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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

FREE SUSLIN ALGEBRAS 

ERIK ELLENTUCK, New Brunswick*) 

(Received April 1, 1975) 

L INTRODUCTION 

Let (0 = the non-negative integers, and for each ordinal x, % "̂̂  = Un<co^" = the 
set of all finite sequences of elements of x, and x"" = the set of all functions map­
ping CO into X. Let n range over Û>,/range over co"^, a n d / | n denote the finite sequence 
consisting of the first n values of/. Consider a Boolean algebra В whose fundamental 
operations are written in additive notation. В is an S-algebra if it is a a-algebra, and 
for each a : co^"^ -> Б, contains X!/!!«^/!«- ^^^ latter element of Б is denoted by J / A . 
An S-algebra is also closed under the dual sé'^a = FI/Z«^/!«- These algebras were 
introduced by RIEGER (cf. [14]), who intended that they serve as the correct structure 
in which we can model fj} analysis. An S-field of sets is a cr-field of sets closed under 
the operation J / , and an S-homomorphism is a cr-homomorphism between S-
algebras which preserves j ^ . An S-algebra is S-representable if it is an S-homo-
morphic image of an S-field of sets. Rieger's [14] is an exhaustive study of the neces­
sary and sufficient conditions for an algebra to be S-representable. His methods are 
basically algebraic and stem from his earlier work (cf. [13]) on characterizing various 
kinds of free algebras. [14] is written in Russian (which we can't read) and was only 
brought to our attention by CAMPBELL who generously provided us with a xerox 
of his translation. Campbell's Ph. D. thesis [1] (written under the direction of NERODE) 
introduces a special kind of S-algebra and several conjectures about them which we 
discuss in the last section of this paper. Our own work is quite diff*erent and has its 
origins in the metamathematics of HENKIN (cf. [5]) and his student KARP (cf. [7]). 

Additional material on S-algebras can be found in [2], [3], [11], and [12]. 

2. SR-ALGEBRAS 

Let и range over co^^. By и л n WQ mean that sequence obtained from и 
by adding n to it as a last element. Q = the set of all countable ordinals and a, Я 
range over Q with Я a limit ordinal. If В is an S-algebra and a -.co^"^ -> В define 

(1) «u = a,, <"•' =al^ Yn<^n, at = Па<я< 

*) Supported by a fellowship from the Rutgers Faculty Academic Study Program. 
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by ordinal recursion. Л is the empty sequence. Using the same a as above let 

(2) а" = а"л, « : = -{-ay 

where — a has the value — â  at u. Then В is an SR-algebra if 

(3) s^a = n . a « 

for every a : co^"^ -^ B. This definition w âs inspired by Rieger's algebraic analysis 
of Sierpinski's "constituent" method (cf. [17]). 

Now let B' also be an S-algebra. B' is an S-subalgebra of В if it is a a-subalgebra 
of В and the s/ operation applied to any a : co^"^ -> B' has the same value in B' as 
it has in Б. A set G ^ Б S-generates В if the smallest S-subalgebra of В containing G 
is В itself. Clearly an S-subalgebra of an SR-algebra is an SR-algebra, but of course 
(3) is not necessarily preserved by S-homomorphisms. G freely SR-generates В 
if G ^ В and any map from G into any SR-algebra B' can be extended to a unique 
S-homomorphism from В into B\ We intend showing that for any cardinal x there 
exists an S-field of sets which is freely SR-generated by x elements, i.e., every SR-
algebra is S-representable. We do this by introducing a formal language L and an 
associated SR-logic which makes the Lindenbaum algebra L SR-free. We then prove 
a completeness theorem for SR-logic from which it is easy to show that the Linden­
baum algebra of Lis isomorphic to an S-field of sets. 

Lis a proportional language containing a variable p^ for each ^ < xAt also contains 
connective symbols '^, Л? V? ^ ? '^*- Let P be the smallest set containing each p^ 
such that if (p e P, G Я P is at most countable, and /̂  : co^^ -> P then the concatena­
tions '^(p, /\(T, \/a, j/ju, j / * / i are all elements of P. Let (p, ф range over P, a range 
over at most countable subsets of P, and fi range over functions mapping co^"^ into P. 
Let -^ (cp, ф) = \/{'^(р,ф]. Each (p is a sentence of L. There is an equivalent defini­
tion of P which is more useful for our purposes. Define 

Po = {P^\^ <>^} ^ 

P,+ t = Pa^{-9\(P^P.]^ 

u {Л^| CT Ç P j u {ya\ a Ç P j u {s/^> 

range {n) Ç P j u {^*/i| range (/г) Ç P j , 

Then P = U«<ß^a- Moreover this allows us to assign an ordinal rank to members 
of P. We let rank (ç) = the least a such that (p e P^. We will not explicitly work with 
this function, but unless otherwise stated our recursions and inductions will be made 
with respect to rank. 
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Subsentences are defined by the recursion 

(4) sub p^ = {p^} , 

sub ^ (p = [^' (p} и sub (p , 

s u b Л ^ = {A^} ^ Uc^,eaSUb (p , 

s u b Vö" = { V ^ } ^ U^eaSub cp , 

sub j^fi = {^^|u} u Ut̂ sub /^„, 

sub j / * / i = {j/*/i} u U^sub /i„. 

We then prove by induction that sub cp is at most countable for cp eP. Let ^ G = 
=^ {^ (p\(p e a] and ^ ц take и into '^ /î ,. Then we move a quantifier inside by 

(5) [Pd - = -P,. 

(Да) ^ =. V - ^ , 

(Va) ^ = Л - ^ , 

(ся/*/х) -̂  = ^ ^ 1Л. 

Constituents are now defined as in (l) —(2). For p. : co^'" -^ P hi 

(6) f^u = l^u. iC^ = Л ^ VnßLn . ßt = К<хЛ . 

