure consisting in the 
exterior differentiation of the relations among the principal forms followed by the 
application of the structure equations and of Cartan's lemma. G. F. LAPTEV pointed 
out that this prolongation procedure can be performed independently of the speciali­
zation of frames, [9]. In the course of such evaluations, one obtains the coordinate 
functions of certain geometric object fields on the submanifold, which are called 
the fundamental geometric object fields. Laptev also developed a computational 
procedure for constructing the geometric objects of submanifolds based on the 
fundamental geometric objects. He and his disciples applied successfully this method 
to many concrete problems in differential geometry. Further, VASIUEV remarked 
that a modification of the above method can be used to study submanifolds of a space 
with fundamental Lie pseudogroup, [14]. The investigations of [9] and [14] are 
local and are written in an analogous form as the original papers by E. CARTAN, 
which is generally considered unsatisfactory nowadays. That is why we present an 
intrinsic and global explanation of these problems based on the theory of jets. 

In § 1, we treat a submanifold F of an arbitrary differentiable manifold M, define 
the cap fields of V and justify a procedure for finding their coordinate functions. 
This algorithm is quite analogous to the prolongation procedure by Laptev. In § 2, 
we show how to reduce the investigation of a submanifold of an arbitrary homo­
geneous space to the results of § 1. However, a simple direct algorithm can be ob­
tained for certain special homogeneous spaces only (nevertheless, all the main 
homogeneous spaces treated in the "classical" differential geometry are of this special 
type). This is explained in § 3. To clear up the fundamental ideas, we use the frame 
field of order zero in § 1 — § 3. Since a convenient specialization of frames is practically 
inevitable, we add some remarks concerning this subject in § 4. In the last paragraph, 
we outline the application of the invariant method to the submanifolds of a space 
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with fundamental Lie pseudogroup. The case of a flat pseudogroup of the first order 
is treated in all details. The appendix deals with Laptev's method for the construction 
of geometric objects of submanifolds, [9]. We find that this method gives a local 
construction of equivariant mappings and we also deduce a theorem leading to 
global results. In this way we show that our general intrinsic definition of the geo­
metric objects of submanifolds agrees with the computational procedures of the 
classical differential geometry. 

The standard terminology and notation of the theory of jets are used throughout 
the paper, see [3]. In addition, jl, s < г, denotes the canonical projection of r-jets 
into 5-jets. Unless otherwise specified, our considerations are in the category C°°. 

1. Cap fields on a submanifold 

We recall that a contact element of dimension m and of order r (shortly: a contact 
m'*-element) on a manifold M at a point x e M is the set XIT^, where X is an m**-
velocity on M at x, [3]. Such a contact element is called regular, if m < n == dim M 
and if X is a regular velocity. The fibred manifold of all regular contact т''-elements 
on M will be denoted by ХЦМ). Obviously, ^СЦМ) has a natural structure of an 
associated fibre bundle of the symbol (M, К;; „„ Ü„, Н''{М)), where iC,**, ,„ means the 
space of all regular contact т''-elements on R" at 0 and W{M) is the r-th principal 
prolongation of M. 

Let V be an m-dimensional submanifold of M and let r be a positive integer. 
Then F determines a regular contact т''-element /c^Fat every xeV. Using the expres­
sive terminology by Bompiani, we shall say /c^Fto be the cap of order r (shortly: 
the r-cap) of Fat x. Let ß'"(F) denote the restriction of Я''(М) over F, which is a prin­
cipal fibre bundle Q\V) (F, L^). Further, let K\V) be the restriction of ХЦМ) 
over F, so that K\V) is an associated fibre bundle of the symbol (F, X;;̂ ,„, L';, Q\V)). 
We have a canonical cross section a'' : F ^ K ' ' ( F ) , X I-> /C^F, which will be called 
the cap field of order r (or the r-th cap field) of F 

We shall now apply the concepts of § 1 of [8] to the above situation. Denote by 
/? : R" -^ R'" the natural projection and view R" as a fibred manifold (R", p, W^). 
Let X,*;̂  с iC^ ,„ be the subspace of all elements transversal with respect to this 
fibering. Then the elements of X^ ,„ can be identified with the elements of J'"(R'', p, R'") 
( = the r-th prolongation of the fibred manifold (R", p, R'")) with source OeW 
and target 0 e R". This identification gives the coordinates Ур, "-^Ури-Рг ^^ ^n,m-
Any X e KJi „, is identified with an r-jet of a mapping of the form 

(1) Ъ'рХ' + ... + l ь ^ ^ . . . , y ^ . . . x ^ ^ p , ^ , . . . == l , . . . , m , 
r! 

J, K, ... — m + 1, ..., n . 
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Then we set y'XX) = fe^,..., yi,..^,Xx) = b'^^,,,^^. Obviously, if у^,..., у^,...,^,, are 
the analogous coordinates on K''„~2, then 

(2) У1 = {ГУ y% - . yU..p.-. = {jry yi...,.-.. 
Introduce 

U'{V) = {u e ff{V); u-\KV)eÈl„, x = ßu} . 

