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COMMUTATIVE SEMI-PRIMARY x-SEMIGROUPS

STEFAN PORUBSKY, Bratislava

(Received July 25, 1975)

In this paper we intend to prove some results on semi-primary semigroups equipped
with a system of x-ideals. Our effort was motivated by the results of the almost
coincidently entitled paper [3].

Let S be a commutative semigroup written multiplicatively. We say that a system
of x-ideals (or an x-s ystem) is defined in S if to every subset A4 of S there corresponds
a subset A, of S such that

(1) Ac A,
)] ’ A < B, implies A4, S B,
3) AB, < B, 0 (4B),

where AB is the set of all products ab with a in A and b in B. If A = A, we shall say
that A4 is an x-ideal. For the sake of brevity we shall call a semigroup equipped with
an x-system x-semigroup. This concept of x-ideals was introduced by AUBERT
in [1] following an idea of Lorenzen. For the details and the relationships to the
known ideal theories [1] may be consulted.

Proposition 1 of [1] shows that the family of all x-ideals of S forms a complete
lattice with respect to set-inclusion. The union within this lattice will be called the
x-union and denoted by U,, i.e. '

Ue A2 = (Y 42),.

The x-product of two subsets A and B of S is defined as the set (4B), and denoted
by A o B. It follows from Theorem 1 of [1] that 4o B = A - B, = A, o B, for any
subsets 4 and B of S. In the sequel A} or A" means the x-product of n factors A4, or
the usual product of n factors A4, respectively.

An x-ideal P, is said to be prime if ab € P, implies a € P or b € P,. An x-ideal Q
is said to be primary if ab € Q, and a ¢ Q, imply b" € Q, for some positive integer n.
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Lemma 1 (Aubert [1]). The x-ideal P, is prime if and only if A,oB, < P, and
A, & P, imply B, < P,.

The (nilpotent) radical /A, of A, is the set of all elements b in S such that b" € A,
for some (positive) integer n. The operation of forming the radical has a number of
expected properties, e.g. \/(4, o B,) = /(4, n B,) = /A, N /B, and the following
lemma holds.

Lemma 2 (Aubert [1]). The radical of an x-ideal A, is the intersection of all
prime x-ideals containing A,.

An x-system is said to be of finite character if for N finite, A, = U N, for every
subset A of S. Ned,

Lemma 3 (Aubert [1]). An x-system is of finite character if and only if the
set-theoretic union of any chain of x-ideals is an x-ideal.

Let S be an x-semigroup. Put Q, = (N A, . (It may happen that Q, is void.) An
Ass

element 1t is nilpotent if t" € Q, for some n. An x-ideal A4, is nil if each element of 4,
si nilpotent. The radical of Q, (the x-nilradical of S) is the set of all nilpotent
elements in S and according to Lemma 2 it equals the intersection of all prime
x-ideals in S. The x-nilradical of S is half-prime, that is it coincides with its radical.
Proposition 12 of [1] immediately yields the following lemma.

Lemma 4. For any two x-ideals A, and B, we have A, o B, < /9, if and only
if A,nB, c./Q..

An x-ideal A, is called semi-primary if its radical /A, is a prime x-ideal. Com-
mutative x-semigroup is semi-primary if its each x-ideal is semi-primary. For
instance, valuation rings are semi-primary.

Theorem 1. Let S be an x-semigroup with non-void x-radical \/Q, and let |/,
be a proper (* S) prime x-ideal. Then an x-ideal A, is nil if and only if there is
a non-nil B, with A, n B, < /Q,.

Proof. We know from Lemma 4 that 4, n B, < /@, is equivalent to 4, - B, <
c \/ Q.. Since \/ Q. is a proper x-ideal, there is a non-nilpotent element ¢ in S. Now,
if A, is nil we have, say, (t), oA, S A, < \/ Q.. The reverse statement of the theorem
follows from the fact that \/Q, is i)rime.

Corollary. If S is a semi-primary x-semigroup with at least one nilpotent element
and A, N By is nil then at least one of the x-ideals A, and B, is nil.

Theorem 2. Let S be an x-semigroup and & such a system of x-ideals in S that
each x-ideal not in & is semi-primary. Then for any two prime x-ideals A, and B,

we have either A, " B,€ & or A, and B, are ordered under the set-inclusion.
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Proof. If A, n B, is not in & then A, N B, is semi-primary. But A, n B, =
= /A4, 0 /B, = {/(A, n B,) which implies that A, n B, is prime. On the hand,
A, N B, 2 A, - B, and therefore A, " B, 2 A, or A, n B, 2 B,.

Corollary 1. In a semi-primary x-semigroup, prime x-ideals form a chain.

Corollary 2. If in an x-semigroup the x-ideals different from Q, are semi-primary
then for any two prime x-ideals A, and B, either A, N B, = Q, or A, 2 B, or
B, 2 A,.

Corollary 3. A semi-primary x-semigroup S with SoS = S is quasi-local (i.e.
with a unique maximal x-ideal).

Theorem 3. Let S be an x-semigroup. Then the following statements are
equivalent:
(1) S is a semi-primary x-semigroup.
(2) Every principal x-ideal of S is semi-primary.
(3) Prime x-ideals of S form a chain.
(4) The radicals of all the x-ideals in S form a chain.

The proof of the equivalence of the first three statements runs along the same lines
as the proof of Theorem 1 in [3]. The equivalence between (3) and (4) is an easy
exercise.

