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ON A CONJECTURE OF THE SEMIGROUP
OF FULLY INDECOMPOSABLE RELATIONS

CHONG-YUN CHAO, Pittsburgh

(Received September 3, 1975)

The purpose of this note is to show that the conjecture in [4] does not hold in
general. In order to avoid the multiplications of large matrices, we shall use some
of the properties of directed graphs to show that, for each integer n = 5, there
exists a primitive binary relation ¢ on a set of n points such that none of the ¢"s
is fully indecomposable for i = 1,2, ..., n.

A binary relation on a finite set Q = {ay, a,, ..., a,} of n elements, n > 1, is
a subset of Q x Q = {(a;, a;); a;, a;€ 2}. Let B = B(Q) be the set of all binary
relations on Q. (When there is no confusion, an element in B is also called a relation
on @, or just a relation). Then B is a semigroup with the multiplication defined as
follows: for ¢ and 7 in B, (a;, a;) € ¢t if there is a a, € Q such that (a;, a;) € ¢ and
(ax> a;) € 7. Let  be the universal relation on @, i.e., » = Q x Q, and 4 = {(a;, a;);
a;e Q} Also, let M, denote the set of all n X n matrices over the Boolean algebra
of {0, 1}, then M, is a semigroup under the ordinary matrix multiplication, and the
map ‘

e > M(e) = (mi;)

where

i,j .
0 otherwise,

_ {1 if (a;a;)ee, and

is an isomorphism of B onto M,. Let X, be the set of all directed graphs on n vertices
with allowable loops and simple directed edges. Each matrix in M, can be considered
as the adjacency matrix of a directed graph Yin X,, and it determines Y uniquely up
to isomorphism. Also, each graph in X, with labelled vertices determines a unique
matrix in M, as its adjacency matrix. Hence, there is an one-to-one correspondence
among B, M, and X,:

e > M(e) - Y(o) .
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Let B, = B,() consist of all binary relations on Q with pr;(¢) = pri(e) = 2
where

a ={xeQ; (a,x)ee}, ea; = {yeQ; (y,a)eq},
pri(e) = Uea; and prye) = Uae.
Jj=1 j=1

Clearly, B, is a subsemigroup of B. This means that, if ¢ € B,, then none of the
columns and none of the rows in M(g) consist of all zeros, and every vertex in the
graph Y(g) € X, is incident with at least one incoming edge, and at least one outgoing
edge. (A loop is considered both as an incoming edge and as an outgoing edge).
An element g € By is said to be decomposable if there is a 7 belonging to the group IT
of all permutation relations on  such that M(men~') is of the form

(1) (ﬁ j’))

where B and D are square matrices of sizes s x sand (n — s) x (n — s) respectively,
and 1 £ s < n — 1. Otherwise it is called indecomposable. An element g € B, is
said to be partly decomposable if there are two elements w; and =x, in IT such that
M(m,0m,) is of form (1). Otherwise it is called fully indecomposable. Let I = I(<),
F = F(Q) and H = H(Q) be, respectively, the set of all indecomposable relations
in By, the set of all fully indecomposable relations in B, and the set of all relations
in B, each of which contains a permutation relation. H is called the Hall relations
on Q. F and H are semigroups, in fact, F is a two sided ideal of H (see Theorems 1.2
and 2.3 in [4]). We note that if a matrix contains an s X (n — s) zero submatrix
for some s, 1 < s < n — 1, then the matrix does not belong to F. A relation g € B,
is said to be primitive if there is an integer k = k(g) such that ¢* = w. Clearly, a prim-
itive relation is indecomposable. The set of all primitive relations in B, is denoted
by P = P(Q). As stated in [4], we have

By>I>PoF,

A graph Yin X, is said to be strongly connected if, for any two vertices in Y, there
is a directed path in Y from one vertex to the other. If ¢ is decomposable, then the
corresponding graph Y(p) is not strongly connected. If ¢ € P, then the corresponding
graph Y(Q) is strongly connected. However, the converse does not hold, e.g., a di-
rected n-cycle is strongly connected, but its corresponding binary relation does not
belong to P. WIELANDT, in [6], was the first to state that for any g € P, there is
a least integer k = k(g), called the index of primitivity of ¢, such that ¢* = w and
k < (n — 1)* + 1. It was proved by many others, e.g., HOLLADAY and VARGA [3].
(Wielandt and others dealt with the n x n matrices with non-negative real entries,
but as far as the primitivity and the index of primitivity concern, they are the same as
the n x n matrices over the Boolean algebra of {0, 1}). As stated on pp. 162—163
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in [4]: “To any ¢ € P there is a least integer I, = I,(¢) = 1 such that ¢ € H, and
a least integer I, = I,(¢) = I, such that 02 e F. The problem to find exact upper
bounds for I; and I, (in terms of n) seems to be (at this writing) rather difficult.
There are some reasons for the following

Conjecture. For any g € P, we have I, = l,(g) < n".