According to [8], we get the coordinate functions 

(3) < . . . , < . . . , ^ : ß X F ) - . R 
of the r-th cap field a' of V. Let i, : Q^V) -> Н'{М) be the injection. On H^M), 
there is a canonical (R" ф I^~^)-valued form 6^ (where V^"^ means the Lie algebra 
of L ; "^ ) , see [5], [7]. Let в, = if в, be its restriction to ^ ' ( F ) . We shall show that 
the components of 8^ play an essential role in the evaluation of the functions a^,... 
..., flpi...p^. Nonetheless, we first deduce an auxiliary lemma. 

Lemma 1. Let V cz W, Oe V be an m-dimensional submanifold such that koVe 
eXjj^^. Then 

(4) yL...-Mv) = (^)^>'p......-Xfco-'K(o(^))) > 

where T3, : R" -> R" is the translation x \-^ x + у and yjj) is the curve on Vprojected 
into W in the curve x^ = ô^t. 

Proof. Let k'oV = j'o[f{xP)], where Дх^) = Z?;Jx̂  + ... + b̂ ^ Р У " ... x''''. 
Then /cr^(4(\)(F))=j'o-'mi^' + Kt) + . - + (i/'-o KU..PX^'' + ^ro ..• (̂ '̂  + 
+ K''t)]-f{Kt)}^ so that yU...,^.Xko~\hM^))) = K..-Pr-J^ which implies 
our Lemma. 

Let 
(5) öS i,j,... = U...,n, 

be the components of the canonical form 0^ of Н\М). Put 8^ = г̂ -̂̂ - ßy the defini­
tion of Q^{V), 8^ are Hnearly independent and 8'^ are some linear combinations of 8^. 

Proposition 1. It holds 

(6) Ö̂  = a^Ö^ 

w/zer̂  a^p : U^{V) -> R are the coordinate functions of the first cap field a^ of V. 

Proof. Consider first an m-dimensional submanifold Tf cz R", OeW such that 
klWeK^jn and denote by ^ : Ж-* R" the injection. Then 

(7) {(P*{dx% = yiiklW) {<p*{dx% , 
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since (p can be considered a local cross section of (R", p, W") determined by л"̂  = 
= b'X and it holds (9*(dx^))o = (dx^)o, ((^*(dxO)o = bl{(p%dx%, b^ = yi{klw). 
Further, let и e Q^{V), и = jlW and let Я : F-> M be the injection. Then (7) implies 

(8) ( ( ^ - U ) * {dx% = yi{kl{W~\V))) {{W-'Xy (dx% . 

By the definition of 9^, {{Wf {dx% = Ol so that {{W~4f {dx% = 51 Hence 
(8) can be rewritten as Öi = al{u) Öl, QED. 

We shall need the equations of the fundamental distribution on ß l (F) x i^„\^, 
X e F, see [8]. We recall that the structure equations of 0^ are do' = в-' л Oj\ where 
(e\ 9'/) is an admissible extension of 9^, [7]. On Q^{V), we have 

(9) do' = 9J A Ö'/ , where Ö'l = Щ , 

and 0^ Ö'/ satisfy the assumptions of Lemma 2 of [8]. The exterior differentiation 
of (6) yields 

Hence the equations of the fundamental distribution on QI{V) X KI^^ are 

(10) dyl - y'^col - УУ^СО^ + y^.coi + col:=dyl + ФЦу'^, со]) = О, 

where со} is the canonical I^-valued form of QI{V) and the functions Ф^ are defined 
by equation (lO) itself. ~ To simplify the following considerations, we change our 
notation: the coordinate functions of a^ will be denoted by äp. 

Consider now the coordinate functions a^, a^^ : Q^{V) -> R of the second cap 
field G^ of К By (2), we find directly a^ = {jiy a^. Further, let 9\ 9} be the com­
ponents of the canonical form Ö2 of H^{M) and let 9\ 9] be the induced forms on 
9\V). Then 

(11) da^ + Ф K > 0 ; ) = a ^ / ^ 

Since this assertion is a special case of the following proposition, we need not prove 
it separately. Applying the exterior differentiation to (11), we find the equations of 
the fundamental distribution on ß^(F) x i<Ĉ ,̂„, xeV, and we can similarly proceed 
step by step on. Thus, let ä^,..., ä^p^,p^_^ : Ô ^ ~ ^ ( F ) -> R be the coordinate functions 
of the (r - l)-st cap field of Fand let 5,_i = (5', Э], . . . , 9},...у,_ J be the restriction 
of the canonical form of H''~^{M) to Œ~^{y). Assume by induction that it holds 

(12) V^ald", 

аа1 + Ф1{а^,В^) = а1^\ 
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provided the equations of the fundamental distribution on ß^ ^ ( F ) X K^^^, X E V, 
are 

(13) dyi + 0l{yi,ä5}) = O, 

where (со),..., о>}̂  ŷ _ J is the canonical I^~^-valued form of Q^x~^{V). 

Proposition 2. Let 6^ be the canonical form of W{M), let в\ ...,e)^j^ be the 
components of the induced form if9^ on Q^V) and let aj,, ..., a^p^ p^ : Q^V) -> R 
be the coordinate functions of the r-th cap field o^ of К Then 

(14) Ö' = а'рв^ , 

•Pr-iq^ 

(15) d«^,...,^_, + Ф^,..,,^^Х«Р. • - . «P......-,' Öl,..., Ö}...,̂ ,̂) = a^,...,„_,/«. 

