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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha 

ON THE LATTICES OF KERNELS OF ISOTONIC 
MAPPINGS IP) 

TEG STURM, Praha 

(Received May 28, 1975) 

The present paper is a continuation of the papers [5 — 8]; it is particulary in a direct 
connection to the paper [5]. Given a mapping f:X-^ Y; then the equivalence 
/ ~ y is called the kernel of/. If Л is a set with a partial ordering u, then F(A; U) 
denotes the set of all kernels of isotonic mappings, the domains of v^hich are u-
ordered subsets in A. G{A; u) is the set of all kernels of isotonic mappings with м-
ordered domain A. In the first part we investigate interrelations between the complete 
lattices {F[A; ti); e ) and {G[A; u); ^ ) . Particulary, we show that {F[A; W); Я) is 
determined by its principal filter G(A; u) (sections 8 and 10). Furthermore, the 
relationship between posets (A; u) and (B; v), which is logically equivalent to the 
isomorphism of the lattices {F(A; U); Ç ) and {F(B; V); Ç ) is characterized (section 
22). In the second part compact elements in {G(A; w); ç ) and in {F(B; U); ^ ) are 
characterized (sections 28 and 32), It follows from this characterization that the 
lattices {G{A; u); ^ ) and {F(A; U); Ç ) are algebraic (sections 30 and 33). Let ce 
e G(A; U), let >, a} be the principal ideal in {G(A; u); я) determined by the element a 
and let A^ be the set of all dual atoms in (>, cr>; ^ ) . In the third part a certain 
Galois' correspondence between (), p}; ^) and (exp Ay, ^ ) is investigated (sections 
41 and 44) and particulary, all elements of >, cr> are proved to be closed in this 
correspondence. Finally, for Q,a e G(A; U), Q Я a the interval < ,̂ a}, ordered by 
inclusion, is proved to be reducible into a complete direct product of some complete 
lattices (0(Хь Ui); я), iel (section 51). 

I am sincerely grateful to my teacher. Professor MIROSLAV NOVOTNY, for his 
numerous advices, which have profoundly influenced my work, as well as for his 
friendly encouragement. 

*) This paper has originated at the seminar Mathematical Foundations of Quantum Theories, 
directed by Professor JIRI FABERA. 
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INTRODUCTORY REMARKS. ON CERTAIN RELATIONS 

BETWEEN THE LATTICES {F(A; u); Ç ) , (G(A; u); ç ) 

AND THE POSET (A; u) 

1. A short account of symbols and terminology. This paper is a direct continuation 
of the paper [5], from which we take the symbols and terminology. In [6], [7] and 
[8], some modifications of this terminology have been made. We shall recall these 
modifications as well as some frequent symbols (see [5], section l). 

(x, y) denotes an ordered pair of elements x, y. If Z is a set and т is a relation 
( = binary relation), then {X, т) denotes the relational structure with X as the under
lying set, on which the considered relation is т n (X x X). The standard notation 
for the system of all subsets of X is exp X.The composition of relations Q, a is denoted 
by Qo. For any set X we put X^ =Df X x Z (careful!, this symbol has nothing to do 
with â  =Df aa for a relation a). Let us define 

E{X) =^,{G\aeD{Xl id ,̂ ç d} , 

^(X) =Df {u\u <^X\ и сл u~^ = id;̂ :, u^- Я u} ; 

the elements of D[X) are called equivalences in X, the elements of E(X) are called 
equivalences on X, and the elements of ^(X) are called partial orderings on X. 
If X Ф 0 and Q e E(X), then Xjg is the quotient set of X factorized by Q; for a e D(X) 
and СГ Ф 0 put Xja =Df dom a ja; let us define X/0 = ĵ f {0}. If X is an arbitrary set 
and T is an arbitrary equivalence, then we define Х/т =Df Х/(т n X^) (it is т n X^ G 
eD{X)). 

For и e ^(X) and a e D{X) let us define 

00 

W<T = D f и Cr(l/(T)" , ö-„ =Df Ŵ  П ( w j " ^ ; 
n = 0 

for y, ZeXja put {Y,Z)e Ux,a iff either Г = 2 = : 0 о г У ф 0 Ф 2 and, for every 
yeY and zeZ, (y, z) G U„; for t/, V^ exp X put (C/, F) G li iff' either (7 = F = 0 
or there exist y EU, ze F with (y, z)eu; finally, we define 

ux/.=m\j(ûn{XJayy, 

(According to [5], section 17 it is ŵ /̂  == Ux/a, and therefore we furthere use only 
symbol Ux/a-) We put 

F(X; w) -i,f {̂  I ^ G D(X), ^, ^ ^}, G(X; w) =Df i^(^; u) n £(X). 
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The notation for intervals in a poset (X; u) can be found in [7], section 1. E.g. given 
a,beX 

<a, by =£>f {x\xeX, (a, x) e w, (x, b)eu} , 

<a, b< =Df {̂  [ ^ ^ ^ ' (^' ^) ^ ^' j(̂ » b)e и — idjf} , 

)? ^ ) =Df {л: I X e X, (x, A) e u} , 

and so on. For a, b e X in (X; u) we define 

[a, b] =Df <a, b> u <b, a> u [a, b} . 

If we want to stress that <a, b> or [a, b] are considered in (X; u), we write: (,a,by^^x;u)^ 
[a, Ь](х;м) and so on. The relation of covering in {X\ u) is denoted by —<(Х;«) ^r, 
shorter, by —<; thus x —<(x;u) У iff card <x, уУ(^х;и) = 2. For 7 e exp X in a poset 
(X; w) we define 

^«(^) =Df U{[^, y\x;u) I X, у G 7} ; 

/с„(У) is the w-convex cover of the subset F( inX) . An equivalence cr in X is called 
w-convex (in X) if and only if all Ye Xjo are м-convex subsets in dom a. The symbol 
K{X\ u) denotes the set of all м-convex equivalences in X and further we define 
K{X; u) =Df E{X) n K{X; u). For a e D{X) we define 

^(x;u) =Df n { ^ I ^ e ЩХ; и), (т ^ Q] 

(according to [7], section 5, K(X; u) is an algebraic system of closed elements in 
{E{A); Ç^)). According to [5], section 36, F{X; u) ^ K(X; u), and according to [5], 
section 41, for a e F[X; u) we have 

^(x;«) = (idx u U{{K{Y)y I Ye Xja}) e G{X; u) , 

and for Y,Ze Xja, У Ф Z we have k^{Y) n k^{Z) = 0. If {X; u) is fixed, then instead 
of ^ix;u) we simply write symbol д. 

In the whole paper, yl is a given set and м is a given ordering on A. 
The most frequented proof technique used in [5 — 8] (and also the present paper) 

is contained in the following statement, which characterizes elements of F(Ä; и). 

2. Lemma. Let о e D{À). Then the following statements are equivalent: 

(i) cjeF{A',u). 
(ii) If n'^1 is a natural number, if XQ^X^, ....X^eAJo and if for all i = 

= 0 , . . . , n — 1 the relations {Xi,Xi^^)eù and (X„, XQ) e li hold, then XQ = 
= Xi = . . . = X „ . 
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(ii') The relational structure {Aja; t/^/^) is a poset. 
(iii) There exist a poset (Б; v) and an isotonic mapping f : (dom a; u) ^ {B\ v) *) 

such that о = ker / . 

Proof. See [5], section 17 and 19 (the equivalence ( i ) o ( i i ) ; the same concerns 
the equivalence (i) о (ii'); if we consider [5], sections 16) and [5] sections 45 and 47 
(equivalence (i) о (iii)). 

3. Remark. In [5 — 8] we have consequently supposed, that the set A is non-void. 
This assumption is unnecessary in [5] as well as in the present paper, because for 
Л = 0 the results in [5] are mostly trivial, or evidently false (e.g., theorem 52 in [5]; 
in this case, the trouble is, that for X ф 0 and 7 = 0 there does exists no mapping 
/ï : X -> y). The necessary revision of the results in case that Л = 0 is left to 
the reader. It is very easy, anyway, when we consider the following statements. (The 
section number, where symbols in [5] are introduced, is sometimes written in brackets 
( ) . See also section 1 above.) 

Let Л = 0, w = 0, ^ = 0 and let Ö- be a relation. Then: 

e x p ^ = {0}; D{A) = {0}; E{Ä) = {0}; ^{Ä) = {0}; AJQ = {0} (Aj^); 

id^ = 0; Qa = ag = 0; dom Q = cod g = 0 (1; cod a =Df dom (т~^); Q^ = 0 (1); 
for n = 1,2,... it is ^" = 0(1); e~' =0(1); 

I/, = 0 ; gu = 0l й = {(0, 0)} ; w /̂, = {(0, 0)} ; 

F{A; u) = G{A; u) = {0}; -<(^;„) = 0; for X ^ A we have ЦХ) = 0; for т e D(A) 
we have f(^;„) = 0; K{A; u) = K{A; u) = {0}; 

if / : Л -> B, then / = 0 and k e r / = 0; if f : В-> A then В = 0 and / = 0; if 
f :{A;u) / {B; v) or f : (A; u) \ {B; v) then f = 0 ("44, where we define / : {A; u) \ 
\ (Б; u) iff / : {A; u) /" (B\ v~^^ — an antitonic mapping^; for nat g'.A-^ Ajg we 
have n a t ^ = 0 ("44^; if also a = 0 the ajg = {(0,0)} ("54;, ( Л Щ а / ^ ) = 
= {0}/{(0, 0)} = {{0}}, and for nat {ajg) : Ajg -> ( Л Щ а / ^ ) we have nat (tx/^) = 
= №«)}• 

In the present paper we assume in all proofs that the set A is non-void, unless 
exphcitly stated otherwise; for A = 0 the statements are trivial. 

4. Remark. In section 5 — 10 some interrelations between the systems F(A;u) 
and G(A; U) are studied. If JP(^ ; U) is given, then we clearly know the system G{A; U) 
because G[A; u) = <id^, <(F(^;M);£)- It is rather interesting that also the converse 
holds. (See section 8). Nevertheless, the complete lattices {G(A; U); Ç ) have a number 
of properties, which do not take place in the complete lattices {F(A; U); Я) (e.g. see 
[7], section 24/a). On the other hand, the proof of theorem 22 is substantially based 
on some particular properties of the system F(A; u). 

*) For the notation [51, section 44 (page 140); recall that for / : X-> Y we define the equi
valence k e r / b y k e r / = D f / ~ VO-e. for x, y e X we have (x, y) e kerfiïïf(x) = /(7))-
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5. Lemma. Let a be an equivalence in A. Then 

^Ala = {U n ( d o m (7)^)doma/a • 

Proof. Assume at first that 0" ф 0. Put В =Df dom a and v = и n B^. According 
to the convention mentioned in section 1 (or in [5], section 4/a) we have В ja = Л/Ö". 
Let X,YG Aja and {X, Y)eù, Then there exist elements xeX and ye У for which 
(x, y) £ u. Also X, 7 Ç Б and therefore (x, y)eu r\ B^ = v. If, conversely, Z^, Yi e 
бБ/(т and (Xj, У1)е|), then there exist elements x̂  eX^ and y^eY^, for which 
(̂ 1» Ji) e t;. It is V = и n J5̂ , and therefore also (x^, yj) e u. Then we get relation 
(Zj, y j e i i . Considering Л/сг = Bja we finally obtain 

(1) Û n {AJaY = V n (Б/а)" . 

The quasiordering и /̂̂  is the transitive closure of the relation ù n {AJaY on (Л/с) 
(see section 1) and r̂ /̂  is the transitive closure of v n {BJaY on Bja. Thus from (1) 
and from the fact that AJa = Bja we get the proof of our proposition in case that 
(7 Ф 0. 