(where we have abused Polish notation) and 

(7) /̂ " = /̂ л • 

For our SR-axioms we take 

(8) every instance of a tautology from finitary propositional logic, 

(9) {(p^)^^(p, 

(10) Да -> (p for any cp e a , 

(11) Лп%|« -^^ /^ for any / , 

(12) j / / i -> /i" for any a . 
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For our SR-rules of inference we take 

(13) modul ponens , 

(14) {Ф -^(p\(pe(j} ^ 

(15) {A»A^/ |n -^^ | /g^"} ^ 

(16) {cp^if\a<Q} 
cp -> s^n 

Define SR-proof and SR-theorem in the usual way, where we put no restriction on 
the length of a proof. Write SR \- (p if cp is an SR-theorem and omit the SR if there is 
no ambiguity. With the exception of (U), (12), (15) and (16) these axioms appear 
in [8]. (11) and (15) appear in [ l ] . (12) and (16) are new. 

For (p, Ф e P IQX (p = ф if ]r cp ^(r^ ф. ït follows from (8) that = is an equivalence 
relation. Let [ф] be the equivalence class containing cp and let A^^ = {[cp] | cp e P}. 
We then show 

(17) (p = (p' and Ф = Ф' implies ^ cp = '^ ф' , 

cp у Ф = cp' у Ф', and cp A Ф = cp' A Ф' . 

(18) If /г : (J -> cr' is one-one and onto such that cp' = h{cp) 

for all cp EG then /\o ~ /\G' and V^ = V^' • 

(19) if ju„ = n'^ for all и then J//X = J / / I ' and ja/*ju = j /*/x ' . 

We shall not prove (17)-(18); they are fairly well known. For (19), our hypotheses 
give 

Ь /̂ /ifc -^ ^'f\k for all к < œ, for a l l / , 

1- Anf^fin -> fi'fik for all /c, for a l l / by (10), 

Ь Л.%1п -> А„/г;,„ for a l l / b y (14), 

b- Лп%|« -> ^ M ' for a l l / b y (11), and finally 

h j^fi -> j^ß by (15). The reverse arrow is obtained in the same way. We now define 
algebraic operations on A^ by 

(20) -[cp] = [^ cp], [cp] + [Ф] =:[сруф], and [cp] • [ф] = [cp A ф] , 

(21) П { Ы к е ^ } = [ Л ^ ] , and Z{M|(?>e(7} = [Vc7], 

(22) j/(Aw[/i„]) = [j3̂ Ai] , and ^*(2w[^/J) = [^*/i] 

204 



where к is Church's functional symbol. These operations are well defined by 
(17) —(19). Thus we will regard A^ as an algebraic system whose operations have the 
same names as those of an S-algebra. Our first result is 

Theorem 1. A^ is an SR-algebra which is freely SR-generated by x of its elements. 

Proof. It is well known that A^ is a Boolean cr-algebra where 0 = [po ^ '^ Po]^ 
and 1 = [po V '^ Po]' Since \- (cp A ij/^ <r^ cp if and only if h ç> -> i/̂  we have estab­
lished that [(p~\ й [Ф~\ if and only if \- (p -^ \l/. Let v = At/[/iJ. We must show that 
supj inf„ Vj|„ = J3/v. This will imply that j / as defined in (22) is the same as that of 
an S-algebra. First h Anßf\n -^ %|/c so П«^/|п = [Л.%|«] ^ [%i/c] = ^/|/c- Next if 
[ф] ^ Vjifc for all к then h cp -^ }if\k for all к and hence h rp -> /\nfif\n. i.e., [cp] ^ 
^ [A«iW/| J = rin^/in- Thus we have shown that inf„ v̂ -,„ = Пп^/|/г Now h A„/i/|„ -> 
-^ j//x for any / so Yin^fin = [Anf^fin] й [^Ai] = ^ v . If fln^/i« g [̂ p] any / then 
h /\niif\n -^ Ç for a n y / a n d hence h sept -> cp, i.e., j / v = [J /^^] ^ [^]. Thus sév = 
= supj n«^/l« ^ ^^^f ^̂ ^̂ " ^/I'l- Therefore A^ is an S-algebra for which the operations 
of (20) —(22) are properly defined. Next we omit an easy induction on a that v'' = 
= [/!"]. Since V s^ii-^ if for all a it follows that s^v = [s^i^i] ^ [J.L'^] = [/x]^ = v̂  
for all a, and if [(p] g v'" for all a then V cp -^ ^е" for all a and hence h cp -> j//x, i.e., 
[ф] ^ [-^M] = -^^- Thus s^v = inf„ v" concluding our proof that У4̂  is an SR-
algebra. Now let В be any SR-algebra and let /г be a function mapping the variables 
of P into B. We extend h to all of P by the recursion 

(23) h{^ cp) = -h{cp) , h{cp V Ф) = h{cp) + Ь{ф) , 

and h((p A Ф) = h{cp) • Ь{ф), 

(24) if h{G) = {h{cp) \среа] then h{/\G) = Y\h{G) and /7(Vf̂ ) = Z/<^) , 

(25) if V = kuh{ii^ then /2(^//г) = j / v and //(j/*//) = j3/*v . 

We shall now prove 

(26) h cp implies that h{(p) = 1 . 

This is done by first showing that h maps each axiom into 1 and then showing that 
if each premise of a rule of inference gets mapped to 1 then so does its conclusion. It is 
clear that axioms of group (8) are mapped to 1. By our definition of --> we have 
h((p -> î ) = 1 if and only if h{(p) ^ h{ф). This easily shows that axioms of groups 
(10) —(12) get mapped into 1. For (12) we must show that h{ii'') = v"" where v is given 
as in (25). This is proved by induction on a. For (9) we use DeMorgan's laws. A proof 
that the rules of inference preserve the property being mapped into 1 is standard. 
We do (16) as an example. If h{(p -> /г«) = 1 for all a then h{(p) й h{if) = v"" so 
h{(p) S ^y where v is given as in (25), because В is an SR-algebra. From h{(p) ^ 
g h{j^li) we conclude that h{cp -^ s^ff) = 1. This completes our proof of (26). 

205 



Now h{(p ^ , / , ) = 1 if and only if h{(p) = к{ф). Since h was arbitrary on the 
variables of P we could have required that h{p^) =¥ h{p^), where ^,rj < x and ^ Ф rj. 
Thus p^ ^ p^ is not an SR-theorem and consequently [ p j ф [ p j . Let G = 
= { [ p j I ̂  < x}. We shall show that 

(27) G freely SR-generates A^ . 