Here, we show that the conjecture does not hold in general. To find the exact
upper bounds for I/; and I, remains to be very difficult and unanswered. Let Q =
= {a,, a,, ..., as} and g € By = By(2) such that

01000
00101
00010].
10000

l1toooo0l

M=M(Q)=

Then M2, M3, M*, M®, M® and M'° are respectively

001017 [10010] [11000
10010 [11000| [0o1101
10000f, {[01000(, [00101],
01000 |00101 10010
lo1000] loo100l l1o0010l
011017 [1011 17 1111
10111 11010 11111
10010, [11000|and 11101
11000 [o1101 11111
11000/ Jo1101] 11111

Hence, ¢!'! = w and g is primitive. With some suitable permutations of rows and

columns, we see none of ¢’ for i = 1, 2, ..., 5 belonging to F, e.g., for M*, we have
00001 11000 10000 11000]
00010 01101 00010 11000
00100 00101 00100|=|00101
01000 10010 01000 00111
10000 10010 00001 10010
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which is of form (1), and ¢* is partly decomposable, i.e., 0* ¢ F. The corresponding

graph Y(o) is
5

4

4 3

In fact, we can prove the following

Theorem. For each integer n = 5, there exists a primitive binary relation @
on Q = {ay, a,, ..., a,} such that none of the o' is fully indecomposable for i =
=1,2,...,n

In order to avoid the multiplication of large matrices in our proof, we shall use
some of the elementary properties of directed graphs, namely, the following

Lemma 1. Let M = M(g) be the adjacency matrix of the graph Y = Y(g). Then,
in M' = (mj;), my; is 1 (is 0) if and only if there is at least one directed path (no
directed path) of length t from the vertex k in Y to the vertex lin Y.

Proof. It follows from the definition of adjacency matrix and the definition of
matrix multiplication over the Boolean algebra of {0, 1}.

Lemma 2. Let g € B, and Y = Y(g) be the corresponding graph. If every vertex
of Yis on a k-cycle (not necessarily a simple k-cycle), then 4 < ¢.

Proof. It follows from Lemma 1.

Lemma 3. Let Z be a directed graph on n vertices such that each vertex of Z has
a loop and Z contains a simple n-cycle, and let p be its corresponding binary
relation in By = Bo(Q). Then p"~' = w and p is primitive.

Proof. It is sufficient to assume u = 4 U ¢ where ¢ corresponds to the simple
n-cycle in Z. Let M = M(4 U o), then M = I + X where I is the identity matrix
corresponding to 4 and X = (x; ;) is the matrix corresponding to ¢. Since X is the
adjacency matrix of the simple n-cycle, we have, for any i; such that 1 < i; < n,

Xiyia = Xig,is = Xizig = = Xipegyin = Xig,ip = 1

where iy, i,, ..., i, are pairwise distinct. By Lemma 1, in X* = (x})), x¥ .. =1
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for k =1,2,...,n — 1. Consequently,
M ' =(I+Xy'=I+X+X"+..+X"!

consists of all one’s. Hence, " ~! = w and p is primitive.

Now the proof of our Theorem goes as follows:

Case 1. n is odd = 5. Let m = (n + 3)/2. Construct a directed graph Y on n
vertices with two directed cycles with length m and length m — 1 having one edge
in common.

m+1

Let ¢ be the binary relation in B, = B,(Q) corresponding to Y. We claim that ¢
is primitive:
We show 4 < ¢"*2. Every vertex of Yis on the cycle of length n + 2.

1-2-3>5...-m->1-2->m+1->m+2->...->n-1.

Hence, by Lemma 2, 4 < ¢"*2.

Let Z be the directed graph on n vertices corresponding to ¢"*2. We show that Z
contains a simple (n + 2)-cycle. Here the notation 1 — ‘m means that, in Y, the
vertex 1 reaches the vertex m by (n + 2)-length. Since m = (n + 3)/2 and since the
two cycles in Y differ by 1 length, we have

l-m->"n->"m—-1-"n—-1-"m—-2-...>"m+1-"3-5"2->"1.

Since 4 < ¢"*2, every vertex in Z has a loop. By Lemma 3, ¢"*?2 is primitive, and so
is o.