If Ö- = 0, then dom (7 = 0, AJa = {0} = dom aja, û n {AJcrY = {(0, 0)} and 
hence 

00 

(u n (dom aYom.i. = {un f\^^ = {(0, 0)} 

(see section 3). Hence, our proposition holds for a = 0 too. 

6. Theorem. Let X ^ A. Then 

G{X; u) = {(jnX^\ae G{A; U)} . 

Proof. Let X Ф 0 (for Z = 0 is the theorem trivial — see section 3). According 
to our convention from section 1 we have (X;u) = {X;u n X^) and и n X^ e ^{X), 
so that the symbol G{X\ u) makes sense. 

Let (7 G G(X; U). Then dom cr = X. By lemma 5 we have (u n Z^)^/^ = w /̂̂ , 
and according to section 2 the relation (w n X^)x/a is ад ordering on Xja. Since 
Xja = Л/(7, {Aja, w /̂̂ ) is a poset. Therefore, via section 2, we see that a e F{A; U). 
According to [5], section 41, ä( .̂„) G G{A; и), and, for x, у eX, (x, у)^(т holds if 
and only if (x, y) e cr^^.^y Hence a = ^(A;U) «̂  -̂ ^ ^^^ ^(A;U) ^ ^{^l ") and we get 
inclusion 

G(X;w) я {anX'\aGG{A;u)} . 

Let us derive the converse inclusion. Let a e G{A; U). Then dom a = A and so 
a n X^ is an equivalence on X. We denote Q =Df(7nX^ and i; =Df w n X^. Let 
n ^ 1 be a natural number, let XQ, ..., X„ G Z / ^ and let (Zj, Z^+i) G V, (Z„, ZQ) G Î; 
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for all i = о , . . . , n — 1. For YeXJQ there exists exactly one element Ye Aja with 
У Ç F; and for all Z e XJQ the inclusion Z ^Y implies Y ^ Z. From the definition 
V —j^^u r\X^ we get relations (Xi,X£+i)Gw, (X„,Xo)ew; then aeG{A\xi) and 
hence, via section 2, XQ = .. . = X„. So we get that also XQ = -.. = X„. Therefore, 
it follows from lemma 2 that ^ G G(X\ V) = G{X; u). Thus we see that the con
verse inclusion holds: 

{апХ^\(те G{A; u)} ç G{X; u). 

7. Theorem. We have 

F{A; u) = \J{G{X; и)\ХяА}, 

and the union on the right side of the equality is disjoint.*) 

Proof. Let Q G F(A; U). Then, according to [5], section 41, Q^^,^) = Q^ G{A; U) 
and Q n (dom QY = g. From theorem 6 we get Q e G(dom Q; U) and hence F{A; U) Ç 
£ U { ^ ( ^ ; u)\X ^ A], because dom Q Я A. 

Let us derive the converse inclusion. Let Q G \J{G{X; U)\X ^ A}, Then there exist 
a subset Y ^ A, with g e G{Y; u), especially dom g = Y. From section 2 we know 
that the relation {u n У )̂у/̂  is an ordering on Yjg. It is clear that g e D{A), and 
therefore, according to section 5, we have (u n У^)^/^ = u^j^. Thus {Ajg, w /̂̂ ) is 
a poset and from section 2 we get that g e F{A; U) and the inclusion U { ^ ( ^ ; w) | Z ç= 
Я A} Я: F{A; и) is proved. 

We will show, finally, that the union \J{G{X; u)\X я A} is disjoint. lfX,Y^A 
and Z Ф У then for g e G{X; u) and a e G{Y; u) we get dom ^ = Z ф У = dom a. 
Therefore g =¥ G. 

8. Corollary. We have 

F{A; u) = {anX^\ae G{A; u), Z ç Л} , 

Proof. Direct from sections 6 and 7. 

9. Corollary. We have 

D{A) = 0{Е{Х) I Z Ç Л} . 

Proof. Direct from the section 7 if we consider that, by lemma 2, D{A) = F(A; id^), 
£(Z) = G{X; i d j for all Z Ç Л (see also [7], section 30) 

*) This means that for X^, X2 e exp A, X^ ^ X2 \VQ have GiX^; U) n 0(^2; u) = 0. 
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10. Corollary. Let u,v€ %{Ä). Then the following hold: 

a) F{Ä; и) ç F{A; v) iff G{A; и) ^ G(A; v). 
b) FIA; U) = F{A; v) iff С(А; и) = G{A; v). 

c) F{A; u) cz F{A] v) iff G{A\ U) С G{A; V). 

Proof, a) Let F{A; u) Ç F{A; V). Then, by [5] section 21, we have 

G{A; u) = {a\ae F{A; w), id_^ ^ a} ^ {a \ a e F{A; v), id^ Ç a} = G{A; v) . 

If G{A; u) Ç G(A; V) then — according to theorem 6 — for all X Ç: A, 

G{X; u) = {a пХ^\(ге G{A; u)} Я {a n X^ \ a e G{A; V)} = G{X; v) . 

Therefore, according to theorem 7, 

F{A; U) = {J{G{X; u)\X ^ A} ^ ö{G{X; v)\X ^ A} =^ F{A; v) . 

b) From (a) we get that, 

{F{A; u) = F{A; v)) о {F{A; U) Ç F(A; V) Я F{A; U)) О 

о {G{A; и) ç G{A\ v) ç G{A; и)) о {G{A; и) - G{A; V)) . 

c) This statement is a direct consequence of (a) and (b). 

11. Remark. We can see almost immediately, that from the existence of an isotone 
isomorphism of posets (A; u) and (B; v) there follows the existence of an isomorphism 
of the complete lattices (F(A;U); Ç ) and (F(B;V); Я); analogously for the complete 
lattices {G{A; U); Ç ) and {G{B; v); ç ) (see sections 19 and 20). In section 22 we investigate 
one of the converse questions: what is the relation between posets (A; u) and (Б; v) 
if the lattices (F(A; U); ^ ) and {F(B; V); Я) are isomorphic. There remains an open 
problem: 

Characterize the relation between posets (A; u) and (Б; v) which is equivalent 
to the fact that the lattices {G(A; U) Ç ) and {G{B; V); ^ ) are isomorphic. 

12. Lemma. Let (A; u) and [B; v) be posets and let cp : F{A\ U) -> F{B\ v) be an 
isomorphism from the complete lattice {F{A\ M); Ç ) onto the complete lattice 
{F(B; V); Ç ) . For every x e A we define 

(2) ^*{х) = уо^,ср{{хУ)^{уУ. 

Then (p* : A -^ В is a bijection. 
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Proof. Due to section 2 we have {x}^ e F(Ä; и) and {уУ e F(B; V) for all x e Л 
and у e B. An equivalence Q is an atom in {F{Ä; и); ^ ) if and only if there exist an 
element XEA with Q = {xY; analogously for {F(B; V) ^ ) . The mapping cp is an 
isomorphism from {F(A; W); ^ ) onto {F(B; V) Ç ) and hence both the (p-image of 
an atom in (F(Ä; и); ^) is an atom in (F(B; V); Ç ) and the cp — preimage of an atom 
in {F{B; V); Ç ) is an atom in (F(A; U); Я). Since moreover (p : F{A; U) -> F(B; V) 
is an injection, the proposition follows. 

13. Lemma. Let (A; u) and (B; v) be posets; let cp : F{^A\ u) -> F(B; V) be an 
isomorphism from the complete lattice {F(A; U); ^ ) onto the complete lattice 
{F{B; v); ç ) . Define 

(3) (x, y) e w{(p) Oßf (ф*(х), (p^{y)) e v . 

for all X, у E A. Then the mapping (̂ * : Л -> Б is an isotone isomorphism from 
the poset (A; w^cp)) onto [B; v). 

Proof. Due to section 12 we see that (p* : Л -> J5 is a bijection. The relational 
structure [B; V) is a poset and hence it follows directly from the definition (3) that 
(Л; w((py) is a poset, which is cp* — isotone isomorphic to (B; v). 

14. Lemma. Let (Л; u) and (B; v) be posets and let cp : ̂ (Л; и) -> F{B\ v) be an 
isomorphism from the complete lattice (^(Л; м); ç ) on̂ o the complete lattice 
{F{B; v); ç ) . Then 

ç{a) = {(9*(x), (p*{y)) I (x, y) E a} 

for all <T E F(A; U). In particular, 

(p{id^) = idß. 

Proof. Let us denote 

«AW = Df {(ф*W» <?>*W) I (^. y) e (T} 

for a E F(Л; u). Let x, у E A with x ф у. Applying lemma 2 we conclude that 0, 
{x}^, {уУ, {хУ u {УУ and {x, УУ are elements of F(A; U). The diagram of the poset 
(>, {x, уУУ(р(А;и);^)1 —) îs shown 1п fig. 1. a. Sincc (p : F{A; U) -^ F{B; V) is a lat
tice — isomorphism, we get from (2) (via section 12) that ^({x}^) = {ф*(х)}^ and 
<Р{{УУ) = {9*{У)У' therefore <p{{x, y}') = {cp*{x), (р*{у)У = ф{{х, уУ): The ele-
ment {x}^ u {УУ in {F(A; u) я) is covered both by {x, уУ and by all elements of 
the form {x}^ u {уУ u {z}^, where z E A — {x, y} (these equivalences are elements 
of F(A; U) according to section 2; the situation in {F(A; M); ç ) is shown on the 
diagram in figure Lb). 
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Moreover 
<р{{хГ^{уГ^{гУ)=^ср{ sup {{xY,{yY,{zy) = 

(F(A;u);^) 

= sup {<р{{хУ), <Р{{УП cpilzY)} = {cp*ix)Y u {<p*{y)Y u {cp*{z)Y , 
(FiBiv);^) 

because cp : F(A; u) -> F(B; V) is an isomorphism. Taking into account that cp is 
bijection we get (p{{x, уУ) == {(p*{x), (р'^{у)У, 

For Х,УЕА and x = у the equivality ^({x, уУ) = ф{{х, j}^) follows directly 
from (2). Thus for all x, у EAWQ have 

(4) {x, yY 6 FiA; u) , срЦх, yY) = Ф{{х, yY) • 

Fig. 1. b 
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Let (jeF{A;u). Then 

(5) a = \j{{x,yy\ix,y)e<T}= sup {{x, y}'\{x, y)e a} . 
( F ( ^ ; M ; Ç ) 

An equequivality analogous to (5) holds in the complete lattice {F{B; V); Ç ) . Since (p 
is an isomorphism from the complete lattice {F{A; U); Ç ) onto the complete lattice 
{F{B; v); ç ) , it follows from (4) and (5) that 

(p{(7) = (p{ sup {{x, УУ I {x, y) e a}) = sup {(p{{x, yf) \ (x, у)е(т} = 
iF{A;u);^) (F(ß;t;);E) 

= sup {{c^*(x), (p''{y)Y I (x, у)е(т} , 
{FiB;v);S) 

Since {(p*{x), (p*{y)Y 6 /^(^; v) for all (x, y) G a we get from the definition of 
supremum 

ф{а) = {{ср*(х),ср*{у))\{х,у)Еа}^ 

^ sup {{(p*(x), cp'^{y)Y I (x, j;) G a} = (^(a) . 
(F(ß;i;);E) 

Let us suppose, to the contrary, that (r, 5) e (р{(т); then {r, 5}^ Ç ф(о-). The mapping 
<j9* : Л -» Б is a bijection and therefore there exist x^, y^ e A, with r = <?>*(xi) and 
s = (p*{yi). As (p : F(^A; W) -> i^(B; r) is an isomorphism, we have 

(p-\{r,sY) = {x„y,Y ^ ^ 
(consider, that (p{{xi, УгУ) = {r, s}^ Ç (p(a) and that cp : F(y4; w) -> F ( B ; i;) is an 
isomorphism). So we get, that (xj, y^) e о and 

(r, s) = (ф*(х1), (p*(yi)) G {(ф*(х), ф*(>;)) I (x, y) G (7} = I/̂ ((T) 

and the converse inclusion is proved: 

ф((т) ç {(ç,*(x), 9,*(>')) I (x, y) 6 a} = ^{a) , 

and so the equality (p = ф holds. 
From (p = ij/ and from the fact that id^ G F ( ^ ; M) and <̂ * : Л -^ Б is a bijection 

there follows: 

Я>М = {(^*W. ^*W) I X G Л} = id^ . 