Let Я : G -> Б where В is an SR-algebra. Define h{p^) = Я([р^]) for ^ < x. Extend h 
to all of P by (23)-(25). Since [cp] = [i/y] implies \- cp^xj/ impHes h{(p) = h{\j/) the 
map Я([<р]) = h{cp) is well defined on A^ and extends Я on G. To show that Я is 
an S-homomorphism we must show that it preserves the Boolean, the cr, and the j / 
operations. We do the last. Others are done in the same way. Я(^з/Я1/[^„]) = 
= Я([^2//г]) = h{seß) = j^Xuh(^j,) = s/ÀuH(£iiJl). Finally we must show that 
this extension is unique. First note that G S-generates Л^. Let H' be an S-homo­
morphism mapping A^ into В agreeing with Я on G and let D = {x e A^\ Я(х) = 
= Я'(х)}. We show that D is an S-subalgebra of A^ and so equals A^. Thus we must 
show that D is closed under the Boolean, the a, and the s/ operations We do the 
last. Suppose that ju maps into D. Then H{séii) = s^XuH^ii^ = s^XuH'^fx^) — 
= H'is^ii), Thus j / / / e D. We finally remark that up to isomorphism A^ is the 
unique SR-algebra which is freely SR-generated by x of its elements. This is proved 
by the usual category argument. » qed. 

Our next task is to show that A^ is isomorphic to an S-field of sets. We shall do 
even more, we actually give a description of what S-field of sets A^ is isomorphic to 
Note that an S-field of sets is automatically an SR-algebra. This was proved by 
SiERPiNSKi (cf. [17]) and will be discussed in detail later in our paper. Consider the 
complete Boolean algebra {0, l} . Since {0, 1} is isomorphic to an S-field of sets it 
is an SR-algebra. Hence by Theorem 1 any function Я : G -^ {0, 1} can be extended 
to an S-homomorphism mapping A^ into {0, l} . We would like to arrange things so 
that \ï xe A^ and x Ф 0 then there is such an Я with Я(х) = L We do this by using 
a modified notion of consistency property (cf. [10] and [8]). Define 

(28) lit = ~ (~ liY 

where ^ p = Xu{^ ßu)- A set ^ of countable sets of sentences of Lis an SR-con-
sistency property (cf. [2]) if for each ce^, 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

if 

if 

if 

if 

if 

(p Ф с or 

~ ^ e с then 

Af e с then 

Vff 6 с then 

^*H 6 с then 

^ß 6 с then 

^(рфс for any (peL, 

с u {((?>)-je'^. 

с u {(p} e'ig for all (pea , 

с и {(p] 6 'ig for some (p e a , 

с u {ju*} 6 "̂  for some a, 

с u {Anßf\n} e "̂  for some / 
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By an assignment we mean any function mapping the variables in P into {0, l} . 
Let h range over assignments. By (23) —(25) we extend h to all of P. h satisfies cp 
if Ь{(р) = 1 (we use the same symbol for the assignement and its extension). 

Lemma 1. / / ^ is an SR-consistency property and CQ e ^ then there exists an as­
signment satisfying every cp e CQ. 

Proof. W.l.g. we may assume that every subset of an element in ^ is itself in ^ .̂ 
For each с e ^ let y(c) be an enumeration of the least set S such that с ^ S,if (p e S 
then sub Ф Ç S, and if '^ cp e S then ((p) ^ e S. We then construct an increasing 
sequence {c„}„ ^ ^ and a sequence of sequences of sentences {D„]„ by the following 
induction Co is the initially given element of ^ and DQ = 'у(̂ ъ)- Assume that at stage n 
of our construction we have c^e^ and Д„ for m -^ n. Finitely many sentences 
in Um^n range ( D j will be known as treated, the rest as untreated (initially no sen­
tence of Do was treated). c„+i will be defined as c„„ where c„^ is defined by the fol­
lowing subinduction. Assume that for some m < n we have c„^. Let cp be the first 
untreated sentence in D„,+i, If c„^ \j{(p]$^ let c„(^+i) = c„^. Otherwise let c„(^ + i) 
be the least element in ^ such that 

(35) C^m'-^W) ^ «̂(m+1) 

(36) if cp is of the form V^ then xj/ e c„^m+i) f<̂ '̂ ^^^le феа , 

(37) if cp is of the form j^ji then Л«/^/|« ^ ^«(т+ D fo^' some / , 

(38) if cp is of the form j / * / ^ then /x* e c„(„,+ ̂  for some a . 

Let c„+i - c„„, D„+i = y{c„+t) and declare ^ as treated. Set c,, = \J„c„. Our as­
signment h is defined by h{pç) = 1 if and only if p^ e c^. 

We claim that h{(p) = 1 for each (p e c^. This is proved by induction. However 
we must do this induction using a notion of rank which assigns a higher rank to J / * / I 
than it does to any ju*. Such functions are not difficult to devise and we omit the details. 
By definition h{p^) = 1 for each p^ e c^. Suppose that cp G C^. Then there is an n 
such that (p was treated at stage n and (p e c„+i,lf cp = \/(j then ф e c„+i for some 
ф EG by (36), h{\l/) = 1 by induction hypothesis, and h{(p) = 1 by (24). If ф = Да 
and ф e a then ф e range (D„+i). If î  ^ c„+i there will be a stage к at which ф will 
be treated. But ĉ  u {ф} e ^ because subsets of с e ^ are in ^ . Thus ф E c^+i by 
(35) and we conclude that a e c^. We have shown that Н{ф) = 1 for sdl ф E a and 
hence h((p) = 1 by (24). If ^ = ^s^fi then Anßf\n e c„ + i for some / by (37). Then 
fifln E c^ for each n by the previous case. h{ßf\„) = 1 by induction hypothesis and 
h{(p) = 1 by (25). ïf cp = ^*/г then /г* e c„+i for some a. Then /г(/г*) = 1 by in­
duction hypothesis. Let v be given as in (25). Then just as in the proof of Theorem 
1 we show that h{n^) = v*. To complete this case we must show that v* ^ j3/*v. 
But {0, 1} is an SR-algebra and hence J / ( - v) ^ {-vf and v* = - (-v)^ ^ 
^ - j / ( - v) = j / * v by De Morgan's laws. Thus 1 = /i(^*) = v* ^ J /*V = h{(p). Ifcp = 
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= '^ ф then (ф) ^ G range (I>„+i)- If {Ф) -̂  ф c„+i there will be a stage к at which 
(ф) ^ will be treated. But c^ u {(̂ A) '^} e ^ because subsets of с e ^̂  are in ^ . Thus 
(lA) - G Cfc+i. If lA = p^then /i((iA) - ) = 1 by (29) and if lA = - 0 then Н{{ф) - ) = 
= h{e) = 1 by induction. Otherwise Н{{ф) --) = 1 by one of the previous cases. 
We know that ^ ф <г^(ф) ̂  is an SR-axiom and just as in the proof of Theorem 
1, using (26), we get h{^ ф) = Н{{ф) ^), Hence h{(p) = 1. qed. 