Proof. Obviously, it holds 

(16) ai = {ГУ ai ..., â ,.,.,̂ ., = (vT')* K-P.-. 

so that (14) is a direct consequence of (12) and (16). It remains to deduce that, for 
every и e Q^V) and every X e T„(ß''(F)), it is 

(17) ci<...,^_XX) + Ф'р^...,и<Н "> <...Pr-X^^ 

where e = Ö^Z), ..., ^ j , . . . ; ^ _ , - 0;....,/.-Х^> Put û = J T ' " , ^ = J T ' ^ , W = / O ^ . 
By definition, it is в^{Х) = e^{i^*X) = w~^(iV_i*X). Consider a decomposition 
X = X^ + X2 such that û-%_-^,Xi) = (̂ '̂ê  Then X2 e Тй(е;~ХЮ)' ^ = ßu 
and Lemma 1 of [8] implies 

(18) d< . . . p . - ( ^2 ) = -Ф^, . . . , ._ . (да ,••• ,5^ . . . , ,_Хй), ^; , . . . ,«;„. . ,v. .)• 

Further, zV-i*^i can be written as ji[^^Jo"^'^7(f)]? where y{t) is the curve on W~^{U) 
projected into R"" in the curve x^ — ^^t. By Lemma 1 and by the chain rule, we find 

(l^) d5 ; , . , . , ^^ , ( ^ i )=A. . . p . -X ï ' / o " ' b« ) ) = 

But (18) and (19) is equivalent to (17), QED. 
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To derive the equations of the iundamental distribution on Ö^F) x KJi „„ x e V, 
we apply the exterior differentiation to (15). Using the structure equations of 9^, [7], 
and taking into account that (13) is completely integrable, we deduce easily that 
we obtain certain relations of the form 

(20) [d^;...,^ + Ф ; . . . > ^ , ..., a ,̂...,., Ö;, ..., Ö;,...,^_,, ÖJIJJ] Л Ö- = О , 
J 
P\...Pr where 0':\ ,• determine an admissible extension of 0_, 0-' ,- = 1'(У;\ -, and Ф 

J I •• 'J r • J \ • • • J r ' J I • ••J r J 

are certain linear combinations of Ö's with coefficients in a^, ..., a^p^^^. By Lemma 2 
of [8], we conclude that the equations of the fundamental distribution on Ô ^ ( F ) X 
X X;; ,„ are ^П,}П 

(21) d / , + Ф^Да̂ , coj) = 0 , 

provided (coj, ..., со], ^J is the canonical lj[-valued form of Q^F). 

Remark 1. It should be underlined that the previous procedure gives the equations 
of the fundamental distribution on ÔX(F) X X ^ ^ . We shall explain a practical 
advantage of this fact in the sequel. 

2. Submanifolds of homogeneous spaces 

Assume that a Lie group G acts transitively on the left on M. The transformation 
determined by ^ e G will be denoted by Ag, Ag : M -^ M. Fix a point с e M and 
denote by H its stability group. Then G can be considered a principal fibre bundle 
G{M, H) over M with the structure group H. Every r-frame Ye И[{М) determines 
a principal fibre bundle homomorphism ц : G{M, H) -> Н\М), g \~> AgY ( = the 
composition of the mapping Ag and the r-jet У). 

Proposition 3. Let в^ be the canonical form of W{M) and let Ye Щ(М). Then 
r\^B^ is an (R" © V„~^yvalued left invariant form on G. 

Proof. Let X =Joy{t) be a tangent vector to G and let A^^^Q^Y = JQ(p. Then 
rj^X = jl{Ay^r)Y) and e,{rj^X) = 7 о [ 9 " ' ^ и о ^ ] ' ^ = Л~ ^ Y, see [5], [7]. On the other 
hand, Lg^X = fog y{t), g e G, so that ri^{Lg^X) ==^jl[Agy^t)Y]. Since Agy^o^Y = 
= ЛЛд(р, we have e,{r]:,Lg:,X) = jl[(p-'A;'Agy^,yY] = jl[ç-'Ay^,^Y] = e,{^^ 
QED. 
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Lemma 2. Let Y, fe НЧМ) satisfy ]["^Y = y~^Y = Y and let 

(22) ' / 4 = (Ö',...,ÖJ,...,v_„öj...,,,.,), 

rör = (ö'-,...,ö;,...,,.,Jj,...,,.,). 
Then 

(23) öj, . . , ,_. = ö;,.., , . , + a;; . . , , . „ ö \ 

where ß],...jv ^^^ ^^^ natural coordinates of the element Z e Ц^ determined by 
Y= YZ. 

Proof. If XET{G), X =foy{t) and Л,(о)^ = ; > , Л,(о)^' = /оФ, then Zj= 
= / о ( Ф ~ » - Hence öX?/*X) - 7^[(р-М,(,)У] and Ö,(/7*^) = 7 ^ [ Ф ~ > ^ " ' Л ( 0 ^ ] ' 
so that (23) is a direct consequence of Lemma 2 of [7], QED. 