15. Corollary. Let (A; u) and (B; v) be posets and let cp : F(A; U) -> F{B; V) be 
an isomorphism from the complete lattice {F(A; u); я) onto the complete lattice 
{F{B; V); ^ ) . Then the partial mapping 

(p I G{A; u) : G{A; u) -> G{B; v) 

is an isomorphism from the complete lattice {G{A; U); Ç ) onto the complete lattice 
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Proof. Due to section 14 we get: (p{id^) = id^ and hence c~^(iaß) = id^. Further
more a e G{Ä; и) iff er e F[A; и) and id^ ^ a; the mapping (p : F{A; U) -^ F(B; v) 
is an isomorphism therefore (p(a) e F(B; V) and id^ = ç>(id )̂ ^ Ф(О"), i.e. (р{а) e 
G G[B; v). Thus we have cp | G(A; u) : G(A; u) -^ G[B; v). As cp : F[A; u) -> F(B; v) 
is a bijection, the mapping cp | G(A; U) is an injection. If ^ e G[B; V), then analogously 
(P~^{Q)G G(A;U) (also ф~^ is an isomorphism) and there exist an element a = 
= (p~\Q)eG{A;u), for which (p{a) = Q. SO cp | G(/1; M) : G ( ^ ; W)-> G(ß; i;) is 
a bijection. This concludes the proof because cp is a surjective isomorphism. 

16. Lemma. Let (A; u) and (Б; v) be posets and let cp : F(^A\ u) -> F{B\ V) be an 
isomorphism from the complete lattice {F[^A\ U); Ç ) onto the complete lattice 
{F{B; v); ç ) . Then 

ф*~^ = ф~^* * ) . 

Proof. Due to section 12 we get that ç}~^*:J5->^isa bijection and 

for all у еВ, i.e., following (2) (section 12) we get 

(p~^^{y) = X о ф*(х) = у . 

So (p~^^{y) = (p^~\y) for all уеВ. 

17. Corollary. Let (A; u) and (ß; f) be posets and let a mapping cp : F{A; U) -> 
~> F(ß; Î;) be an isomorphism from the complete lattice {F(A; U); Ç ) onto the 
complete lattice {F{B; f); Ç ) . Then 

<р-\а) = {{<р*-'{х),<р*-\у))\{х,у)еа} 
for all a e F(B; V). 

Proof. The mapping (p~^ : F{B; v) -> F(A; U) is an isomorphism from {F{B; V); ^) 
onto {F(A; U); S ) and the corollary follows directly from sections 14 and 16. 

18. Nbtation. Let X, Y be sets and let / : X -> У be a mapping. Let us define 

/2W =Df {{f{^)Jiy)) \{x, y) e a} for a^X^, 

This defines a mapping/2: expX^ -> exp Y^. We recall одсе more that for Z ^ X 
that /1 Z : Z ~> 7 denotes the partial mapping / | Z = / n (Z x У). 

*) Inverse mapping (p~^ : F(B;v)~^ F(A; u) is an isomorphism from (F(B;v);^:) onto 
(F(A; V); C ) . Therefore, formula (2), applied to the mapping (p~^, defines a bijection (ç)~^)* : B-^ 
-> A (see section 12). 
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19. Lemma. Let (A; и) and (В; v) be posets and let f : A -^ В be an isotonic 
isomorphism from {A; u) onto (B; v). Then 

Л I F{A; u) : F(A; U) -> F{B', v) 

is an isomorphism from the complete lattice {F(A; U); Ç ) onto the complete lattice 
№ ; t;); £ ) . 

Proof. Since/ : Л -> JB is an injection, thus for every equivalence cr in Л 

(6) MG) = [J{{f{X)Y\XeAla} 

is an equivalence in B. Since F(A; U) Ç D(A),f2 \ F[A; ii) is a mapping from F(A; u) 
into D{B). 

f : A -^ В is a.n isotonic isomorphism from (A; u) onto (J5; v) and so (X, Y)EÛ 
iff {f{X)J{Y))EV for Z , УеехрЛ. From this it follows that for a E D{A) and 
X, YE Aja the relation (Z, Y) e w /̂̂  holds if and only if ( / (Z) , / (y) ) E %//2(<T) holds. 
(See the definition of w /̂̂  in section 1 or [5], section 17; from (6) we get that 

Biaa)^{f{X)\XeAla}.) 

So for G E D[Ä), (Aja; Uj^j^ is a poset iff (^//2(0-); Vßjf^i^a)) is a poset. Thus, via section 
2, for (J G D{A) 

(7) ö rGF(^ ; i / ) ^ /2 ( t7 )eF(5 ; i ; ) . 

The mapping f : A -^ В is a bijection and, therefore, /2 : exp Л^ -^ exp Б^ is a 
bijection too. From (7) and from this fact it follows, that /2 | F(A; ii) is a bijection 
from F(A; U) onto F[B; v). It also follows from the bijectivity of / that /2 is an 
isomorphism from (exp A^; ç ) onto (exp B^; ç ) . Hence /2 | F(A; U) is an iso
morphism from the complete lattice {F(A; U); Ç ) onto the complete lattice 
{FiB;v);^). 

20. Corollary. Let (A; u) and {B; v) be posets and let f : A -^ В be an isotonic 
isomorphism from (Л; u) onto (Б; v). Then 

/2 I G{A; u) : G{A; u) -> G{B; V) 

is an isomorphism from the complete lattice {G(A; U); Ç ) onto the complete lattice 
{GiB;vy,^). 

Proof. It follows directly from lemma 19, because according to the definition of/2 
in section 18, for a bijection/ : A -^ Bit is/2(id^) = id^. 
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21. Lemma. Let (A; и) and (Б; v) be poset and let cp : F(A; u) -» F(B; V) be an 
isomorphism from the complete lattice (F{A;ii); ç ) onto the complete lattice 
{F{B; v); c ) . Then 

G{A;u) = G{A;w{(p))^). 

Proof. Section 15 implies that (jeG(A;u) iff (p{a) e G{B; v). According to 
sections 16 and 17 we get for ae G{A; u) that 

(8) {9-'%{СРИ) = {<Р*-%ЫСГ)) = 

= {(<р*-Ч4 9*-Ъ)) I (^. у) e <р{<у)} = <р'Ы<^)) = <^ • 

Via section 13, ф*"^ : В -^ Л is an isotonic isomorphism from {В\ v) onto {A; w{(p)). 
Therefore, due to section 20, we have for QEG{B\V): ((p*~ )̂2 (^)e G ( ^ ; w((p)). 
Considering the beginning of the present proof and the equivality (8) we see that 
G = (ф*~^)2 {(p{^)) e ^(^5 Цф)) for a G G(^; u). Thus the inclusion 0(Л; и) Ç 
ç G(y4; >у(ф)) is proved. 

Conversely, let a e G{A; w{(py). The mapping ф* : Л-> J5 is an isotonic iso
morphism from (A; w((̂ )) onto (B; v) (see section 13) and therefore, via section 20, 
(ф*)2 (a) e G(ß; ü). Then, according to section 15, (p~^((cp'^)2 (a)) e G(A; u). If we 
consider, that according to sections 18 and 14 

{(P% {(^) = {Wi^l (РЧУ)) I (̂ ^ y) e cj} = ф(а) , 

we see, finally, that 
a = <p-' cp{a) = Ф~Х((р*)2 И e G{A; и) 

and the converse inclusion G(A; w{(p)) Я G{A; U) is proved. 

22. Theorem. Let (A; u) and (B; v) be posets. Then the lattices {F(A; U); Я) and 
{F(B; V); e ) are isomorphic iff there exist such an ordering w on A, for which the 
posets [A; w) and (Б; v) are isotonic isomorphic and for which G{A; w) = G(A; u). 

Proof. Let (p : F{A; u) -> F{B; v) be an isomorphism from the complete lattice 
{F{A; U); Я) onto {F{B; V); Ç ) . Then, via section 13, cp"^ : A ^ В is an isotonic 
isomorphism from the poset (A; >у(ф)) onto the poset (В; v) and also G{A; w((p)) = 
= G{A; U) (see lemma 21). 

Conversely, let there exist an isotonic isomorphism f : A -^ В from the poset 
(A; w) onto the poset (Б; v) and let G(A; W) = G{A; U). Then, following section 19, 
the mapping /2 | F(A; w) : F(A; w) -> F(B; v) is a lattice-isomorphism from 
{F{A; w); ç ) onto {F{B; v); ç ) . From G{A; w) = G{A; u) (see section lO/b) it follows 
that F(A; w) = F{A; u) and so/2 | F(A; W) is a lattice-isomorphism from {F(A; U); Ç ) 
onto {F{B; v); g) . 

*) The ordering w((p) on A is defined in (3), section 13. 
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23. Remark. Let us recall, that %[Ä) is the set of all orderings on A (see section 1). 
We define a relation AQI 

(9) (w, v) e AQ Oßf u,ve %{A) and G{A\ u) = С(Л; Î̂ ) . 

Then AQ is clearly an equivalence on ^{A). The importance of this equivalence 
follows from theorem 22. In a paper "On Some Equivalences on the Set of All 
Orderings of a Given Set "which is now being prepared, this equivalence is completely 
characterized. But deriving of properties of AQ is executed by rather slow methods of 
a combination theory and therefore it has not appeared in this paper. 

THE CHARACTERIZATION OF COMPACT ELEMENTS 
IN {G{A;u); ç ) AND (F(A; u); ç ) ; THE ALGEBRAICITY OF THESE LATTICES 

24. Lemma. (WARD). Let S£ — (L; ^ ) be a complete lattice; let cp : L -> L be 
closure operator on S£, The following holds for X ^ ç{L): 

sup X = (p(supX) 

Particularly, for X Ç F{A; u) we have 

sup X = { sup X)j,. 
(F(^;«);E) (ö(^);£) 

For X ^G{A; u) 

sup X = ( sup X\ . 

Proof. The|first part of the theorem (due to Ward) is proved e.g. in [9] page 76, 
theorem 15. The consequence concerning F(A; u) follows from the general part of 
the theorem, since {D{A); ^ ) is a complete lattice (see [5] section 9) and the map
ping a i-> cr„ (a e D(A)) is a closure operator on {D(À); Ç ) such that F[A; U) is the 
system of closed elements, corresponding to this operator (see [5] section 22'). The 
consequence concerning G(A; U) follows directly from the above because E{A) is the 
principal filter in {D(A); Ç ) , determined by the element id^ (see [5] section 8') and 
G{A; u) = F(A; u) n E{A) (see [5] section 18). 

25. Lemma. Let X ^ F(A; U) and let (x, y) e sup X. Then there exists a finite 
subset X' Ç Z with (x, y) e sup X\ (F(A;U);^) 

(Р(А;и);Я) 
(See also section 37). 

Proof. Denote 
a =Df sup X, ß =D{ sup X. 