Lemma 2. / / [r/?] e A^ and [ф] ф О then (p is satisfied by some assignment h. 

Proof. Let ^ be the set of all finite subsets с ^ P such that '^ /\^c is not an SR-
theorem. We claim that ^ is an SR-consistency property. For (29), if cp, '^ cp e с e^ 
then by (8) we have h ^ v '^ ^ and hence h ^ /\c. For (30), if ^ cp e с and с u 
u {((p) ^} ф^ then h Дс -> '-̂  {cp) ^, but \- cp <r^ ^ (cp) ̂ ^ by (9) and hence h '-' Дс 
by (8). For (31), if До- G с but с u {cp} ф ^ for some (реет then \- /\с -> '^ cp, but 
h Дс -> (/) so h '^ Дс by (8). For (32), if V^" G С but с u {(p] ф ^ for every cp e a 
then h Дс -> '^ ф for every ф G d so h Дс -^ Д --̂  cr by (14) where '^ a = 
= { - Ç) I Ф G a}. But h Д - cr -> - V<7 by (9) and hence h - Дс. For (33), if 
^^jn G с but с и {/г*} ^ ^ for every а then Ь Дс -> ^ /г* for every а. But ^ д* = 
== ^ ^ ( ^ ^)^ by (28) and hence h Дс -> J / - /х by (16). Thus h Дс -> - ^*^u 
by (9) giving h rsu Дс. For (34), if j^ß e с but с u {Anl^fin} Ф ^ for every / then 
1" Anßf\n -> -^ Д<̂  for every / . We get h s/fi -^ ^ /\c by (15) and hence h -- /\c. 
By contradiction then, ^ is an SR-consistency property. 

Now to prove the lemma itself. Since [ф] Ф 0 = [po ^ '^ Po] and Ь '^ (PQ л 
л '^ Po) we know by (8) that ^ cp is not an SR-theorem. Thus [cp] G ^ and hence 
by Lemma 1 there is an assignment h such that h{cp) = 1. qed. 

Give {0, 1} the discrete topology and X = {0, lY the product topology. For 
^ < усЫ q^ = {g eX\ g{C) = 1} and Q = [q^ \^ < к]. Each q^ is a clopen (closed 
and open) subset of X. B^ will be the S-field of subsets of Z S-generated by Q. 

Theorem 2. A^ is isomorphic to B^, 

Proof. Recall that G = {[p^] | (̂  < %} is a set of free SR-generators of A^,. 
Define Я on G by Я([р^) = q^. Since B^ is an S-field of sets it is an SR-algebra. 
Freeness allows us to extend H to an S-homomorphism mapping A^ into B^. The 
extension will also be called Я. It maps onto B^ because Q S-generates B^.lt only 
remains to show that Я is one-one. 

Every assignement h can be identified with exactly one ^̂  G X by setting g{ä,) = 
= h(p^) for ^ < X. We use the symbol h to denote this function g. We claim that 
Я([с)]) = { / I G Z I h((p) = 1}. This is proved by induction. That it is true for p^ 
follows immediately from Я([р J ) = q^-lfcp = s/ß then H([^s/ji]) = H(j^Àu\^fiJ^) = 
= ^/ЯмЯ([//„]) = П/ UnH{[fifi„]) by (22) and the fact that Я is an S-homomor­
phism. Also h{^fi) = 1 iff* (3/) (Vn)/î(/iy-,„) = 1 by (25). Thus /IGЯ([J/м]) iff 
(3/) (Vn) h G Я([/^^|„]) iff (3/) (Vn) /ï(%,„) = 1 iff h{j^fi) = 1. We omit the remaining 
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cases which are treated in exactly the same way. This proves our claim. Now assume 
that [(p] E A^ and [<p] ф. 0. Then h{(p) = 1 for some h and h e Н{[(р]) Ф 0. qed. 

Corollary 1. / / В is an SR-algebra which is S-generated by x of its elements 
then В is an S-homomorphic image of B^. 

3. SS AND SE-ALGEBRAS 

Before discussing these varieties of algebras we take an excursion thru the modern 
theory of complete Boolean algebras. Why we do so will soon become apparent. 
Until we say otherwise we suspend the notational conventions of the last two sections. 
Let M be the universe of sets and let Б G M be a complete Boolean algebra. We are 
going to construct a B-valued model M^ of sets in the style of SCOTT (cf. [16]). 
Since [16] is not published, and probably never will be, we will outline the material 
we need in some detail. For information about Boolean valued models see [15] or 
[6]. Define 

(39) Mo = 0 , M„+i =^ M,u{u\u:M,^B}, 

^л = и^<яМ^ 5 for limit À , 

and let M^ = \J^M^ where the union here is over all ordinals. Our object language 
will be that of ZFC ( = Zermelo-Fraenkel + choice). It will contain variables 
X, y, z , . . . ranging over M^, and constants u,v,w,.., naming elements of M^. 
We may as well let elements of M^ be their own names. Let cp, ^,... (with constants) 
range over this language, and let bu denote the domain of the function u. We seek 
to assign a Boolean value [ ф | e Б to each cp. By recursion on the least a such that 
U,VEM^ define 