From Proposition 3 and Lemma 2 we derive the following algorithm for the 
evaluation of the induced forms on G. First of all, for every Ŷ  ̂  Н1(М) one can 
choose a basis œ\ co^ of g* such that 

(24) cô ' = rjte' 

and that ш' = 0 are the differential equations of H. Let 

(25) dco^ = jc'jk.oj-^ A co^ + c'j^co^ л co^ , À, /л,... = n + 1,..., dim G , 

dœ^ = ^clßOf л ö)̂  , а, j5, ... = 1, . . . , dim G , 

be the structure equations of G. Take an element У2 e Н1{М) such that ^2^2 = ^i-
Then ?/2^' = ш̂  and the structure equations of the canonical form Ö2 of H^{M) 
imply 

(26) dcô " = œ' A ф] . 

We shall compare (251) and (26). Using Proposition 3 and Cartan's lemma, we 
obtain 

(27) /Jjöj = c j X + i c j X + a > \ 

where ад are any constants satisfying «д = alj. By Lemma 2, all possible values 
of a)k are in a one-to-one correspondence with all frames of Я^(М) over Y^. Hence 
one can choose e.g. an element Y2 G H^{M) such that a'jj, = 0. Then 

(28) rjte} = c]^ + 1с},ш^. 

Take an element % e Н1{М) satisfying '̂з ?з = 72- Then 

(29) Ф' = со\ /;?öj = c > ^ + i c > ^ 
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and the structure equations of the canonical form Ö3 of Н^{М) imply 

(30) d{c'j,co' + i c > ' ) = {c%œ>- + i c > 0 л (clfif + icL,ft>'") + ш' л ф],. 

Comparing (25) and (30), one finds 

(31) Ф)и = ^m^n"^' + HmAi + Hj\m\Ck)!) со' + a^ico' , 

where a]^i are arbitrary constants symmetric in all subscripts. According to Lemma 2, 
all possible values of ад, are in a one-to-one correspondence with all elements of 
H^{M) over Yj. Hence one can choose e.g. an element У3 such that a'^i = 0; and 
so on. 

Consider now an m-dimensional submanifold V of M. Let Q{V) be the restriction 
of the principal fibre bundle G(M, H) over V, which is a principal fibre bundle 
Q{V) {V, H). The fibred manifold K^V) can be naturally considered an associated 
fibre bundle of the symbol (У^К'^^^М), Я, Q{V)), where Kl,X^) means the fibre 
of ХЦМ) over c. Then the coordinate functions of the r-th cap field a** of Fare some 
functions on a subspace of Q{V) introduced as follows. Let со" be the above basis 
of g* and let e be the unit of G. Then (cô )̂  is identified with a basis of Т*{М). Denote 
by Q{y) c: Q{V) the subspace of all g e Q{V) such that the tangent space of the 
submanifold Äg^[V) at с is complementary to the subspace (a> )̂e == 0 of Tc{M). 
Let / : Q(V) -> G be the injection and let of =•• i^of. Consider further an element 
Y, e H[{M) such that f/*0' = cô  and define ц, : 6(1^) -> U\V), g i^ AJ,, Obviously, 
it is fi^i = i^fj^. If a^p, ..., a^^ p^ : Q'*(F) -^ R are the coordinate functions of G"" in 
the sense of § 1, then the functions 

(32) ai = fjta'^,..., à;,...,^ = fjta'^,,,,^^ : U{V) - R 

will be called the coordinate functions of a*" with respect to Y^. Assume that we 
have found the induced forms 

(33) r,:9' = o/,ri:e',...,,,:9i„„j^_^. 
Since vj^i = i^fj^, we obtain the forms /7*0), ..., ??*ö'}j...ŷ  on ß(F) when replacing of 
by of in (33). Then Proposition 2 implies immediately the following assertion, which 
gives an algorithm for finding the functions (32). 

Proposition 4. The coordinate functions (32) of the r-th cap field of a sub­
manifold V with respect to Y^eHl^M) satisfy 

(34) 
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Obviously, if we restrict all quantities of (34) to a fibre Qx{V), x e V, then we obtain 
the equations of the fundamental distribution on Qx{V) x X;;^. 

3. Special homogeneous spaces 

The considerations of § 2 can be summarized to a simple direct algorithm for 
those homogeneous spaces, whose structure equations in a suitable basis co'^ of g* 
have a special form without any products cû^ л œ^ in (25), i.e. 

(35) dco^ = c};V л œ^ , 

This is equivalent to the fact that co'̂  = 0 is an Abelian subgroup X с G. In other 
words, the localization of G to M is a flat pseudogroup. (One verifies directly that the 
structure equations of л-dimensional Euclidean, affine and projective spaces as well 
as of the spaces of their linear submanifolds are of the type (35)). In this case, one 
deduces easily from the structure equations of the canonical form 0^ of Н\М) that 
there is an element Y^ e a[{M) such that 

(36) J/*ö' = CO', ^*0J = CJ;V, 

this Yf. corresponds to the values a)^ j^ = 0 for all 5 = 2, ..., r. We shall show that Y^ 
is the r-jet of a simple coordinate system on M. Consider the canonical coordinates 
on the group К determined by the basis ei of its Lie algebra in a neighbourhood U 
of e. Assume that U is sufficiently small so that this coordinate system on U is 
projected by the bundle projection of G(M, H) into a coordinate system >̂  on M 
in a neighbourhood of c. 

Proposition 5. The element Y^ corresponding to (36) /5 the r-jet of x at 0, i.e. 

(37) Y, = foX . 