(F(A;M);£) iD(A);^) 
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By hypothesis, (x, 3;) e a and therefore a Ф 0, and so X Ф 0. Following section 24, 
a = ^„, thus (x, y) G ^j,. According to the definition of the relation ßu (see section 1 
or [5], section 12 and 14) 

CX) 

m = 0 

00 

and, due to [5], section 6 we have ß = (J {ßi '•- ßn\ ßu ---^ ßn^ ^} ^o the following 
relations are valid: ""^ 

(x , j )6 t / ^ = UiÖ(wA)" = 
m = 0 

00 00 00 

= U { ) ? i - - . j ß „ | j 5 i , . . . , A e Z } u U ( ( U { i S i . . . Ä | ^ i , . . - , A e X } ) . 
n = 1 m = 1 w = 1 

00 

. (M и {ß["" •. • ßiZ' ! i5i'">,..., ßlrj € х})™) = 
п,п = 1 

00 00 00 00 

= (j{ßi---ß„\ßi,-..,ßneX}u\J и и ••• 
п = 1 m = l n = l n i = l 

. . . и {Д: . •. А«)вГ ' . . . ßi? . •. uß[-^ ... ß^Z! \ßu..., ßn, ß['\ . • -, ßi?- • • •> ßt' e X} . 

Therefore there exist a finite set 

X-, = {ß„..., ß„, ß['\ ..., ßi]\..., ßt\ ...,ßlrj} 

such that X'i ç X and that 

(10) {x,y)eß,...ß„uß[^K..ßilK..uß['"K..ß<ZK f 

Further, 
00 00 

(10') ( M , ) - I = ( и ß{ußTy^ = и (ßu-^)" ß = 
m=0 m=0 

00 00 

= /? u и (ßu-^Tß = и ßiu-'ß)- = (и-')д . 
m = 1 m = 0 

From (10'), from the fact that also гГ^ is an ordering and from the hypotheses that 
(x, y) e {u~^)ß (since (x, У)Е ß^ Я {uß)~^) it follows (by the first part of the present 
proof) that there is a finite set 

such that X2 ^ X and that 

(10") (x, У ) Е Г , ... y.t .-^7^/^.. r^ :^ . . u-Vi'---yi? . 
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Put X' =Df ^ i ^ -^2. then X' is a finite subset of X. According to (10) and (10'') 
the following holds 

(x, >0 e{ß,.., ß ^ ' . . • ß[\'... uß'r'... Ä : ? ) П 

n ( 7 i . . . y . t / - v , ^ ) . . . y ( ; ) . . . . - ^ / / > . . . y < : > ) ^ 

^ (w) sup X̂  ^ (w"^) sup Z^ =^ ( sup X% = sup X' 
(D(A);£) (D(^) ;^ ) (£>(v4);S) ( F ( ^ ; M ) ; ^ ) 

(see (10') and corollary in section 24). 

26. Corollary. Let X Ç 0(Л; w) and let (x, 3̂ ) G sup X. Then there exist 
a finite subset X' ^ X, with (x, y) e sup X\ (G(A;U);^) 

(G{A;u);^) 

Proof. In case that x = y, it is possible to choose X' = 0, because sup 0 = 
(С(Л;м);£) 

= id^. If X Ф y, then X ф 0; therefore in this case the proposition is a direct con
sequence of section 25, because G{A; u) = <id^, {(Г{А:и);^у 

27. Lemma. Let X be a u-convex subset in A. Then 

X^ u id^ e G{A\ U) . 

Particular у if a, b E A, then [a, ЬУ u id^ e G{A; U). 

Proof. The first part of the lemma is verified in [7], section 7. This directly implies 
the second statement, because [a, b](^..,) is a i/-convex subset in A. 

28. Theorem. Let a e G{A; U). Then a is a compact element in the complete 
lattice {G{A; U); Ç ) iff, the following conditions are satisfied: 

(i) Let XeAJo. Then every maximal chain in {X\u) has a lower and an 
upper bound in (X; u). 

(ii) Let Xe Aja. Then the set of all maximal and minimal elements in {X\ u) 
is finite. 

(iii) The subsystem of all non-singleton sets which are elements of the system 
Aja, is finite. 

Proof. We divide the proof into several parts. We denote, for convenience, 

В =j,f {X\Xe A\G, card X ^ 2} . 

1. Let о not satisfy (i). Then there exist X E Aja and a maximal w-chain R in X, 
which is not bounded in (X; u). Suppose, that the set R has not upper bound in (X; u). 
There the following statement holds: 
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For every xe R there exist x' e R with 

(11) (x, X)EU - id^ . 

(The chain R is maximal in (X; u).) For x G jR we define 

Х{х) =Dr {у I У e X, (x, у)фи - id^} , ^(x) =Df (X(x))- u id^ . 

By the definition of X(x) we get, following proposition (U) that x G X{X) CZ X. 
Given XE R, r, t E X(X) and SEA such that (r, S)E и and (s, f ) G м then s G X 

(since X is w-convex in Ä, see [5] section 36). If, moreover, 5 ф X(x), then (x, s) E 
G w-id^ and therefore (x, t) E w-id^ (we assume that (5, t) E U). Therefore, under the 
considered hypothesis, also 5 G X(X). 

We have derived, that for every x G jR, X(x) a w-convex subset of Ä. Therefore, 
according to lemma 27, for every x G К we get ^(x) G G(A; U); according to the defini
tion of ^(x) and according to (11) evidently the proper inclusion ^(x) c: a holds. 
For X, y E R we have (x, y)Eu iff X{x) Ç X{y), and therefore (x, y) E и iff ^(x) ^ 
^ я{у)- {RI W) is a chain, and therefore so is ({^(x) | x G Я}; ç ) . Thus according to 
[5] section 22 we get \J{Q{X)\XE R} E G(Ä;U). Denote ^ =Df U{ö(^) | ^ e ^ } -

If ZEX, then either ZER or ZEX — R. If z E R, then z E X(z), hence clearly 
z G \J{X(x) \xE R}. If zEX — R, then (since R is a maximal w-chain in X) there 
exists such y E R, for which {y,z)фu; then zEX(y) and so z E\J{X(X)\XE R]. 
Thus we get that X ^ \J{X{x)\ xe R}; the converse inclusion is evident and 
therefore 

X = \J{X{X)\XER} . 
Since 

Q = id^ u U{(^(^)^ \XER} = id^ u (иЩх) I X G Я})̂  
also 

(12) ^ - Z^ u id^ . 

Finally, we denote 

C/ =of U { Y ' \ Y E Aja, У Ф X} u id^ . 

Evidently Q' E E{A), Q' CZ a (because X E B) and according to [5] section 23 we get 
Q' E G{A; U) (because a e G(A; U), X E Aja, id^ G G ( Z ; U) and ^' = (d n (Л - Xf) u 
u idjf). 

Denote Г =Df { '̂} u { (̂x) | x G JR}. Then Q' С a, ^(x) с ^ for every x G R and 
hence sup Y Я G. From (12) and from the definition of Q' the converse inclusion 

(G(^;«);£) 

follows, because it is 

(^ = Q' U(}J{Q{X)\XER}); 
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and so er = sup 7 We shall show that a — sup Y' does not hold for any finite 
(G(^;u);E) (С(Л;«);£) 

non-empty subset Y' of 7 Let F ç 7, 0 < card Y' < KQ. Denote by R' the set of those 
xe R, for which Q{X) E Y\ If JR' = 0 then 7 ' = { '̂} and so sup Y' = Q' cz a. 

(GiA;u);^) 

If R' Ф 0 then the finiteness of R' implies that there exists the greatest element a 
in [R'; U). According to our hypothesis about R (see (ll)) there exists b e R with 
(a, b) E u-id^. Then certainly (a, b) ф д(а); since a, b E X, also (a, b) ^ ^'. We have 

sup Y' = sup {Q\ sup {^ (x ) | xeß ' }} = 
(С(Л;м);£) (С(Л;м);^) (G(A;u);Ç) 

= sup {Q', д{а)} = Q' и д(а), 
(GiA;u);^) 

and so (a, b) ф sup 7 Moreover (a, Ь)Е X^ ^ cr; thus, we proved the proper 
(G{A;u);^) 

inclusion sup 7 ' cz (7 in case R' ф 0. We have demonstrated that from the 
(G(A;«);£) 

covering 7 of the element a in {G(A; U); Ç ) no finite subcovering can be chosen. 
If the chain R has no lower bound, the proof proceeds dually. 
Thus we have verified that an element a E G(A; W), which does not satisfy (i) is not 

a compact element of the complete lattice {G(A; U); ^ ) . 

2. Let us assume, that an equivalence a satisfies (i), but not (ii); we shall show also 
in this case a is not a compact element in {G{A; U); Ç ) . For X e Aja denote by M(X) 
the set of all maximal and minimal elements in [X; u). From the non-validity of (ii) 
there follows that for some YE Aja the set M{Y) is infinite; certainly, YE B. Suppose 
that the set Mj of all maximal elements in (7; u) is infinite (if M^ is finite then, since 
M(Y) is infinite, the set M2 of all minimal elements in (7; u) is also infinite and the 
proof then proceeds dually). For x, y E M^ we define 

Q{^, y) =Df ((>, ^>(A;u) ^ >. УУи;и)) ^ yf ^ id^ • 
Let 

r, t E (>, x} u >, y}) r\ Y, SE A , (r, s) e w , (s, r) G w . 

Then s e >, x> u >, y}, and s E Y, because, following [5] section 36, 7 i s a w-convex 
subset in A. Thus (>, x} u >, y}) n 7 is a w-convex subset in A, and hence, according 
to lemma 27, Q{X, y) E G{A; U). Evidently Q{X, y) Г\{А - Yf = id^_y and from the 
hypothesis that Mj is infinite it follows that Q(X, y) c: a. The equivalence a satisfies 
(i) and therefore for all r, s E Y there exist such elements x, y E M^, that (r, X)EU 
and (s, y)Eu; then (r, 5) e Q{X, y) and hence 

Y^ u id^ Я \J{Q{^, >') \ x, у E M^} ^ sup {Q(X, y) \ x, у E M^} . 
(G(4;u);E) 
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From the definition of Q(X, y) we get also the converse inclusion and therefore 

Y^ и id^ = sup {Q{X, y)\x, у e M^} . 

Let us denote 

Q' =Df {(тп{А - Yf) u id^ , Z =^, {Q'} U {Q{X, y)\x,ye M j , 

then by [5], section 23, Q' E G(A; U) and the following holds: 

sup Z= sup {Q\ sup {Q(X, y)\x, ye Mi}} = 
(G(A;u);^) (G(A;u);^) (G(A;u);^) 

= sup {Q\ Y^ U id^} = (7 . 
( G ( ^ ; M ) ; £ ) 

We shall show that there exists no finite non-empty subset Z which covers a 
in (G(A\ U); ^ ) . Let Z^ be a finite non-empty subset of Z. If Z^ = {Q'}, then 

sup Zi = Q' = {(7п{А-- Yf) u id^ cz(a n{A - Yf) yj Y^ = a , 

and so Z^ does not cover о in this case. Let Z\ = Z^ — { '̂} be a non-empty set. 
Then there exists a finite number of elements Xi, X2, ..., X2„-i, X2„ 6 M^ with 
-2̂ 1 = {_о{^и~ъ ^2i) \ i = '^, '•-, n}- The set M^ is infinite and therefore there exists 
3; e Ml — (xj , X2, ..., X2„}. The elements from M^ are maximal in (7; t̂ ) and there
fore 

2n 

:u 
(for the notation see section 1, page 260). Via section 27 we get 

(13) J ^ / c „ ( ( U > , A - , . » n y ) 

2n 
\2 Q =Df (fc„(( и >, X,.» n F)f u id^ e С(Л; м) ; 

and from (13) it follows that 

( x i , v ) ^ ^ ç sup {Q{x2i-u^2?}\i = ^^'•'^^] ' 
( G ( ^ ; M ) ; £ ) 

By the definition of Q' also (x^, j ) ф Q' and therefore 

(14) . (xi, j ) ^ ^' u ^ = sup {̂ , Q'} ^ 
( G ( ^ ; M ) ; £ ) 

3 sup {Q\ sup {^(x2,-i., X2,) I / = 1, ..., «}} = sup Zi 
(G(^;«);^) ( С ( У 4 ; М ) ; £ ) ( G ( ^ ; M ) ; ^ ) 

(the first equality follows directly from [5] section 23: 

aEG{A;u), YeAJa, Q' ^ {a n{A - Yf KJ \d^, Q n Y^ E G{Y',u)) . 
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We have х^^уеМ^ ç У, YeAJo and therefore (x^, }^)бсг. From this fact and 
from (14) we get 

(xj, }^e о — sup Zi , 
(GM;«);£) 

i .e . s u p Z j CI (7. 