(40) luEv} = j:^^,,lu = xJ'v{x), 

{U = V} = (Пхеби U{x) -> [X G vj) ' (Пл-ео. ^{x) -> [xG uj) , 

where bo -> b^ = ( — bo) + b^ for bo, bi G В. Then by recursion on sentence length 
define 

(41) l~cp}=~ M > 
[ф л .A] = ы • m ' 
[Ф V ^1 = [<̂ i + m, 

1зхф)} = т.А<рШ' 
where Y\ and ^ are taken over all of M^. As usual [^ ~̂  'A] = 1 if and only if [(/)] g 
< Ul. 
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One of the first things proved in [16] is that equality behaves as expected. Namely, 

(42) [„ = „] = ! , 

{u = vj = [t; = M] , 
lu=v} • [ü = w| ^ [« = w] , 

[M = г;| • [у 6 w] ^ [M e w] , 
{u ev} • lv = w}ulu ewj. 

Say that cp is valid if [cp] = 1, and that M^ is a model of a set of sentences Г if each 
(p e Г is valid. If (p is valied write |= (p. The second important thing proved in [16] is 
that 

(43) M^ is a ß-valued model of ZFC . 

The rest of [16] is concerned with showing that certain other (p are not valid, and thus 
providing independence proofs for those (p from ZFC. What we are interested in, 
however, is not independence proofs, but distributive laws about complete Boolean 
algebras. Thus we look at technical properties of the first order theory of M^. 

If w G M define û e М^ by the recursion dû = {x\xeu} and û{x) = 1 for x G ÔM. 
From (40) we easily see that 

(44) [w G {5| = 1 iff* и e V , 

[M = y] = 1 iff" и = V , 

Thus we can regard M = {Û\UE M] as a substrncture of M^ which is isomorphic 
to M. From (40) and (42) we have u{x) S [^ ^ w] and from (42) and an easy in­
duction on sentence length we have 

(45) Ыи)} •lu = v}u ЫЩ . 

We claim 

(46) [(Эх 6 M) Ф(Х)1 = X..8U u{x) • [<p(x)l, 

[(VX 6 U) Cp{x)l = f ixes« " ( ^ ) - h>{x)\ • 

By De Morgan's laws it suffices to prove the first of these equalities. Y^^ebu "(^) ' 
• 1Ф)\ g E«5„ [x e «] • [<p(x)| g Y.Ä^ 6 м| • 1ф)\ = I . Y^yebub = J'l • <y) • 
' [ф(^)1 = Zyes« ̂ {y)' [ф(з̂ )1 by (45). Since the third term in this chain is [(3x G и) • 
• <p(x)], we are done. A AQ sentence of our object language is one built up from the 
(finitary) propositional connectives and the restricted quantifiers (3x e y), (ix e u), 
(Vx G y), (Vx G и). It follows from (44) and (46) that if ф is a AQ-sentence all of whose 
constants belong to M (which we identify with M) then 

(47) {(pj =t i iff- <p is true in M . 
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In classical set theory an ordinal is defined as a transitive connected set (cf. [6]). 
This definition can be cast as a Ao-sentence ord (w). Let £, range over ordinals (in Af). 
Then (46) implies 

(48) [ord(e)l = l . 

We prove by induction that 

(49) ueM^ imphes that [^ G w] = 0 . 

For otherwise [^ e w] = X!X6Ô«K ^ ^1 ' " W ^ ^ implies [^ = x] > 0 for some 
X G ÔW. But xe M^ for some rj < ^ and [// G ^] = 1 by (44). Then [ | = x] = 
= [?y G ^1 • [<̂  = x] ^ [^ e ^] by (42) and the last term of this chain is 0 by in­
duction hypothesis. Using (49) we prove 

(50) [o rd (u ) | = X ^ « = | | | . 

From (44) and (48) we have [м = | ] ^ [u = ^] • [ord (?)] g [ord (u) | hence 
Y,il^ = ei g [ord (M)]. Now [ord (u)] ^ [u 6 Д + [M = ei + [? 6 M| and use 
(49) to choose i so large that [ | б м | = 0. Then [ord (и)] ^ 'Zièib^ = '/I ^ 
й E [ M = ei by (40) and (44). (50) easily gives [(Эх) ord (x) л q>{x)f^ ИМШ-
We can express the fact an ordinal is finite by a Aß-sentence fin ord (w). Thus 
[fin ord (Я)| = 1 for each ne со and [fin ord (<w)] = 0. Thus we have 

(51) [a, = ô j = 1 . 

It is to be understood that the first ш in (51) is notational, and the whole expression 
CO = CO merely says that со is the first infinite ordinal. Then (46) gives [(3x G œ) cp{x)J = 

= 1„еЛ<Р(Я)]. 
В satisfies the (со, X)-DL (distributive law) if for every function Ь : со x Я -> В 

we have 

(52j 1 ln<a>2ja<A^^«a ~ Z^geX^ [ [п<со1^пд(п) ' 

Now assume that В is an (со, co)-DL complete Boolean algebra. We claim 

(53) [й-^ = (a,«)~| = 1 . 

If/еш"" then [ / : Co-.«] = 1 by (47). Hence [(у/б(ю™)~)/бс5™] = П/еш»[/е«"1 = 1 
by (46). Conversely, if / e M* then {f : & ^ Щ ^ [(Vx e ш) (Зу e c5)/(x) = j ' ] = 
= П . . » Е . . Л / ( ^ ) = y} = И^е^^ШЛА^) = {д{х))~1 Without difficulty l{g(x))~ = 
= 0 ~ ( x ) ] = l , s o [ / : ô - . u i | ^ I , , „ „ n x e 4 / ( x ) = ^ ~ ( x ) ] ^ E . e « 4 / = ^ ] ^ [ / e ( a > T l -
This completes our proof of (53). It is well known (cf. [19]) that an (со, co)-DL Boolean 
algebra is (со, 2)-DL, and if complete, is (со, Q)-DL. From these facts we obtain 

(54) [2^ = (2 - ) - ] = 1 , 

(55) IQ" = {Q-yj = 1 , 
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in exactly the same way as we obtained (53). An ordinal ^ is countable if there is 
a func t ion / mapping со onto ^ (in symbols / : со->-> (̂ ). When this happens, 
[ / : CO ->-> ^1 = 1 by (47). Thus if ^ is countable then [^ is countable] = 1. 
Since Q is uncountable in M, range (/) #= Q for any f : a> -^ Q, and hence [range 
(/) = Й] = 0. Thus Ще^) range ( /) = Щ = [(V/e {Q^Y) range (/) = Щ = 
= J^y-gßo.[range (/) = Щ = 0. We have shown that [Q is countable] = 0 and thus 

(56) lQ = Ql = I 

where as in (51) ß = Q asserts that U is the first uncountable ordinal. This concludes 
our review of Boolean valued model theory. We return to the notational conventions 
that were introduced in the last section. 