Proof. Equations (35) are equivalent to 

(38) [e^, ej] = 0 , [ej, e^} = ~с),е^ - c]^e^ , [e^, e^ = -cl^e, . 

If we denote by X^, X^ the vector fields on M determined by ei, e^, then 

(39) [X, ,X, ] = 0 , lXj,X,-\ = èj,Xi + c%X^, [Хя.Х,] = с 1 Д , . 
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Let x' be the coordinates of x on M. Since К is an Abelian group, it is 

(40) X,. = A . 
OX 

Consider the power series expansions 

(41) X, = U,xJ + • • • + ; , ''y.-.v;.-^'- • • • •̂ -" + • • • ) £ ; • 

The coefficients a);̂ , ..., a)^ j^^^ can be determined as follows. On the one hand, we 
find by (40) and (41) 

(42) {[Xj, [..., [X,,._, [Xj, X,]] ...]])o = a)^..,^p(), • 

On the other hand, (39) implies 

(43) ([X,„ [..., [Xj^_ „ \_X,., X,]] .. .]])o = с)^,Л>.. • • • 4 ï '(^,)o • 

Comparing (42) and (43), we obtain 

И) 4 , = 4 , fl},..y,, = ^).я,4я, -. .4:;' f̂ r ^ ^ 2. 

Further, let J[ Т(М) be the space of all r-jets at с e M of the cross sections of the 
tangent bundle of M. According to a theorem by Libermann, [10], Proposition 1, 
there is a natural identification of J ' Т{М) and ТуХН\М)). Denote by £,-, £j, ... 
..., Б]'----'' the vectors of Ty^J^X^)) corresponding to the r-jets of the vector fields 

A,, .A, . . . , l , . . . . , .vA. 
dxi dx' r! ox' 

Then (41) and (44) imply 

(45) rj.^ei = Ei, 

On the other hand, let 0, be the canonical form of H^M). If v G Ту{Н\М% v = 
= v'E; + v]E{ + ... + i;),...y^£f-^ then 

(46) 0,(1;) = ( . \ . } , . . . , .], . . . , ,_,), 

see [7]. Comparing (45), (46) and (36), we prove Proposition 5. 
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Hence we have justified the following direct algorithm for finding the coordinate 
functions a^,..., flpi...p^ : ô(^) -» R of the r-th cap field a*" of F with respect to j^x 
(shortly: with respect to ж). First of all, we have 

(47) œ^ = â^œ^ . 

The exterior differentiation of (47) yields 

[àal + W'Xâl, œ')] A d)̂  = О , 

where ^^{â^p, (Ь^) = Фр(ор, с}я^ )̂- Let п^ be the components of the canonical 1)-
valued form on Qx{V), XGV. Then 

(48) dyl + Wl{yl, n') = 0 

are the equations of the fundamental distribution on Qx{V) x ^n,m- Further, it holds 

(49) da^+!P^«,a3^) = <,c5«. 

Assume by induction that in the (5 — l)-st step of this procedure we have deduced 
the relation 

(50) d<...,,_, + >P^,...,,_Xa^,..., <„..,^_., œ') = < . . . , й"». 

The exterior differentiation of (50) yields 

(51) [däi,,,,,^ + К..ЛК' • • •. <...,^' '5 )̂] л ш"̂  = 0 , 

where ^pi,.,p^ are certain linear combinations of c5̂  with coefficients in âp,..., âp^ p^. 
Then 

(52) dyi+Wi{yi„n'-) = 0, 

are the equations of the fundamental distribution on QxiY) x K^ ̂  and it holds, 
moreover. 

(53) dâi^^p^ + Т1^„Ж^..., «;,...,,, &') = «t... Ps«^^^^ nO)^ 

Remark 2. We should like to emphasize that the values аУ^и),,.., a^^ p^{u), 
и e й{^)у î"̂  the coefficients of the power series expansions of the equations (with 

106 



respect to x) of F in the frame и. Though this fact is of great practical importance, 
it has not been known. 

Remark 3. We shall show in the appendix that equations (52) can be used for 
an analytic construction of the equivariant mappings of the Я-space XJ„^(M). 
Starting from an analysis of some computational procedures by Laptev, [9], we 
define a geometric object of order г for m-dimensional submanifolds of M (shortly: 
a geometric т''-object on M) as an equivariant mapping ji of the Я-space K^^^{М) 
into another Я-space W. Denote by E the associated fibre bundle (M, W, Я , G(M, Я)). 
Further, let E{V) be the restriction of E over an m-dimensional submanifold V cz M. 
The mapping fi is extended to a base-preserving morphism /̂ 2 : -КЦМ) -> E, [6] . 
If a'" is the r-th cap field of F, then the composition JU2Ö-'" : V-^ E(y) will be said to 
be the value of fi2 on V, Let z^ be some local coordinates on W and let z^ = 
= z^(yl,..., У1^,„Р^) be the coordinate expression of ц. Then z^(öp,..., ßp,...p^) are 
the coordinate functions of the value jijcr^ of ß on F (where a^,..., ^pj...p^ are the 
coordinate functions of cr'*). 