We have shown that no finite non-empty subset of Z covers the element a in the 
complete lattice (G(/l; w); £ ) i.e. that the element G is not compact in {G{A\ U); ^ ) . 

3. Let us suppose that the system В is infinite, i.e. that о does not satisfy (iii). 
We shall show that G is not compact in {G{A\ U); ^ ) in this case, too. For X e В 
we define Q(^X) =D{X^ U id^. According to [5] section 36, X is a t/-convex subset 
in A, because X e Aja and OEG{A\U), Via lemma 27 Q{X)EG{A\U). Denote 
^=^m {Q{^) I X e Б}. We have 

a = U ^ ^ sup У 
(G(^;u);E) 

and, since ^(X) Ç о holds for ail A' e Б, the oposite inclusion is also valid and we get 

о — sup y . 

We shall verify that there does not exist any finite non-empty subset У of У which 
covers the element a in the complete lattice {G{A', U); C ) . From lemma 2 and from 
the fact that U ^ ' is an equivalence on A it follows, that 

(15) sup Y' = [jy' 
{GiA;u);^) 

(indeed this holds for every non-empty subset in У — see also section 39). The set В is 
infinite and hence there exists XQE В -- Y\ For arbitrary distinct elements a, b in XQ 
we have 

{a,b)eXl с СГ, {a,b)4\JY\ 

From (15) it follows that У does no cover the equivalence a in {G{A; ii); ^ ) and so a 
is not compact in {G{A; U); ^). 

4 Let an equivalence a E G(A; U) satisfy (i), (ii), (iii): then we shall prove, that a 
is compact in (G(A; U); Ç ) . For X e 5 let M^[X) be the set of all maximal elements 
in (Z; u), and let M2{X) be the set of all minimal elements in (X; u). Let У Я G(A; и) 
and let a Ç sup У. For X e B, x e M^{X) and у e M2{X) we have (x, y) e 

iG(A;u);^) 
e sup У and hence, according to section 26, there exists a finite subset У(х, у) 

( G U ; M ) ; E ) 

in у with (x, y) E sup У(х, у). Via (ii) and (iii) also the set 
{GiA;u);^ 

r =то{ Y{x, У)\ХЕВ, XE M,{X) , v e M^iX)] 

111 



is finite, and 

(x, y) e sup Y(x, v) Ç sup Y' 
(0(А;и);Я) ' (С(Л;«);£) 

for every Xe B; xe Mj^X), у e M2{X). We shall show that a ^ sup Y\ 
(С(Л;и);£) 

Let (r, s)e (T. If r = s then evidently (r, 5) e sup Y'; therefore we suppose, 
(С(Л;м);Е) 

that r Ф s. Then there exists Xe В with r, seX. In the poset (X; u) every chain is 
a subset of some maximal chain and every upper (or lower) bound of the maximal 
chain in (X; u) is the element of Mj(X) (or of M2(X)); from this fact and from (i), 
that there are elements r^, s^e M^^X) and Г2, S2 e M2{X) such that 

(16) (г2, r)eu , (r, r^)e w , (s2, s )e w , (5, s^)e и . 

Furthermore, 

(17) (Г2, r i ) , (S2, 5i), (Г2, 5i) 6 SUp (У(г1, Г2) U 
(С(Л;м);Е) 

u 7(si, 52) u y(5i, Г2)) ^ sup Г . 
(G(^;t/);E) 

Following [5], section 36 we get that sup Y' is a м-convex equivalence on A and 
iG(A;u);^) 

therefore according to (16) and (17), also 

(ri^r), {s,S2), (ri , S2)e sup Y\ 
(G(A;u);^) 

This proves that (r, 5) e sup Y' and thus the inclusion 
iG(A;u);^) 

G Ç sup Y' 

holds. We have verified that every covering of the element о in {G{A\ u); ^ ) has 
finite subcovering; thus cr is a compact element in {G(A; U); ^ ) . 

5. Via parts 1 — 3 of the present proof, the conditions (i) (ii) and (iii) are necessary 
for compactness in {G{A; u); ^ ) ; via part 4, their conjunction is also sufficient. 
This proves the theorem. 

29. Corollary. Let a, b e A. Then [a, b]^ u id^ is a compact element in the 
complete lattice {G{A; u); ç ) . 

Proof. According to lemma 27 [a, b]^ u id^ G G(^; м), and this equivalence 
satisfies evidently the conditions (i), (ii) and (iii) of theorem 28. 

30. Theorem. {G(A; M); Ç ) is an algebraic lattice. 
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Proof. Let us denote o-̂ ^ =^f [a, ЬУ u id^ for a, be A. The poset {G{A\ U); Ç ) 
is a complete lattice (see [5] section 21). Let a e G{A; u). If (x, y) e a, then evidently 
a^y Ç (7 (see [5], section 36; the equivalence a e G{A; U) is w-convex on A) and so 
we get that 

sup {(j^y \[x, y)e a} C d . 
(G(A;u);£) 

If (x, y) e (7, then (x, y) e â ^ and therefore the converse inclusion 

a Ç \J{(T^y I (x, j ) e ff} Ç sup {d^^ | (x, y)ea} 
(G(A;u);^) 

holds, too. Thus a = sup {a^y | (x, y) e cr} and, according to section 29 the 
(GiA;u);^) 

elements a^y are compact in {G(A; U); ^ ) . Therefore, every element in the complete 
lattice {G{A; W); ^ ) can be expressed as a supremum of compact elements in 
{G{A; u); ç ) . 

31. Lemma. Let X Ç F{A; w). Then 

dom sup X = U{dom ex | cr G X} . 
(F(A;u);^) 

Proof. According to [5], section 6 sup X = \J {a^ ... cr„ | (т^,..., (7„ e Z } , 
(D(A);^) и=1 

where for di ... cr„ e X we have dom (dj ... cr„) ç dom (jj, 

So we get that 

U{dom (T I (T e Z} = (J {dom (di ... Ö-„) | Ci, ...,, cr„ e X} = 
n=l 

00 

= dom ( и {ö"! • • • ö-„ I (7i,..., бг„ e X}) = dom sup X . 

By [5], section 14 dom sup X = dom ( sup X\ and the equality ( sup X\ = 
(D(^);Ç) (D(^);e) (D(^);^) 

= sup X holds (see lemma 24). From all these facts the proof directly follows. 
(F(^;M);£) 

32. Theorem. Lef cr e F(A; u). Then G is a compact element in the complete 
lattice {F{A; U); Ç ) iff a is a finite set. 

Proof. Let us define Q^y =Df {x, уУ for x, у e A. Then Ajg^y = {x, y} and there
fore, via lemma 2, Q^^y e F{A; U). Let us assume first, that a is an infinite set. Then 

(T = [J{Qxy I (^. y) e Ö-} = sup {g^y | (x, y)ea} . 
(F(A;u);^) 

If Z is a finite subset of {g^y \ (x, j^) e cr}, then, by section 31, 

dom sup X = и (dom ^^3, | g^y e X} . 
(F(A;u);^) 
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As X and dorn Q^y are finite sets for all Q^y ^ ^s also dom sup X is finite. Since 
(F(A;u);E) 

sup Z ^ (dom sup Xy, 
(F (^;u) ;e ) ( F ( ^ ; M ) ; Ç ) 

also sup X is finite. We suppose that a is an infinite set, therefore о Ç sup X 

does not hold. We have proved that from the covering {q^y | (x, y) e o] no finite 
subcovering of the equivalence о can be chosen. Hence G is not a compact element 
in {F{A', w); c ) . 

Let, conversely, cr be a finite set. Let X ^ F[A; u) and let a Ç sup X. Then, 
( F ( A ; M ) ; E ) 

according to lemma 25, for every pair (x, y) e (J there exists a finite subset X'(x, y) с 
с X, for which (x, y) e sup X'(x, j ) . Then the set X' =^)г U{-^'(^' >') I (^' >') ^ ^} 

( F ( ^ ; M ) ; £ ) 

is finite too. (By hypotheses, a is finite.) Now, X' ^ X and for every (x, y) e a 

(x, v) G sup X'(x, y) Ç sup Z ' 
(F(v4 ;«) ;£) (F(^;«);E) 

thus the inclusion d ^ sup X' holds. This proves that a is a compact element 
in {F{A;u);^). ^^^^'•">^^> 

33. Theorem. {F{A; U); ^ ) is an algebraic lattice. 

Proof. For X, y e A let us define Q^y =Df {x, y}^ (see the beginning of the proof 
in section 32); then ^^3; e F(A; U), and, by section 32, ^^3, is a compact element in the 
complete lattice {F{A; U); Я). Let a e F(A; U). Then the following holds: 

Ö- = U{̂ x>- I (-̂% y) ea} ^ sup {g^y \ (x, y) e a} . 
( F ( ^ ; M ) ; E ) 

For (x, y) e (7 we have Q^^y ^ <т and therefore the converse inclusion 

sup [g^y I (x, y) e a] Я (T 

also holds. Thus, every element a e F{A; u) in the complete lattice {F(A; U); ^ ) can 
be expressed as a supremum of the set {g^y | (x, y) e a} of compact elements. 

34. Lemma. Let n ^ 1 be a natural number. Then the following statements 
hold: 

a) A set A has n elements iff every maximal chain in {G(A; U); Ç ) has just n 
elements. 

b) / / a set A has n elements, then there exist at most 2""^ — 1 dual atoms in 
(G(^; « ) ; - ) * ) . 

c) A. set A has n elements iff the set of all atoms in {F(A; U); Ç ) has just n ele
ments'^). 

*) The statements b), c) hold also for infinite cardinal numbers n. 
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Proof. Let us recall first the following characterization of the covering relation 
—<,(E{A);^) iî  the complete lattice {E[A); Ç ) of all equivalences on A (see [9], page 
163): For Q, (7 E E[A) we have Q —<.(E{A);^) ^ iff there exist elements XQ E Ajo and 
Yi, 72 e ^IQ with 

Y, Ф 7̂  , XO = Y,KJY2, Ala - [Xo] = Ajg - {Y„ Y^} . 

a) From the above characterization of—<(£(̂ ). ç) we get, that the set A has n elements 
iff every maximal chain in {E{A); ^ ) has n elements. According to [5], section 29, 
every maximal chain in {G(A; U); ^ ) is maximal in (E(A); ^ ) too; and from this 
fact a) follows. 

b) Following the above characterization of —<(ь(л);с) there exist exactly (1/2) . 
. card(expy4 - {0,^}) = 2""^ - 1 dual atoms in the complete lattice {E{A); ^ ) . 
According to [5], section 27, we have —<(G(̂ ;M);S) -= ~<(£(л);С) ^^^ so every dual 
atom in {G[A; U); Ç ) is a dual atom in {E{A); Ç ) too. 

c) The atoms in {F(A; U); Ç ) are exactly the equivalences in A of the form {xY 
for some x E A. So A has the same cardinal number as the set of all atoms in 
(fИ; "); - ) . 