We shall examine a construction due to Shoenfield (cf. [18]) which is used for showing 
that l\ predicates are absolute with respect to constructible sets. Let R be the real 
numbers and let D : co'^''' -^ the power set of R. Consider the coanalytic set S = 
= П/U«^/!«- ^ denotes real numbers. We partially order co"̂ ^ by м -< г; if i; is a proper 
initial segment of и and then define a set JŜ  ç со ̂ '̂  by 

(57) и E E' iff (Vi;) {u < v-^ x ф D,) . 

It easily follows that 

(58) X e S iff E"^ is well founded under •< . 

Now £^ is well founded if and only if there is an order preserving map taking E"^ 
into Q. We shall try to build such a map by finite approximations. Each и e a>^^ 
can be coded by an integer #(i/) e со. We do this in such a way that u < f impHes 
#(î^) < #(w). Moreover, we identify и with #(w). Let 5 range over Q^^, g range 
over O^, and define a set Df Ç î  by 

(59) X E Д* iff (Vw. v) {u<v A s{u) ^ s{v) •^ифЕ''). 

It follows from (58) that x G 5 iff" (3^) (Vw) x e D*|„. Thus we have shown that 

(60) n/Ui) / i „ == U A ^ * i -

Now we Booleanize the whole argument. Let В be an (œ, co)-DL complete Boolean 
algebra and let d : co^"^-> B. Choose, x, D E M^ such that [x is a real] = 1, 
[(Vw G cô *̂ ) Z)„ is a set of reals] = 1, and [x E В^} = 4 for all uEœ^'', Now 
{x E n / U i ) / i n ] = l\flndnn by (51) and (52), and {x G U,n«/>*|J = 1 Л Л * | « Ьу 
(51) and (55) where we have set J* = [x G D * ] . NOW (60) is a theorem of set theory 
in which we have used the fact that every countable well founded relation can be mapped 
into Q in an order preserving way. By (56) we give a Boolean value of 1 to (60). Thus 

(61) ПУЕЛ|-. = 1ЛЛ*1-.-
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It only remains to evaluate the function J*. Let e„ = [i7 e E^'J. It follows from (57), 
(59) that 

(62) e^ =Y[{-d^\u<v}, 

dt = Ylh^u\mu<vAs{u)^s{v)}. 

We say that an S-algebra is an SS-algebra if it satisfies (6l) with J* defined as in 
(62). In our previous notation we would write (61) in the form j / * J = ХЛп'^*!?!-
Thus we have shown 

Lemma 3. An (œ, соувь complete Boolean algebra is an SS-algebra. 

There are probably more direct ways to prove this lemma. We have chosen the 
Boolean valued approach because it gives much insight into what is going on and 
provides an intuitive way to study other distributive laws. Let В be an S-algebra. 
G ^ В freely SS-generates В if any map from G into any SS-algebra B' can be 
extended to a unique S-homomorphism from В into B'. We prove, just as in Theorem 
1, that there exist free SS-algebras. P, the set of sentences of our formal language is 
the same as in Section 2. Our SS-axioms and SS-rules of inference are the same as 
those of SR-logic except (12) and (16) are replaced by (63) and (64) below. Let 
/i : o)^"^ -> P. Define v„ = A{^l^v \u ^ v} and //* = A{ '^ v„ | (3v) w •< У Д s(u) ^ 

(63) Ап1^ф -^ ^* /^ . 

(64) {A./^*i. -^cp\ge f2-} 

The Lindenbaum algebra of SS-logic will be called A'^. Then we claim 

Theorem 3. A'^ is an SS-algebra which is freely SS-generated by x of its elments. 

We do not prove this result (which is done in exactly the same way as Theorem l). 
The method is quite general and will work for any reasonable kind of algebra. 
A little more care is necessary for completeness. SS-consistency property is defined 
in the same way as consistency property except that (33) is replaced by (65) 

(65) if ja/*ju G с then с u {Anl4\n] ^ ̂  for some g . 

We then prove a lemma for SS-consistency properties which is exactly like Lemma 1. 
We must note that in proving Lemma 1 we used the fact that the algebra {0, 1} is an 
SR-algebra. In the present context we must know that {0, 1} is an SS-algebra. But 
this is clear because {0, 1} is a complete field of sets and hence is (CD, a))-DL. Lemma 3 
finishes the job. We end with 
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Theorem 4. Л^ is isomorphic to B^. 

A set F Ç (o^^ is called/i/// if (V/) ( 3 n ) / \ПЕ F. Let F range over full sets and let 
D : co^"^ -^ the power set of R, We claim that 

(66) UfOnOfin = OFUU^FDU . 

Assume that x belongs to the left hand side of (66). Then there is an / such that 
X e Df^n for all w. Let F be full. Then/1 и e F for some n, i.e., x e (Juep^u- Conversely, 
assume that x does not belong to the left hand side of (66). Then there is no / such 
that X 6 Df^„ for all n. Let FQ = {и\хф D^}. It follows that FQ is full and x ф UueFo^u^ 
so we are done. For the moment let Г be the power set of co^" .̂ Since co"̂ '̂  is essentially 
CO, via our coding # , (51), and (54) give 

(67) | Т = Г | = 1 . 