4. Remarks on the specialization of frames 

A simple case of specialization of frames is based on the following well known fact. 
In general, let Q(B, Я , n) be a principal fibre bundle, let Я act transitively on the left 
on a manifold F, let ^ be a cross section of the associated fibre bundle {B, F, Я, Q) 
and let p G F be a point. Then 

(54) Q,^{ueQ; и-'{д{п{и))) = p} 

is a reduction of Q to the stabihty group H^ of p. We shall say that Q^ is the reduction 
determined by the pair [g, p). Let y"^, Л = 1, . . . , dim F, be some local coordinates 
on F, let n^ be a basis of I) and let d j ^ + iliiy"^) TÎ  = 0 be the equations of the 
fundamental distribution on Я x F. Further, let a"^ be the coordinate functions of ^, 
[8], and let уо be the coordinates of p. Then gi. c: Q is characterized by 

(55) a^ = yt^ 

One finds also directly that the diff'erential equations of the stability group H^ 
of p are 

(56) f,i{yi) n' = 0. 

If one studies a submanifold V, then it is natural to take a cap field of F of a con­
venable order for the above field Q. For instance, assume that Я acts transitively 
on X^,c(M) and denote by j?! G K ^ , , ( M ) the element yl = 0. Then the reduction 
Qi{V) с Q(y) determined by the pair ((TS p^) is usually called the frame field of 

107 



the first order of К (while Q{V) itself is sometimes said to be the frame field of order 
zero of V). The reduction Qi{V) is characterized by a^ = 0. In other words, if ш"" 
denotes the restriction of œ^ to Q^{V), then à"̂  = 0. Such a specialization of frames 
is practically inevitable for a concrete evaluation and was used by Laptev and his 
disciples in all their investigations. Naturally, it is convenient to specialize the frames 
further if possible. 

However, if one constructs a reduction Q{V) of Q{V) to a subgroup Я of Я in the 
above manner and if one continues in the prolongation procedure on Q{V), then one 
obtains the equations of the fundamental distribution on an Я-invariant subspace S 
of X)ij^(M) only. Hence the method explained in the appendix of the present paper 
enables us to construct the Я-equivariant mappings of S only. Nevertheless, every 
Я-equivariant mapping of 5 can be naturally extended to an Я-equivariant mapping 
of X ^ ^ ( M ) as follows. In general, consider a homogeneous space F with a funda­
mental group Я and denote by Я the stability group of a point p E F. Let F^ be 
another Я-space and let Я : F^ -> F be an equivariant surjection. Set FQ = Я~^(р), 
which is an Я-space. Consider another Я-space FQ and an Я-equivariant mapping 
cp : FQ -> FQ. As Я, has a natural structure of a principal fibre bundle H(F, Я), 
we can construct an associated fibre bundle F^ of the symbol (F, FQ, H, H[F, Я)). 
Since every element of JF^ is an equivalence class {(/г, у)}, h e Я, y e FQ, with respect 
to the equivalence relation [h, y) ^ [hh, h~^y), h e H, we introduce a left action of Я 
on Fl by h'{(h, y)} = {{h'h, y)}, h' e Я . This definition is correct, since 
h'{{hh,h~^y)} = {{h'hh, h~^y)} = {(h'h,y)}. Then we define an Я-equivariant 
mapping Ф : Fl -> F^ by ф{hy) = h (p{y), y e FQ. Even this is a correct definition, 
since hy = h'y, y, y' e FQ implies h~^h' e H, so that ф{h'y') = W cp{y') = 
= hh~^h' q){y') = h (p{y). The Я-equivariant mapping ф : F^ -^ F^ is the above 
mentioned natural extension of an Я-equivariant mapping cp : FQ -^ FQ. 

5. Submanifolds of a space with fundamental Lie pseudogroup 

Let Г be a transitive Lie pseudogroup on a manifold M, [2]. Let FFi^F) be the 
groupoid of all r-jets of the transformations of Г and let G^ denote the isotropy group 
of n^F) over xeM. Obviously, n''^{F) = {X e n%F); aX = x} is a principal fibre 
bundle over M with the structure group G .̂ Fix a local chart x on M with the centre x. 
Then 

H\F,x) = {X{fQxy, XEn:{F)} 

is a reduction of Н'{М) to a subgroup G' a Г„ isomorphic to n''^{F). Let (p,+ i be 
the restriction of the canonical form 9,+ i of W^\M) to W^\F, к). According to 
W . 9r+i(7;(H'"+^(r, %))) is a fixed subspace V.czW® V^ for all uelF^^r x) 
Since я;(г,хЬ 

e M, is a fibre of a principal fibre bundle with the structure group G**, 
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there is a canonical ^''-valued form W, on Ну{Г, x). Further, let {(Рг-^^\ denote the 
restriction of cp^+i to Ну^^{Г, x). 

Lemma 3. The values of {(pr+\)y He in g' and the following diagram commutes. 

T{W;\r^x))-~ 

(57) Jr+ 1Я 

т{в;{г.х)) 
i^r+\)y 

Proof. Let X E Т^{Щ^ \r, x)), и =/o"^ V . ^ = Jo у(0' where у is a curve on 
Щ^\Г, x). Put Ü - j;+iw, y{t) = JVVI 7(0, ̂  = ir+i*^- By the definition of 0,+ ̂ . 
it is 9^+i(X) = 9^+^(X) = jolfi"^ 7(f)]. Since у is the target of every y{t), we have 
ß"^ y{t) = ü~^ y{t). On the other hand, ^r{^) = /Цй"^ y{t)] by the definition 
of *F„ QED. 