35. Corollary. There exists an algebraic lattice 5£, which is isomorphic neither 
to {G{A; U); Ç ) nor to {F(A; U); '^) for any poset (A; u). 

Proof. By section 34 the lattice if, the diagram of which is shown in fig. 2, has 
this property. 

Fig. 2 

36. Remarks, a) In section 45/c we shall exhibit another algebraic lattice, which is 
not isomorphic either to {F(A; U); ^ ) or to {G{A; U); Ç ) . 

b) At the end of this part we shall show a generalization of lemma 25; this gener
alization is proved (in contrast to section 25) by means of the axiom of choice. 
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37. Theorem. Let s^ Ъе a non-empty system of sets; let ^ = {s^\ £ ) Ъе a complete 
lattice and let sup ^ = ( J ^ /^^ every non-empty chain Ш in %. Let cp \ se -^ se 

SI 

he an algebraic closure operator on A. *) Then the following holds: 

If ^ Я s/ and b G < (̂sup ^ ) , then there exists a finite subsystem ^ in ^ with 
b e (/)(sup ^ ) . ^ 

Proof. Let m be the least cardinal number of a system ^, for which 9) <=, ^ 
and b e (sup ^ ) Let us suppose, that KQ ^ m; we shall derive a contradiction. 

There exists ordinal number a with m = K^ and there exists a system ^^, for which 

^ 0 ^ -^ > Ь 6 (/?(sup J*o) . card J'o = ^a • 

We shall order the elements of ^ o ii^to a sequence (X )̂̂ <^^ ,̂ where cô  is the least 
ordinal number of power K .̂ Let us define 7^ =DfSup{Xç =DfSup{Xç|C < ^} 

SÎ 

for all (̂  < 0) .̂ Then 7^ e ^з/ for every (̂  < cô  and 7̂  Ç 7̂  for С ̂  «̂  < cô . Especially 
{ 7^ I (̂  < ш }̂ is a non-empty chain in 31 and therefore 

Z=i,fSup{>'«U<«J = и ^^-

Then (̂  + 1 < ш^ for every (̂  < cô  and so, according to the definition of 7^+^, we 
get that X. Ç 7.+i. There follows: X^^ Z for every ^ < œ^. Thus sup J'o ^ ^ ; 

we shall derive the converse inclusion. The element sup ^Q in ^ is an upper bound 
of the system {X^ | ( < <̂} for all ^ < o)^ and therefore 7^ <= sup J^o for all ^ < œ^. 
Thus Z = sup { 7^ I (̂  < ш }̂ Ç sup ^0 aî^d the equality 

sup ^Q = \J Y^ 
81 (*<ö)« 

is derived. 

Since {Y^)^^(Oa ^^ ^ non-dicreasing sequence of elements of j / , and since (p \ se -^ se 
is an algebraic closure operator on 31, there follows 

<p(sup ^o) = <?( и i 'J = и 4>{Y^ . 
81 ^<o j« .^<co« 

*) I.e., Ç?(̂ GO is the algebraic system of closed elements in the complete lattice %: 

(i) If ^ Ç (p{^\ then inf ^ = . inf Ж. 
Щ («P(^);£) 

(ii) If ^ Ç (p{Ä) and if {ß\ ^ ) is a non-empty chain, then sup ЗС = sup dC. 
81 ç>(^);£) 
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(The proof of the second equahty: The inclusion U (p{Y^) ̂  (p{ [J Y^) follows 

from the fact that the closure operator is isotonic. We shall derive the converse 
inclusion. We have U cp{Y^) ^ (J Y^, and therefore (p{ U (p{Yj) ^ ф( U Y^). 
So we get that ^<^« ^<^- ^^"« ^^"* 

и (p{Yç) = sup {cp{Y^) I ̂  < ш,} = sup {cp{Y^) U < Ш,} e cp{^) , 

because {{(p{Y^) \ ̂  < co^}; ç ) is a chain too. Hence (p{ \J (p{Y^)) = U ф(^^) ^^^ 
the converse inclusion ^^"^^ ^̂ "̂ ^ 

Ф( и 7 )̂ ^ и Ф(1̂ )̂ 

is derived.) Since b e (sup J'o)? there exists an index v < co^ such that b e (p{Y^). 

By the definition of Y^ we get that 

b E (p{Y,) = (p{sup {X^\^ < v}) , 

and {X^ I (̂  < v} Ç J^; card {X^ \ ̂  < v} S card v < K .̂ But this is in a contradic
tion to the definition of cardinal number m = K .̂ Therefore m < Ko and the proof 
is concluded. 

INTERVALS IN (G(A; u); ç ) 

38. Remark. In this final part we consider intervals in {G{A; u); ^ ) . Therefore, 
given Q,(7eG(Ä;u), we shall write >, (7> or ^д,(тУ etc. instead of } , (уУ(о(А;и);^) 
o r {Q, (ТУ(^в(А;и);^) (s^C alsO SCCtioU l ) . 

39. Theorem. (The local characterization of the elements of F(^ ; w).) Let a e D(A), 
ß G F{A; и) and let a ^ ß. Then a e F(Ä; и) iff the following condition holds: 

(18) {anX^)EF{X;u) for all XeAJß. 

Proof. For a = 0 we have м̂  = 0 = (wj"^ and therefore a„ = ŵ  n (wj~^ = 0 
and, according to the definition of the system F(A; u) in section 1 (see also [5] 
section 18) we have 0 e F(A; u). At the same time, for a = 0 the condition (18) is 
satisfied. Therefore we can further suppose that a ф 0; then j8 ф 0 and Л ф 0. 

Let the hypotheses of the theorem and the condition (18) be satisfied. Let s^ be 
the system of those equivalences т, which satisfy the following: 

(19) TeF(A;u), a ^ т ^ ß and, for all XeAJß, 

X^ пт = X^ от X^ nr = X^ П(х. 
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We have ß e j ^ , and so J / ф 0. According to [5] section 20 there exists 

7 =Df inf j^ = f]^ EF{Ä;U). 
(F{A;u);^) 

Then a ^ T for all TES/, and therefore а с у too. We shall derive the converse 
inclusion thus proving that a e F(A; U). 

Let us show at first, that у e se, We have derived that a ^ y G F{A\ и). From the 
relation ß e se and from the definition of y it follows that y Ç j^. Let X e A\ß. 
If X^ n T = Z^ for all XE se, then also X^ n y = X^. If there exists such TQ G J / , 
that X"' n To = X^ n a, there 

X^ ny =^X^ n (П{т I T G ^}) = n{X^ n T | T G j / } = X ^ n a , 

because т n X^ = X^ or т n X^ = a n X^ for all x E se and TQ n X^ = a n X^. 
So the equivalence y satisfies the condition (19), i.e. y E se. 

Let y — a Ф 0. Then there exists (a, b) G y — a; since y ^ ß, there exists XQ E Ajß 
with a,bE XQ. By (19) we get that XQ n a ф XQ n т = XQ for all т G j / and there
fore, according to the definition of y, Xl ç y. From all this we get that XQ G Ajy. 
If we define 

à =тУ (^{A - XQ)\ e = D f X ^ n a , cp^^^d^E, 

then, by (18), eGF(Xo;w) and according to [5] section 23, also <p G F(yl; w). If 
XEAJß - {Xo}, then X^ n Ф = X^ n y and X^ n cp = X^ n г = X^ n a. The 
element у satisfies (19) and hence so does the element ç (the validity of the inclusion 
(X я (p Я ß is evident). Thus cp E se. Also cp n Xl — a n Xl a Xl я y, which is 
in a contradiction to the fact, that у = inf s^. The hypothesis у — a ф 0 leads to 

(F(^;u);E) 
a contradiction, hence the inclusion у ^ a holds. So a = у G F{A\ и) and we have 
proved that the hypothesis of the theorem and the condition (18) imply a G F{A\ U). 

We shall derive the converse implication. Let the hypothesis of the theorem be 
satisfied. Let a G F{A; U) and X G Ajß, If X^ n a = 0 then X^ n a G F (X; U) ( see the 
first section of this proof) and therefore the condition (18) is for X satisfied. Let 
X^ n a Ф 0. Let n ^ 1 be a natural number and let 

X,.GX/a, (X„X,+i)GW, (X„,Xo)Gii 

for every i = 0,..., n — 1 and for every 7 = 0,..., n. Then XJE Aja (because 
X/a £ Aja — see section 1, page 259) and according to lemma 2, from the hypothesis 
(XEF(A;U) there follows Xo =,. . . = X„. So, according to lemma 2, (anX^)e 
G F(X; w), because X/a = X/(a n X^). We have derived that aGF(^;w) implies 
the condition (18). 
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40. Corollary. (The local characterization of the elements of G(A; U).) Let a e E(A), 
ß E G{A; U) and let a ^ ß. Then осе G(Ä; и) iff the following holds: 

(18') {ocnX^)eG{X;u) for all XeAJß, 

Proof. We have G{A; U) = E{A) n F{A; U) (see [5] section 18) and (a n Y^)e 
e E{Y) for a e E[À) and Y я A. The statement follows directly from section 39. 

41. Notation. Let a e G{A; u). Then A„ denotes the set of all elements, covered 
by a in {G(A; U); Я), that means that A „is the set of all dual atoms in the complete 
lattice (>, (T>; e ) . If ^ G >, a}, then we define 

(20) d„{Q) =J^^{T\TEA„,Q^T}. 

It is d„(Q) Ф 0 for ^ c: СГ (see [5], section 28). Evidently, d„ : >, (т> -^ exp A„. If 
X G exp A„ and X ф 0, then we define 

(21) lA.(^)=Df inf X , ^,(0)=Df(7. 
(С(Л;м);Е) 

According to [5], section 20 we have фХ^) ~ П ^ ^nd evidently i/̂ ДХ) G >, a ) . 
Moreover 

(210 UY)= inf Y 

holds for all YE exp A„ and therefore ф„ : exp A„ -^ } , a}. 

42. Lemma. Let Q, a, т E G{A; U) and let Q a T Я: o. Then d„{i) с d„{Q). 

Proof. From the inclusion ^ <= т ç o- and from (20) it follows that J ^ T ) Ç 
£ а„{о). If ^ с т, then the following holds: 

(22. a) V7 G A\Q 3 Z G Л/Т ( 7 ç Z) 

(22. b) ЗУо e AJQ aZo G Л/т (7o ^ ^ ) 

It is 

Z = U{ l^ | î ^e^ /^ , 7 ^ Z } 

for all Z G л/т {Q, (7, T are equivalences on A) and therefore according to (22. b) 

(23) card { 7 | Ye Ajg, 7 ç Zo} ^ 2 . 

From the inclusion т ^ cr it follows that there exists exactly one element UQ E Aja 
with ZQ ^UQ. 
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We shall construct an element g^ about which we shall show that QI e dj^q) — 
— dj{y). We must distinguish two possibilities. If 

(24) Уо is not the u^/g-greatest element in {У | У e Ajg, Y Ç ZQ} , 

then we put 

Qt=m{\j{V'\UeAJa,V^Uo])yJ 

u ( U { r | Ye Ale, Y Ç Uo, (У, У«) e u^,,}Y u 

u (U{ I' I i-e Ale, y ç Uo, (y, Уо) Ф Мл/Л)' ; 
(25) if Уо is the Мд/g-greatest element in {У | Уе Ale, Y E ZQ} 

then we put 
ei =m{U{U'\UeAle, [7 Ф L7o}) u 

u (U{ УI Ye Ale, Y E C7o, (У Уо) e Мд/, - id^/,))^ u 

и (U{y I Уб Ale, Y £ l/o, (y, Уо) Ф u^,, - id^/J)^ . 