It then follows from (51) and (53) that 

(68) [F is full] = 1 iff F is full, 

where for (67) and (68) we assume that В is an (œ, co)-DL complete Boolean algebra. 
Let deoj^^ -^ В and let x, D be defined as in the proof of Lemma 3 (just after (60)). 
We have already shown that \x e U/fln^/i«] = Е/П«^/!«- From (67) and (68) 
we get \x G С\р\)ие¥^Л ^ TlrTjueF^^w Finally, (66) gets Boolean value 1 because it 
is a theorem of set theory. Thus 

(69 ) ЬШлп = r i fZ^eF^» • 

We say that an S-algebra is an SE-algebra if it satisfies (69). From the previous 
argument 

Lemma 4. An (со, œ)-DL complete Boolean algebra is an SE-algebra. 

Our motivation for SE-algebras is from is from [2] where we obtained a complete­
ness theorem for SE-logic. Define free SE-algebra canonically and prove one exists 
via SE-logic. This logic is the same as SR-logic except that we replace (12) and (16) by 

(70) ^1Л -^ VueFß^ . 

/у^Ч . {<P -^ VueFf^u I F is fu l l } 

(p -> J^fi 

Let A'^ be the Lindenbaum algebra of SE-logic. We then prove exactly as before 

Theorems. A'^ is an SE-algebra which is freely SE-generated by к of its elements. 

Theorem 6. A'l^ is isomorphic to B^. 
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4. SC-ALGEBRAS 

By now it is clear that the Boolean methods of the last section give a heuristic 
way to obtain S-representable S-algebras. We invite the reader to try his own algebra 
using his own favorite distributive axiomatization. Up to now our distributive laws 
have been very powerful. We now turn to a much less direct situation. Let j : со x 
X CO -)• o) be a one-one onto mapping given by j(x, y) = i(x + y) (x + у + l) + x. 
Its first, second inverse /c, / respectively are defined by j(/c(x), /(x)) = x. If w, Î; e ш*̂ '" 
are of the same length n define j{u, t;) = w to be that sequence of length n such that 
j{ui, Vi) = Wi for i < n. к and / are extended to co^^ in a natural way. If/, g e со'" 
define ; ( / , g) = h to be that function h such that j ( /(x) , g{x)) = h{x) for x < ш. 
к and / are then extended to со"" in a natural way, e.g., (kf) (x) = k{fx). Finally 
define ŵ ^̂  = Àyuj^^^yy for и e со^'" and/^^^ = Xyfj{x, y) f o r / e ш^. 

Now let В be an S-algebra and let b :{œ^'^) x (œ^"")-^ B, В is closed under the j / ^ 
operator which is defined by s^^b = Е / П « Е Л т ^ ( / 1 "̂  ö̂  | ^^)' With b we associate 
b : œ^"" -^ Б as follows. If м e co^"" has length x, 

(72) b, = b{k{u) I /c(x), /(M)<^"^ I /(x)). 

An S-algebra is an SC-algebra if it satisfies s/^b = s^b for every b :{œ^'^) x 
X {(û^"^) -^ B. These algebra were introduced by Campbell (cf. [ l]) who hoped 

that this condition (which he called the sé^ — se law) would be necessary and 
sufficient for S-representability. An error in Campbell's argument was discovered 
by RICHARD PLATEK (unpublished) which in turn casts doubt on one of the main 
results of [14]; namely that a weakly distributive free S-algebra satisfies the weak 
zero condition. Our result is more modest. We will prove that a complete SC-algebra 
is S-representable. We start with the following lemma from [1] (whose proof was 
not quite correct, which we hope is correct here). 

Lemma 5. / / В is an SC-algebra then В satisfies the (со, со)-DL. 

Proof. Let a : CO x со -^ B. if и e co^"" let lh(u) be the length of u. Now define 

b,,„ = a{lh{u), v{lh{u))) if lh{u) < I h{v), 

b„^, = 1 if lh{u) ^ lh{v). 

N o w Ylmbf\n,g\m =^ng(n) ^ n d ЬСПСС 

= n . I . - . . . ^b = Т^гШлп = IfUMKf I n) I k{n), i(f I пГ^ I /(.)) = 
- IfUAKn). Kf I пГ^^ (kn)) = j:fUn<nj^^\n)\ = Е,П.-./(ю. 

The (со, a))-DL follows. qed. 
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Lemma 6. (cf. [ l ]) . / / В is a complete S-algebra satisfying the (со, œ)-DL then В 
is an SC-algebra. 

Proof. Any (to, u))-DL complete Boolean algebra satisfies the (ш, Û)'")-DL (cf. 
[19]). Let b : (ш''''') x (co^'") -^ В. Then 

1:хПп1ЛЛ1\п,9\т) = 

= 1 / Е Л Л « . Ь ( / 1 n, g^"^ I m) = Y.f\{nT\mb{Kf) I "> K/)^"' I ̂ ) = 

= Е/П«Н^(/) I Knl KfT' IK«)) = ЪПЛК! I «) |fc(n)- '(/1 ^T' Kn)) = ^b~-
qed. 

Thus we see that a complete Boolean algebra is an SC-algebra if and only if it 
satisfies the (ш, co)-DL. We now continue with some ideas of Rieger (cf. [14]). Let 
a : œ^"^ -^ B. Recall our notions al and a^" from (l) and (2) and then define 

(73) а, = а-ПК-«Г'). 
For the following lemmas we assume Б is a complete (ш, co)-DL Boolean algebra. 

Lemma 7. Г|ПО^/|„ ^ ^}\mfor all m, a. 

Proof. By induction on a. Obvious for a = 0 and if true for a then Пп^/!» = 
^ ^}\m ' «/i(m+i) й «Яш • Е«^слт)лп = «/fm aud if П«^/|„ й ^ И for all a < limit Я 
then П«ау|„ ^ Па<я«/|т = «/Im- Qßd. 

Lemma 8. j / a ^ Па«''-

Proof. П««/|и = «/|o = «''• Hence c /̂a ^ a"̂  for all a and s^a ^ Па«""- ^^^* 

Lemma 9. If a ^ ß then a^ g a^. 