We find a more specific situation for flat pseudogroups. We recall that Г is said 
to be flat if, for every у E M, there exists a local chart x on M in a neighbourhood 
of y such that the x-images of all translations in R" belong to Г. A coordinate system 
having this property will be also said to be flat. 

Lemma 4. If Г is a flat pseudogroup and x is a flat coordinate system, then 
K, - R" e g^ 

Proof. Let ХЕТХН''^'{Г,Х)1 X=jly{t). Hence y{t) = fo^'y^x, У,ЕГ, and 
w = fo^iix, 1ЛЕГ. By the definition of 0^+^, we have cp,+ ̂ (X) = 
= 7j[>^"V~4iT+i КО)] =Jo[/o(>^"V~^7r^)], where/o(x~V"^7r>^) is a curve on 
H\W). The principal fibre bundle Н'{Щ is identified with R" x Г„ by means of 
the projections ß : H^W) -^ R" and к : H\W) -> L^, X i-> т^-;,'Х. Set 
/^(/o(>^"Vyf^)) = ^(0- Then 

(58) 4f,{x-'fiy,x)) = / O ( T ; ( , > ' V - ' y . ^ ) . 

Since X is flat, >i:T̂ ,(f)X~̂  G Г and (58) can be written as JO[X"^(XT^;^/)X~ V'^Tr) ^]» 
which is a curve on G^ We have thus proved F̂  c: R" © g'. The converse inclusion 
can be deduced quite similarly, QED. 

Consider now an m-dimensional submanifold К of M. Let Q'^\V, Г,х) be the 
restriction of Н''^^[Г, x) over V. Then K''^^{y) is also an associated fibre bundle 
of the symbol ( F , x ; y , 0"+^ Ô^^^(F, Г, x)). Put ß'-+^(F, Г, x) = Я^+^(Г, x) П 
n Ô' '" '4^aii^denotebyA : Q'^\V, Г, x) -> Q»-+i(F)the injection. If a;J, . . . , a;J^...p^,, 
are the coordinate functions of the (r + l)-st cap field a""^^ of Q'^^V), then 
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are the coordinate functions of tr-'+i on U'^^iV, Г, x). Then (14) and (15) imply 

(60) ф^ = а'^фр , 

H + Ф (̂а;, ф^ = âl^ç", 

If Ч'],..., 4'i^...j, are the components of T,, then the equations of the fundamental 
distribution on Щ{Г, x) x K^^ are 

Moreover, if Г and % are flat, then even the values of (^j , . . . , Ф'j^„.j^) He in g** by 
Lemma 4. 

Thus, if we want to use the invariant method to the investigation of submanifolds 
of a space with a fundamental Lie pseudogroup Г, we must first find the Lie algebra g** 
of G\ For this purpose, the following relation between ĝ  and the sheaf ^ of germs 
of the infinitesimal transformations of Г can be sometimes used. Let if_̂  be the 
stalk of ^ over xe M and let if^ be the kernel of the jet projection f^ : ^^ "̂  
-> j ; T(M), [10], [12]. The space ^ ^ / j ^ ^ has the following Lie algebra structure. 
The elements of J^^/.^^ are of the formj^^, where ^ e 5^1, so that ^{x) = 0 e Tj^M). 
If (J, ?/ e J^^, then7^([(J, /7]) is quite determined by ĵ ĉ  and j ^ / / . This defines the bracket 
operation in S£%\^''^. We further introduce a mapping if ^/c^^ -> ĝ  as follows. 
Let (̂  G if ^ be the germ of a Г-field X defined in a neighbourhood t/ с M of x. 
The field X is prolonged to a field X' on ß~\U) a П''^{Г), [4]. Since X{x) = 0, 
the restriction of Z** to the fibre Ĝ  of Я^(Г) is tangent to Ĝ  and one finds easily 
that this is a left invariant vector field on G .̂ This field will be denoted by i{fx^). 

Lemma 5. The mapping i : ̂ ^j^^^ -> ĝ  is a Lie algebra isomorphism. 

Proof. This follows directly from the fact that the mapping X \-> X^ is bracket-
preserving, see e.g. [13]. 

In particular. Lemma 5 can be used to determine g*" in the case of a flat pseudo-
group Г of the first order. Let g c: Î  be the Lie algebra of G 4 Then the standard 
stalk of the sheaf of germs of the infinitesimal transformations of Г is of the form 

R" + 9 + K9) + ••• + / ( 0 ) + . . . , 

where p^c^) means the r-th prolongation of g, [12]. Hence Lemma 5 implies 

(62) g' = g + K9) + - + /"4s)-
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For example, our results show how to use the invariant method for the investigation 
of real submanifolds of a complex n-dimensional manifold, since the pseudogroup 
of all holomorphic transformations on the underlying real 2n-dimensional manifold 
is a flat pseudogroup of the first order. Naturally, even here it is useful to apply 
a convenient specialization of frames as explained in § 4. 

Remark 4. Analogously to Remark 3, we define a geometric т''-object on M as an 
equivariant mapping of a G'"-space XJJ^, [6]. Then the construction of the induced 
geometric object fields on m-dimensional submanifolds of M is quite similar to that 
of Remark 3. 