We claim that none of the ¢”’s belongs to F fori = 1,2, ..., n:

In the graph Y, we know that both m — i and n — i vertices reach 1 by (i + 1)-
length for i =0,1,2,..,m — 4, ie, in the matrix M'** = (m;%'), we have
Mim>iy1 = mi 2y | = 1, and the rest of (m — i)th row and (n — i)th row are zeros.
Since M'*! contains an 2 x (n — 2) zero submatrix, we have o'*! ¢ F for i =
=0,1,2,....,m — 4. ‘
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Similarly, in M™"2, mT,—zz = 7112",,.121),2 = 1 and the rest of 4th row and (m + l)th

row are zeros. Since M™~2 contains an 2 x (n — 2) zero submatrix, we have
Q"TP¢F

H — : +1-4 +1-4 +1-4 +1-4
SHEIJ?EIX’ forl =3,4,..,m+1,in M™ , My = Mt 1yq = My ms1-2)=
= Mys1),m+1-2) = 1, and the rest of 4th row and (m + 1)th row are zeros. Since

M™*1=% contains an 2 x (n — 2) zero submatrix, we have @"*!"*¢ F for | =
=3,4,...,m+ 1.

Hence, ¢ is primitive and none of ¢’ belongs to F fori = 1,2, ..., n.

Case 2. n is even > 5. Let m = (n + 4)/2. Construct a directed graph U on n

vertices with two directed cycles of length m and length m — 1 having two edges
in common.

n-1 .., m+2
n ’ m+1
1 P 3
m 4
s . . -. :

Let 7 be the binary relation in B, = Bo(®) corresponding to U. We claim that =
is primitive: .
We show 4 < "3, Every vertex of U is on the cycle of length n + 3.
12235, . omo1-2-53-m+1->om+2->..->n-1.
Hence, by Lemma 2, 4 < t"*3.

Let V be the directed graph on n vertices corresponding to t"*3. We show that V

contains a simple (n + 3)-cycle. Since m = (n + 4)[2 and since the two cycles in U
differ by one length, we have

lo-'msno"m—-1-"n—-1->"m—-2->..>'m+1-
-4 -5'352-5"1

where 1 — *m means, in U, the vertex 1 reaches the vertex m by (n + 3)-length.

. 3 ) TN
Since 4 < %3 every vertex in V has a loop. By Lemma 3, t"*3 js primitive, and so
is .
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In the graph U, we know that both m — i and n — i vertices reach 1 by (i + 1)-
length for i =0,1,2,...,m — 5, ie, in the matrix M'*!' = (m{'), we have
mipl = mf,f_ii),l =1, and the rest of (m — i)th row and (n — i)th row are zero.
Since M'*! contains an 2 x (n — 2) zero submatrix, we have t'*' ¢ F for i =
=0,1,2,...,m — 5.

Similarly, in M™% and M™" 2, m%35> = m{,, %, , = 1, and m%3* = mZ",,,_+21),3 =
=1, and the rest of 5th row and (m + 1)th row are zeros. Since each of M™™*
and M™~? contains an 2 x (n — 2) zero submatrix, we have t" > ¢ F and t" 2 ¢ F.

Similarly, for [ = 4,5, ...,m + Lin M™*'=° mT37'7% = m{ 00 = meiaiios =
= m{y ) m+1-3) = 1, and the rest of Sth row and (m + 1)th row are zeros. Since
M™*475 contains an 2 x (n — 2) zero submatrix, we have t"*'"°¢F for | =
=45 ...,m+ 1.

Hence, 7 is primitive and none of t’ belongs to F for i = 1,2, ..., n.

Remark. It is well known [6, 5, 3,2, 1] that if g € P and 4 < p, then the index of
primitivity is <n — 1. Also, Proposition 3.2 in [4] states that if e P and 4 = ¢
then ¢ € F. Consider g€ P and 4 < ¢. Since g € P, Y(Q) is strongly connected and
every vertex in Y(g) is on a cycle, not necessarily a simple cycle. Say, the smallest
length of such a cycle in Y(g) is t, then ¢' € P, 4 < o' and o' € F. However, unfor-
tunately, in general this 7 is not the least integer such that ¢* € F. In the above example
of the directed graph on 5 vertices, we have t = 7, but ¢® € F.

References

[1] Dulmage, A. L. and Mendelsohn, N. S.: Gaps in the exponent set of primitive matrices, Illinois
J. of Math. 8 (1964), 642—656.

[2] Heap, B. R. and Lynn, M. S.: The index of primitivity of a non-negative matrix, Numerische
Math. 6 (1964), 120—141.

[3] Holladay, J. C. and Varga, R. S.: On powers of non-negative matrices, Proc. Amer. Math.
Soc. 9 (1958), 631—634.

[4] Schwarz, S.: The semigroup of fully indecomposable relations and Hall relations, Czecho-
slovak Math. J., 23 (1973), 151—163.

[5] Schwarz, S.: A new approach to some problenis in the theory of non-negative matrices,
Czechoslovak Math. J., 16 (1966), 274—283.

[6] Wielandt, H., Unzerlegbare, nicht negativen Matrizen, Math. Zeit. 52 (1950), 642 —648.

Author’s address: University of Pittsburgh, Faculty of Arts and Sciences, Department of Mathe-
matics, Pittsburgh, Pennsylvania 15260, U.S.A.

597



		webmaster@dml.cz
	2020-07-03T01:07:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