Proof. By induction on ß. Obvious for ^ = a and if true for ß then «f/^ = 
= af • Y^n^uAti ^ «u ^ ««• If true for all ß < limit Я then a^ = Ylß<Ä^t ^ «м- Q^d. 

Lemma 10. ^^«^ S ^^(^^ 

Proof. In Lemmas (7) —(9) we have not used the (со, a>)-DL. It will be used here, 
«a = «^ • П К - С ) = П»«" • К - й Г ' ) = П«Е««^ • {< - ««л»)- Now let g 
range over functions mapping ш^'^ into a> and use (со, co)-DL to get a^ — Y^XSj^^ ' 
• {al -> «^л5(1/))- Fix 0̂  and let x = [ĵ a^^ • {al -> ««л^(и))- Then x й a'' = a\. Assume 
that X ^ al. Since we also have x ^ a^ -> О^Д^(„) we get x ^ cil^g^^y Define a func­
tion / : CO -^ CO by the recursion f{n) = g{f | n). Then x ^ П««/|"- ^У Lemma 9 
we have x ^ 11««/1« ^^ -̂  = '^«- Now summing on g gives a^ ^ j / a , and hence 
Y A й sea. qed. 

We have shown that ^«^^ ^ j^/a ^ Па̂ "̂̂  (remember that a ranges over Q). 
Rieger's weak zero condition {WZC) asserts that if b : Q x œ ^ В such that 
Kn 'bßn = 0 for a < ß then ЦХЛП = 0. 
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Lemma П. / / В satisfies the WZC then UXu« - <^') = 0. 

Proof. IÎ oi < ß then {al - < ' '^ ) • (af - ai''') ^ af - < / ' = 0 because 
«^ ^ al'^' by Lemma 9. Now use the WZC. qed. 

Lemma 12. (Rieger [14]). If В satisfies the WZC then Y^a^a = ^a = П« '̂'-

Proof. We already know J^a^a = ^^^ = Ца^""-

by Lemma IL Hence ^„^a = П«'^'' ~ '^^' ^^^* 

Lemma 13. yi complete {со, œyDL Boolean algebra satisfies the WZC. 

Proof. Let b : Q X œ -^ В satisfy b̂ „ - bß^ = 0 for a < ß (a and ß both range 
over Q). Define f e M^ such that [(a, Я ) е / ] = Ь„„. Then [ / is a function] = 
= ПЛЛ</< - [(«~. «) e / A iß, Я) e / ] = П Л Л < / . - Кп • Ь,„ = ]. By (51) 
and (56) [ / is a function -» (Зое < Q) {\fn < c5) a ф / ( n ) | = L Thus 1 = ХаП« ~ 
— b^„. Then by De Morgan's laws ПаЕ«^а« "̂  ^- ^^^• 

From Lemma 5, 12, and 13 we conclude that if Б is a complete SC-algebra then В 
is an SR-algebra and hence by Theorem 2 is an S-homomorphic image of an S-field 
of sets. In fact if В is S-generated by x of its elements then В is an S-homomorphic 
image of B^ (cf. Theorem 2). We prefer however to give a proof that is independent 
of Theorem 2. An S-algebra В is an SSR-algebra if it satisfies 

(74) YA = ̂ a = их 
for every a : œ^"^ -^ B. 

Lemma 14. / / Ä, В are SSR-algebras and H : A -^ В is a a-homomorphism 
then H is an S-homomorphism. 

Proof. Let a : œ^"^ -> A and let b = XuH{a^. We must show that H{s^a) = ^b. 
By induction on a we prove that H{a'^) = b"" and Я(а^) = b^. This readily follows 
from the fact that Я is a cr-homomorphism. Then b^ = h(a^ S h{j^a) й h^a"") = b"" 
and YJJ^OI. = -^^ ~ П«^"" because A and В are both SSR-algebras. Thus h{s^a) = 
= J3fb. qed. 

Theorem 7. / / A is a complete SC-algebra then A is an S-homomorphic image 
of an S-field of sets. 
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Proof. Let X be the Stone space of A. For any set a ^ Z let a" be the closure of a 
and a^ the interior of a. By the Stone representation theorem A is isomorphic to the 
field of clopen subsets of A. We therefore identify A with this field. Since Л is a com­
plete Boolean algebra we know from [4] that X is a complete Boolean space (here 
complete means that the closure of an open set is open). If a, Ь ^ X let a Л Ь be 
the symmetric diff*erence of a and b, and write a ^ b if a Ab is meager (of Category 
I), a has the Baire property if a ^ b for some open b. Let В be the S-field of subsets 
of X S-generated by A, Since having the Baire property is preserved under the j / 
operation (cf. [9]) it is not hard to show that every element of В has the Baire proper­
ty. If a ^ X is open then a ^ a~ by general considerations and a" = a~^ is clopen 
by completeness. Moreover we easily show that if a, b are both clopen and a ^ b 
then a = b. Since ^ is an equivalence relation we can combine these facts and prove 
that for each b e В there is a unique a e A such that a ^ b. We then set Я(Ь) = a. 
Then H maps В onto A. We claim that Я is a a-homomorphism. Since a Ab = 
= ( —a) Л ( —Ь) we easily show that H(—b) = —H{b). If {b„ | n < со} is a sequence 
of element of В then H{\J„b„) A \JnH{b„) ^ (JnK A H{b„). Since the latter set is 
meager we have H{[J„b„) - Un^(b„) - (U«^(b„))" = J]nH{K) where the ^ is 
performed in A. Since clopen sets in the ^ relation are equal we get H(\J„b„) = 
= Yjn^i^n)' We already know that A is an SSR-algebra, and В is one also because В 
is an S-field of sets. Then by.Lemma 14 H is an S-homomorphism. qed. 

Since freeness and complete Boolean algebras are somewhat incompatible we shall 
not attempt to refine Theorem 7. We have shown in this paper that SR-algebras, 
SS-algebras, SE-algebras, and complete SC-algebras are all S-representable. Moreover 
we have given a general method in Section 3 for intuiting sufficient conditions for 
S-representability. It is still an open question as to whether an arbitrary SC-algebra 
is S-represent^ble. 
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