We have Q E G(Ä; и) and therefore, according to section 2, u^j^ is an ordering on AJQ-
From this, from the inclusions ^ cz т ^ a and from the definition of the relation Qi 
it follows, that Q^ is an equivalence on A. According to (23) the system 

s^ =J,,{Y\YGAIQ,,,Y^UO} 

has two elements and, by the definition of ^ i , 

(26) AJQ, ={AJCT~- { l / o } ) u ^ . 

We get, that Q^ is covered by a in {E(A); ^ ) (see the characterization of the relation 
—<(£(A);s)? page 281 in the first part of lemma 34). Wedenote the two-element system ^ 
by j / = {r^, Г2} and we choose the indices so that in case (24) Го £ Г̂  and in case 
(25) Го с 7,. 

We shall show, that (Г2, Г^) ф w, by contradiction. Let us suppose, that (Г2, Г^) e й. 
Then there exist у2 e Г2 and y^ e Y^ with {у2, У\) e и. Since Q e E{A), there exist 
Г/, Г2 e A\Q, for which y^ e Г/ and 3̂2 ̂  ^2- Then 

(Г2', Г 0 б 1 / п ( Л / ^ ) ^ ^ 1 / ^ / , . 

From inclusion Q <^ Q^ii follows that Г/ £ 7^, Г2 ^ Г2. According to the definition 
of ^1 , (Г/, Го) € w /̂̂  in case (24) because Го ^ Г^. Further, (Г2, Y[) e w /̂̂  and there
fore (Г2, Го) e M /̂ß. So in case (24) it is Г2 e Г^, but this is a contradiction, because 
also Г2 ^ Г2. This proves that, assuming (24), the relation (Г2, Y^) e zi is excluded. 
Let (25) hold. Then Го Ç Г2. We have Г/ £ Y^ and therefore, according to the 
definition of Qt, (Г/, Го) e м /̂̂  - id^/^. Also (Г2, г;)ем^/^ and we get (Г2, Го) e 
e Uj^iQ ~ id^/g. According to the definition of Qu ^1 ^ ^1 and this is in a contradic
tion to the fact that Г2 Ç Г2. 
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We have verified that the relation {Y2, Y^) e ù does not hold in any case. 
Thus the inclusion 

ïd^^ùn^' ^ {{Yu y,)' (^2, ^̂ 2), {Yu Y,)} 

holds. From this inclusion it follows that u^ = ù n s/^ is an ordering on j ^ . There
fore, according to section 2, we have 

Q,nU^o = YIKJYIE G{UO. U) . 

Also Q^ n U^ = U^ for every U e {AJQI - {UQ}) and so ^ n U^ e G{U; u). According 
to section 40, we have Q^ E G{A; U). We have shown before that g ^ Qi -<(E{A);^)^ 
and therefore g^ E d^(g). 

Finally, we prove that ^1 ф а^{т). From the definition of g^ and from (23) we get 
ZQ n Y^ Ф Ф Ф ZQ n Y2, because in case (24) we have 

Y, ={j{Y\YEÄlg, y ^ L / o , (У, Уо)бы^/Л, 

^2 = и{У1 YE Al g, Y^ I/o, (У, Уо) ̂  t/^/,] . 

and in case (25) we have 

Y,=[J{Y\YE Ajg, Y ^ Uo, (У, Уо) E U^,^ - id^^,] , 

y^ = U { y | YEAJg, Y^ Uo, (У, Y,)фu^^^ - i d ^ ; . 

If we choose r E ZQ n У ,̂ s E ZQ n Y2 then we get (r, 5) e т - ^i . So the inclusion 
T ^ g^ does not hold and therefore ^1 ф а„[т). 

We have derived that d„{g) ф а^т). We have shown at the beginning of this proof 
that (!„(т) ^ d^[g). Thus the proper inclusion J^(T) С d^(g) is proved and the proof 
is concluded. 

43. Lemma. Let (X; ^ ) and (У; ̂ ) be complete lettices and let mappings 
(p : X -^ Y and ф : Y-^ X define a Galois' correspondence between (X; ^ ) and 
(У; ^ ) . Then the following statements hold. 

a) фср : X -^ X is a closure operator on {X; S) cind срф : Y-^ Y is a closure 
operator on (У; ^ ) . 

b) For R^X and S ^ Y, 

(p( sup R) = inf (p(R) , ф[ sup S) = inf ф{8) . 
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с) Let X < у imply that (p(y) -< (p(^x) for all x, у eX. Then: 

(a) Every element of X is \l/cp-closed. 
(ß) The mapping cp : X -^ 9{^) ^^ ^^ antitonic isomorphism from (X; ^ ) 

onto {(p{X); ^ ) . In particular (p : X -^ Y is an injection. The partial mapping 

{Ф I <p{X)) : <p{X) -> X 

is an isotonic isomorphism from {(p{X); ^ ) onto (X; ^ ) and the mappings 
(p, ip I (p{X) are mutually inverse. 

Proofs of these statements can be found in the literature. E.g. the statement a) is 
proved [4], theorem 11.1.2 (page 241 of the Russian translation), the statement 
c/(a) is proved in [4], theorem 11.1.4 (page 242 of the Russian translation) and the 
statement c/(ß) is proved in [3], section VI. 11.1 (page 290 — 291 of the Czech trans
lation; by (a) it is ф (p{X) = X). The statement b) is also well-known and it is given, 
in a special case e.g. in [2] (page 61 of the Russian translation). 

44. Theorem. Let a e G(A; u). Then the mappings 

da'- >. ö-> -> exp Л„ , \р^\ exp Л„ -> >, (7> 

define a Galois' correspondence between the complete lattices (>, cr>; ç ) and 
(exp/d^; ^ ) . The following statements hold: 

a) The mapping d^: >, d ) -> exp Л^ is an injection. 
b) Every element from >, cr) is ij/^d^ — closed"^). 
c) Mappings d„ and ij/^ | J^>, a}) are mutually inverse and the complete lattices 

(>, (j>; ^ ) , (^Д>, €>}); з ) are isomorphic. 
d) / / 0 Ф X Ç >, (7> and sup X + cr, then 

(G(^;M);E) 

sup X = ПШа{я)\яеХ}. 
(G(^;u);£) 

Proof. {G{A; u); ç ) is a complete lattice and >, a} is a principal ideal in this 
lattice; therefore (>, cr>; c ) is a complete lattice. For У, Z e e x p J^, Y^ Z holds 

ФXZ)= inf ZÇ inf Y=фXY) 
( > , f f > ; Ç ) ( > , < r > ; Ç ) 

(see (2Г)). From this and from section 42 it follows that the mappings d„, ф^ define 
a Galois' correspondence between the complete lattices (>, cr); ç ) and (exp A^, s ) . 

*) That means that for all ̂  e >, cr>, ^ = y/^ d^ig). 
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The statements a), b), c) are direct consequences of sections 42 and 43. We shall 
verify the statement d). According to section 43/b, 

(27) dX sup X ) = inf 4 ( Z ) = n K ( ^ ) k e J r } 
(>,(T>;E) (expzl^;Ç) 

as X is non-empty, we have d^{X) ф 0. From the hypothesis that sup X + a, 

X ^ >, cr> it follows, that sup X a a and therefore, according to a), c), d^( sup X) ф 
(GiAiu);^) (> , t r> ,£) 

Ф 0 (by hypotheses sup X = sup X). As a consequence of (27) we get 
(>,<T>;^) iG{A;u);^) 

OdXX) Ф 0. According to b), (21) and [5], section 20, it follows from (27) that 

sup X = ф^Х sup X) = фХПаХХ)) = inf ( П 4 ( ^ ) ) = n OdXX) • 
(G(A;u);^) (>,ff>;^) (G(A;u);^) 

45. Remarks, a) The statement 44/b is a basic generalization of lemma 28 in [5]. 
According to section 44/b and [5] section 20, the following statement hold: 

If Q, a E G(A; U) and if Q ̂  o, then Q = Ç\d„{Q). 

(That means that in the complete lattice (>, tr); ç ) there exist sufficiently many 
dual atoms, which are above Q.) 

b) The statement 44/d exhibits one possible form of a supremum in (0(Л; м); ^ ) ; 
this question has not played any important role in [5] (see also section 24). We 
have A^ e G{A; u); if we choose û — A^ in section 44) d we get: 

Let X ^ G{A; U). If X = 0 then sup X = id^. If X =¥ 0 and if т is an upper 
(G(A;u);^ 

bound of X in {G{A; U); Ç ) , T ф A^, then 

sup X = П{х\х 
(G(A;u);^) 

is a dual atom, which is an upper bound of J^ in {G{A; U); Ç ) } . 

{A^2 is the set of all dual atoms in {G(A; U); £ ) . Evidently, 

{x\xe A^., \fQ e X{Q ^ x)} = Пал^Х) . 

From this and from section 44/d the statement follows). 
c) Let J^ be at least three-element finite chain. Then, e.g. by section 44/a, there 

exists no poset [A; w), for which the lattices ^ and {G{A; w); ç:) are isomorphic. 
If we consider that G[A; u) is a principal filter in {F[A; u); ^ ) , determined by id^. 
and that the set of all atoms in {F[A; u); ^) has the same cardinal number as A (see 
section 34/c) evidently i f is not isomorphic to {F[A; u); ^) either. Yet ^ is an alge
braic lattice (see section 35, where another counterexample is exhibited). 
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46. Remark. Let us recall the following notation (see [5], section 54). oc, ß e E(Ä) 
ixud (X ^ ß, then we define 

{X, Y) e ßjoc o^, Vx e X Vj; e 7((x, y) e ß) 

for Л Ф 0 and for all X,Ye Ajoc. According to section 3, ßjoc = 0/0 = {(0, 0)} 
for A =Ф. 

Let a, /?, 7 e E(A). Then the following statements hold; the proof is left to reader. 
a) If a Ç ß, then ßjoc e £(Л/а). 
b) If a Ç jS and a ç у then ßja ç y/a iff ̂  ç y. 
c) For ô e £(Л/а) there exist exactly one equivalence ô' e E(^A) with a ^ ô' and 

such that ô = ö'\a. (If we define for any x, y e A the relation 6' by (x, y) G ̂ ' iff there 
exist X, YE Aja for which x G X, j ; G У and (Z, 7) G 5, then a ç (5', '̂ G E{A) and 
(57a = (5; the unicity of such d' follows from proposition b).) 

The mapping 
д H à' {д G £(Л/а)) 

is an isomorphism from the complete lattice (Е(Л/а); ^ ) onto the complete lattice 
{i^^ <(£(л);Е); ^ ) - (See [2] chap. II, section 3.) 

47. Lemma. Let Q G С ( Л ; W) and т G E^AJQ). Then т G G(AIQ; W^/J *) zĵ " t/zere 
é'x/sfs T' G {Q, < wz7/î T = T'IQ; such x' is unique (for a given т). T/ie mapping 

T |~> T'. ( T G G ( ^ / ^ ; W ^ / J ) 

zs azi isomorphism from the complete lattice [G^AJg; tz^/^); ^ ) ozzfo ?/ie complete 
lattice (<^, <; ^ ) . 

Proof. For Л = 0 the statement trivial (we have ^ = 0, AJQ = {0}, E(AIQ) = 
= G{AIQ; U ^ J = {{(0, 0)}}, T = {(0, 0)}, T' = 0 and (Q, < = {0}). Suppose Л Ф 0. 