Theorem 4. Let S be a semi-primary x-semigroup. Then for any two finitely
generated x-ideals A, and B, we have either A™ < B, or B® < A, for some n.

k
Proof. Since S is semi-primary, \/4, < /B, may be assumed. Let 4, = U, (a;)..
i=1

Then a7 € B, for some m and every i = 1,..., k. According to Theorem 1 of [1]
the x-multiplication is distributive with respect to the x-union and therefore
A" = B

Corollary. In a semi-primary x-semigroup the principal x-ideals generated by
idempotents form a chain.

To show that Theorem 4 cannot be extended to all x-ideals we borrow the following
example from [4]. Let R = F[x,] U F[x,, x,] U F[x,, X;, Xx3] U ..., where F is
a field and {x,, x,, X3, ...} is a countable set of indeterminates such that x} = 0,
x;x; = x;x; and x;a = ax; for all a € F and i. Every ideal in R is primary and thus R
is semi-primary. Let 4, and 4, be ideals generated by {x,, x3, Xs, ...} and {x,, X4,
X5 } respectively. If 47 = A, for some n, then f* = 0 for every f e A; which is
not true. Similarly A} ¢ A, for all n.
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Theorem 5. A sufficient condition for an x-semigroup to be semi-primary is that
for any two x-ideals A, and B, there is an integer n (depending on A, and B.)
with Ay < B, or By < A,.

Proof. If A, and B, are any two prime x-ideals in S then we have, say, A% < B,
for some n. But then A, < B, and Theorem 3 completes the proof.

Corollary. Let S be an x-semigroup of finite character satisfying the ascending
chain condition for x-ideals. Then S is semi-primary if and only if to any two
x-ideals A, and B, there is an integer n with Ay < B, or B} < A,.

To prove this corollary recall that in an x-semigroup of finite character with ACC
for x-ideals each x-ideal is finitely generated.

Theorem 6. Let S be a semi-primary x-semigroup. If A, is finitely generated
then A% is contained in a principal x-ideal for some n.

k
Proof. Let 4, = U, (a;),. We know that the radicals \/(a;), for i =1,..., k
i=1

form a chain. Let \/(a,), contain all the remaining ones. Then a7 € (a,), for some m
and all i = 1, ..., k which yields 4™ < (a,), and the proof is complete.

The (unique) maximal ideal of the ring R from the example above shows that the
theorem does not hold for arbitrary x-ideals.

Corollary 1. If P, is a finitely generated prime x-ideal in a semi-primary x-semi-
group then P, is the radical of a principal ideal.

We know from the previous proof that P} < (a), for some ae P, and thus

Ja). = P,

Corollafy 2.In a semi-primary x-semigroup no finitely generated prime x-ideal P,
is the set-theoretic union of prime x-ideals properly contained in P,.

P, is the radical of a principal x-ideal which is generated by one of its elements
and therefore this element cannot belong to a prime x-ideal properly contained in P,.
The next theorem originates in'[2]. It is only another version of Lemma 3.4 of [2]
in terms of x-ideals and its proof can also be rewitten from [2] without difficulties.

Theorem 7. Let S be a quasi-local x-semigroup of finite character with S o S = S.
Then S is a semi-primary x-semigroup satisfying the ACC for prime x-ideals if
and only if for any prime x-ideal P, different from Q, there exists a prime x-ideal
N(Px) properly contained in P, such that for each prime x-ideal P, properly in P,
we have P, = N(P,).
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Corollary. Let S be a local (i.e. quasi-local with ACC for x-ideals) x-semigroup
of finite character with S« S = S. Then S is semi-primary if and only if for every
prime x-ideal P, % Q. the x-union of all prime x-ideals properly contained in
P, is a prime x-ideal properly contained in P,.

An x-semigroup S will be called (von Neumann) quasi-regular if a € (a)? for each
a € S. Plainly, an x-semigroup is quasi-regular if and only if A2 = A4, for every
x-ideal A,. An x-semigroup S is said to be regular if it is quasi-regular and its x-
system enjoys the property that (a), = {a} U aS for every a € S (this is the so-called
Lorenzen’s x-system, cf. [1]). A semigroup S equipped with a Lorenzen’s x-system
is regular if and only if every principal x-ideal in S is generated by an idempotent.
Quasi-regular x-semigroup S need not be regular. Perhaps the simplest example of
this kind is obtained in the case when S is equipped with an x-system consisting
from only one x-ideal S.

Theorem 8. Let S be a quasi-regular x-semigroup. Then the following statements
are equivalent:

(1) Every x-ideal in S is prime.

(2) S is a semi-primary x-semigroup.
(3) Principal x-ideals of S form a chain.
(4) All x-ideals of S form a chain.

If in addition S is regulbr then the statements above are equivalent with

(5) Principal x-ideals generated by idempotents form a chain.

Proof. (2) implies (3). For any two principal x-ideals (a), and (b), we have, say,
(a)r < (b), according to Theorem 4. But S is quasi-regular and thus (a); = (a),.

(3) implies (4). Let A, & B,. Then there exists a € A, — B,. Now for any b in B,
we have b € (b), < (a),, that is B, < (a), and also B, S A,.

The rest of the proof can follow the lines of proof of Theorem 2 in [3].

Corollary 1. Let S be a semi-primary x-semigroup. Then every x-ideal in S is
prime if and only if S is quasi-regular.

The proof of this and the next corollary is based on the same ideas as the proofs
of Corollary 1 and 2 of [3].

Corollary 2. Let S be a semigroup equipped with a Lorenzen’s x-system. Then
every x-ideal in S is prime if and only if S is regular and principal x-ideals
generated by idempotents form a chain.
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