Appendix. An analytic construction of equivariant mappings 

Let ^[F) be the Lie algebra of all vector fields on a manifold F and let H be 
a connected Lie group. We define a right infinitesimal action of Я on F as a homo-
morphism of the Lie algebra I) of Я into ^{F), while a left infinitesimal action is 
introduced as an antihomomorphism of I) into 5 " ( F ) . Every left or right action of Я 
on F determines a left or right infinitesimal action of Я on F respectively; the con­
verse problem is treated in [11]. In the sequel, we shall investigate the left infinitesimal 
actions only. Let !F or î  be an infinitesimal action of Я on a manifold F or F respec­
tively and let (̂  : F -> F be a mapping. We shall say that !F and ip are (^-related, if 
the vector fields W(X) and ф{Х) are ^-related for every X e}). 

Let F and F be two manifolds such that there are some global coordinates y^ on F 
and z^ on F and let (p : F -^ F be a mapping with a coordinate expression 

(63) zP = zP{y'), / , j = 1, ..., d i m F , p, ^ = 1, ..., dim F . 

Let Y = rj\yj) {djôy') or Z = C (̂ẑ ) {ÔJÔZP) be a vector field on F or F respectively. 
Then Y and Z are ^-related if and only if 

(64) M z i ) , . - ( y ) = ^P(,.(y)) 
dy 

for every y e F. Conversely, if Fis a given vector field on F, then there exists a vector 
field (^-related with 7if and only if the expressions {dzP(y^)ldy') ri'(^yj) can be written 
in the form C^(z^(y^)), where C^ are functions on F. If cp is surjective, then the latter 
field is uniquely determined. 

Consider now an infinitesimal action !F of Я on F and a mapping cp : F -> F of the 
form (63). Let e;^ be a basis of I) and let 

(65) Це,)=ф^)^^. 
дy^ 
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We shall first investigate whether there exist vector fields ^-related with (65). 
According to (64), we may proceed as follows. Write formally the relations 

(66) dy' + rj[{yj) я̂ ^ = 0 . 

Differentiating (63) and replacing dy' according to (66), we obtain 

(67) dz'' + M z l ) ^ i ( y ) 7 r ^ = 0 . 
dy' 

If (67) can be written in the form 

(68) dz^ + a{zi/))n' = 0, 

then the vector fields Ся(2 )̂ {djdz^) on F are cp-related with (65). Moreover, if (p is 
surjective, then one finds easily that ф :}) -^ ^{^)^ ^^^я '"^ ^̂  ^я(^^) {^jdz^) is an in­
finitesimal action of H on F. Comparing with [9], p. 301, we see that we have ex­
plained the foundations of a procedure due to Laptev. Starting from the above 
facts, one can develop a practical procedure for finding the pairs (cp, ïp) to a given 
infinitesimal action 4^ in the same way as in [9]. 

The above local construction can be sometimes globalized by virtue of the following 
simple proposition. We recall that an infinitesimal action of Я on F is said to be 
proper, if it is determined by an action (i.e. global action) of Я on F, [11]. 

Proposition 6. Let (p : F -^ F be a surjective mapping and let 4^ or ф be an in­
finitesimal action of H on F or F respectively. Assume that 4^ and ф are cp-related. 
If W is proper, then ф is also proper and (p is an equivariant mapping of the cor­
responding H-spaces. 

Proof. We shall use freely the terminology and the results of [ U ] . Let ^ or !F 
be the infinitesimal graph oî 4^ or ф respectively and let Ф = id x ^ : Я x F -^ 
-> H X F. Since W and ф are (/^-related, the diff'erential of Ф maps ^(h,p) bijectively 
onto !F(;, ,̂ (̂ ,)) for every he H, p e F. Hence the leaves of !F are transformed into the 
leaves of W and the restriction of Ф to a leaf of 'F is a local diff'eomorphism into the 
corresponding leaf of W. Let n : H x F -^ H and ft : H x F -^ Я be the product 
projections. By Corollary 3 to Theorem XII of Chapter III of [ U ] , the restriction 
of n to the leaf of W containing [e, p) is bijective for every p e F. Conversely, by the 
same Corollary, if the restriction of fc to the leaf 1 or W containing [e, p) is bijective 
for every p e F, then ф is proper. Consider a point pe F such that (p(^p) = p and 
denote by Я the leaf of W passing through (e, p). Since we have 7i(a) = 7г(Ф(а)) for 
every a E H X F and the restriction of тг to Я is bijective, it suffices to deduce 
Ф(Я) = I. Since the restriction of Ф to Я is a local diffeomorphism into I, Ф{Х) is an 
open subset of À. Further, let ji be another leaf of W such that Ф(Я) n Ф(̂ и) Ф 0. 
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Then the set of all points a e A satisfying Ф{а) e Ф(̂ 1|) is both open and closed in Я. 
But À is connected, so that Ф(Х) a Ф^/л). In the same way we find Ф(^) cz Ф(Я). 
Hence the complement of Ф{Х) in I is a union of open sets. Since I is also connected, 
we deduce Ф(Я) = I. Finally, the Corollary to Theorem VIII of Chapter III of [11] 
implies directly that cp is an equivariant mapping of the corresponding Я-spaces, 
QED. 
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