Let TG G^AJQi tz^/J. We have G{AIQ', tz^/J Ç E(AIQ) and therefore, according to 
section 46/c, there exists a unique т' G <^, <(£(^);s) with т = т'/^. We shall show that 
T' G G ( ^ ; tz). The relation X G AJT' holds iff there exists ^ G (V4/^)/T, for which X/^ = 
= ^. Let n ^ 1 be a natural number and let 

Xj G Л/т' , (Хь X,- +1) G zi, (X„, Xo) G li , 

hold for all z = 0, .,., П — 1 and j = 1, ..., zi. Then for all j there exist Xy, xj G Xy 
such that (xi, x-+1) G tz, (x„, XQ) G tz for all z. There also exist Yj, Y- e Xjjg, for which 
the relations Xj e Yj, x) e YJ hold. Then (7^, 7/+i) G tz, (Xi, YQ) G M for all z. There
fore, 

(X,-/^, Xi+^jg) G (zi^/J*, (X,,/^, XQIQ) G (iz^/J*, 

*) We have Q G G(.4; U) and therefore (.4/^; z/^/e) is a poset; so G(A[Q; UA/Q) is defined. Let us 
recall that ^Q, < always denotes the interval in {G{A; u); ç;). 
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because from (F,-, Y-+^)e ù it follows that 

{Y„YU,)eùr^{AJQy^u^,^. 
We have 

TeG{AlQ;u^l,), {XjlQ)e{{Ale)lT), 

and therefore, according to section 2, XiJQ = XI^JQ for all i. So XQ = --• = X^ 
and therefore, according to section 2, т' e G(A; u). There follows т' e < ,̂ <• 

Suppose, conversely, that t' e < ,̂ <. Then, according to section 46/a, т = T'JQ 
is an equivalence on Ajg. Let n ^ 1 be an integer and let the relations 

!^j E {AIQ)IT, (iTЬ ^i^,)e (u^J , (^„, ^o) e (w^/,)' 

hold for all 7 = 0, ..., П and i = 0, ..., n -~ I. Then for all j there exist Xj, X] e ^^ 
such that for all / (Z^, Zj+i) G w /̂̂ , (X„, ZQ) e w /̂̂ . According to [5], section 17, 
is и /̂а = w /̂̂ , and so relations 

(x,-, x;+i)eii, , (x„, X;)EM^, 

hold for every XJEXJ and x}eX} (see [5], section 16; or section 1 of the present 
paper, page 259). By the above, (xy, x}) e т' and, via [5] section 13, it follows from 
the inclusion Q ^ т that u^ ^ u^'. Hence 

(x,-, x; + i)et/ , , , (x;+i,x,.+i)eT' ^ w,. 

and, from the fact that the quasiordering ŵ . is transitive on A, we get that (XQ, Xy) e 
e ŵ ' for all Xo e XQ and for all Xy e Xy. We have 

XQ e U^o ^ ^l'^' ' ^j ^ U^j e л/т' , 

and for all x G U^O ^^^ f̂^ ^̂ 1 У ^ U'̂ y we get (x, y) e u^' (see [5] section 15). There
fore (U^o? U^j) e Î̂ A/T'- Analogously, we derive the relation (U- ĵ? U-^o) ^ ^A/T'-

Since, by hypotheses, x' e G{A\ u), we get U^o = U<̂ y for all indices j (see lemma 2). 
This implies ^o = ^ i == ••• = ^«5 therefore, by lemma 2, т G G(AIQ; WA/J- *) 

We have derived that the mapping 

T К T' (T G G(/1/^; w^/J) 

is a bijection from G{Alg; u^/^ onto < ,̂ <. According to section 46/b, this mapping 
is an isomorphism from the complete lattice (G(AIQ; UAI^\ ^ ) onto the complete 
lattice «^, <; ç ) . 

*) This part of the proof also shows, that the relational structure 

{{AIQ)I{T'IQ)\ (tlA/Q)(A/Q)/(T'/Q)) 

is a poset for Q, T' G G(A; ii), Q Ç T\ This fact has been claimed in [5], section 55. 
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48. Corollary. Let Q, a e G(Ä; и), Q ^ a and let X e 4/(j^ Then for т e 
e G(XIQ, UX/Q) there exists exactly one element t^ e (<^ n X^<^rQrx. ^c with т = 
= '^'xKQnx2y The mapping 

'^x Ĥ  -^'x {т:хеС{Х1д; Ux/ç)) 

is an isomorphism from the complete lattice {G{XJQ\ UX/Q)', S ) onto the complete 

lattice {{Q n X \ <(G(X;H)-); ^ ) -

Proof. We have {Q n X^) e G{X; u) and Ых/^^г^х^) = (w n X^)^^^^^^2^ (see theorem 
6 and lemma 5). If in lemma 47 we substitute the set Ä for the set X, and the equi
valence Q for the equivalence Q n X^, then the proof follows. 

49. Remark. Let / be a set and let (X^; ŵ ) be posets for all г e / . Then we denote 
the cardinal product of the family {{Xi, w,))igj by fl {^ь u^. Let us recall that the 

iel 

base set of the poset П ( ^ ь ^t) ^^ usual cartesian product П ^ » ^^^ ^^^ ordering 
iel iel 

of и on Yl^i is defined as follows: 
iel 

{x.yeYl Xi) => {{x, y)eu o^f Vf e I{{x{i), y{i)) e и,)). 
iel 

The proof of the following statement follows directly from the definition of the 
cardinal product; 

a) Let {{Xi;Ui))i^j and {{Yi;Vi))içj be families of posets and let (pi'.Xi-^ У,-
be an isotonic isomorphism from {Xù u^ onto (У̂ -; v^ for every ieL Let us define 
a mapping (p -Yl^i -^ Yl^i as follows: 

iel iel 

{хеЦ Xi) => {(p{x) (/) =Df 9iW0)) • 
iel 

Then (p: Y\ Xi-^ Yl ^i ^^ ^^ isotonic isomorphism from the cardinal product 
iel iel 

Yli^i', Ui) onto the cardinal product Yli^h ^i)-
iel iel 

(The existence of an isomorphism follows also from the fact that the cardinal 
product is a product in the usual category Ord of posets, which is uniquely deter
mined, up to isomorphism.) Let us mention that the cardinal product of a family 
of lattices is the complete direct product of this family. 

50. Lemma. Let Q, a e G{A; u) and let Q ^ a. Let us define a mapping 

^ :Y\ iQnX\ <(G(X;u);e) "^ <^. <̂> 
XeAja 

as follows 

(28) (T 6 П <e ^ ^ '> <(G(X;„);S)) => (•/'(t) =Df U « ^ ) | X 6 Aja}) . 
XeAJa 

Then ф is an isotonic isomorphism from Yl {iQ ^ X^^ ^{с{х-и);^)'^ — ) ^^^^ 
{iQ, (T>; Ç ) . """^Z" 
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Proof. Let us denote С =Df П <Q ^ ^ ^ <(G(X;tO;̂ )- ^ ^ ^^^^^ ^^^^ ^^^^' ^^^^ 
ХеЛ/<т 

(28) defines a mapping ф : С -^ ig, a} correctly. Let т 6 С Then т(Х) e £(Z) for 
every X e A\G, The system Ajo is disjoint and therefore IA(T) = U{'̂ ^(^) | ^ ^ ^Z -̂} 
is an equivalence on A. We have ^ n X^ ^ т(Х) ^ X^ for all X e Aja and hence 

^ = U{^ n X^ I X e Л/ст} Ç U{<^) i X E Aja} = 

= ф{т) Ç и { ^ ^ | ^ е Л / а - } = CT. 

So <А(т)е <^, (j>(£(^).ç). Moreover T ( X ) G G ( X ; W ) for all X e Aja, because т{Х)е 
eig пХ^<(с(л:;„);-). Hence 

ф{т) n Z^ = T ( Z ) G G ( X ; M) . 

According to section 40, ф{т) e G{A; u), because ф(т:) ^ a e G(A; u) and ф(т) 
satisfies (18') in section 40. 

We have derived that ф(т) e {g, (ТУ(^Е(А);^) ^ ^{^1 ^) = ^Q^ ^>' ^^^ t e C. There
fore Ф : С -^ <^, cr>. We shall show that the mapping ф : С -^ {g, a} is a surjection. 
Let a e <^, a}. Then X^ n g ^ X^ n oc ^ X^ n a for a\\ X e Aja and via theorem 6 
we get 

Let us define a mapping 

a* : Aja - . U « ^ n X\ i^G(X;uy,^) \ X e Aja} 
as follows: 

{X e Aja) => (a*(X) ^^^ a n X^) . 

Evidently, a* 6 С and, by its definition, 

iA(a*) = U{a*(X) I Z e AJa} =[J{anX^\Xe AJa} = a . 

We have derived, that ф : С -^ <^g, c} is a surjection. Let us denote 

(C;f)=Df n«enz^<(c,x;„);s,; e). 

We shall show, that ф : С -^ {g, a} is an isotonic isomorphism from the cardinal 
product (C, г;) onto (<^, a}; ç ) . We have 

(t , , T2)evo VX e А1а{т,{Х) ^ x^iX)) о ф{т,) = 

= U { T I ( X ) i X e Aja} ç оЫ^) \ X e AJa} = IA(T,) 

for Ti, T2 e С (The second equivalence is a consequence of the fact, that Aja is a parti
tion of A and that the unions {т,̂ (Х) | X e Aja} /c = 1, 2, are disjoint; that means 
that Tj,(X) n Tk{Y) = 0 for X, Ye Aja with X Ф У.) 
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51. Theorem. Let g, a G G{A; и) and let g ç a,- Then the complete lattice 

(<^, a}; ^ ) is isomorphic to the cardinal product Yl {^i^JQl ^X/Q)I —)• 
XeA/(T 

Proof. According to sections 48 and 49/a, the cardinal products 

П (Gixle; ux/J; ^ ) , П «e П x\ ((«(x.); ,̂; я) 
XeA/ff XeA/a 

are isomorphic. Therefore, the proof follows directly from lemma 50. 

52. Remark. Theorem 51 guarantees the existence of a certain isomorphism. With 
the help of sections 48, 49/a and 50 this isomorphism can be constructed. 

53. Corollary. Let a e G{A; U). Then the complete lattice ( ) , a}; ^) is isomorphic 
to the cardinal product Yl (^(-^î ^ ) ' —)• 

XeA/a 

Proof. Let A' e Aja. Then 

X/id^ = A7(id^ n X^) = Xjidx = {{X}\XEX} 

and, by the definition of ù (see section 1) the following holds for all x, y e X: 

(x, y)euo ({x}, {j;}) eu n (XJidxY . 

Therefore the relation ù n (X/idj^)" is transitive and so 

It follows that the mapping x [-> {x} (x e X) is an isotonic isomorphism from (X; u) 
onto [Xl'idx; W;i:/id_̂ ). From section 20 we get that the lattices {G{X; U); Ç ) and 
[G(Xlidx; Wj/idx)? — ) ^^^ isomorphisms too. Since <id^, a} = ) , or>, we get, via 
theorem 51, 

(>,t7>;ç) and n(^(^K;^x/idJ;^) 
ХеА/(г 

are isomorphic and also 

П ( G ( X K ; u,„,^; я) and f l (0{Х; и); - ) 
XsA/cr XeA/a 

are isomorphic. 

54. Remark. Concluding this section, we shall notice the algebraic character of 
intervals in the lattices {F(A; U); ^) and {G[A; u); ^). This question is solved by 
means of the following statement a: (we suppose, that this statement is already known) 

a) Let câf = ( L ; ^ ) be an algebraic lattice. Then each interval (<a, b}^; ^ ) 
15 the algebraic lattice, for a,b eL, a ^ b. 
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Proof follows from the fact, that the set 

^ =Df {̂  V k\ к is a compact element in if, к ^ b} 

is evidently the set of compact elements in the complete lattice (<(̂ , ^>; ^ ) and for 
every X e (a, b} there exists K^ ^ К that x = sup K^. 

« a , b > ; ^ 

b) Intervals in {F(Ä; и); ^ ) and {G[A; U); Ç ) are algebraic lattices. 

Proof follows from a) and from theorems 33 and 30. 
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