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MATCHINGS IN INFINITE GRAPHS^) 

P. J. MCCARTHY, Lawrence 

(Received January 26, 1976) 

1. Introduction. Let G be a graph with vertex-set V and edge-set E. All terms 
undefined in this paper have their meaning in [1]. Thus, the graph G has no loops or 
multiple edges. It may be finite or infinite. If G is infinite and each vertex of G has 
finite degree, then G is called locally finite. 

A matching in G is a set M of edges of G such that each vertex of G is incident 
with at most one edge in M. A matching M in G is called perfect if each vertex of G 
is incident with exactly one edge in M. A perfect matching in G is also called a 1-f actor 
of G. A matching M in G meets a vertex i; of G if i; is incident with an edge in M. 
If d is a positive integer and if M is a matching in G which fails to meet exactly d 
vertices of G, then M is said to have defect d. 

In this paper we prove several theorems concerning the existence of matchings 
in infinite graphs. In section 2 we obtain a general result and apply it to squares and 
fine graphs of infinite graphs. In section 3 we give new proofs of two known results, 
and in section 4 we extend a result of PLESNIK on finite regular graphs to infinite 
graphs. 

2. Squares and line graphs. We use the following version of Rado's selection 
theorem: it is proved by modifying only shghtly the proof of Rado's theorem in 
[5, p. 52]. 

Let {A^ : e e E) be a family of nonempty finite subsets of a set S. Let {Ef : i el} 
be a collection of finite subsets of E such that if i,j el then there exists к el such 
that El u Ej £ E^, and E = U{^i • Ï e^}- For each i el, ^^t fi : Ei -^ S be a map
ping such that fi{e) e A^ for each e e E^. Then there exists a mapping f : E -^ S 
such that 

(a) f(e) e A^ for each e e E, and 

(b) for each i el there exists j el such that E^ ^ Ej and f | £j = fj I £^. 

Ъ Research supported in part by University of Kansas Grant 3239—5038. 
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If я is a subgraph of G, we denote its vertex-set by V(H) and its edge-set by E[H), 
If F g £, we denote the set E[H) n F by H n F. Note that if M is a matching in G, 
then Я n M is a matching in Я . 

Theorem 1. Let [Hi : i el] be a collection of finite subgraphs of G, each without 
isolated vertices, such that 

(*) ^f hi ^I then there exists к el such that £(Я,) u E[Hj) Q E[Hj^), and E = 
= и{£(Я,):/е/}. 

For each i el, let Mi be a matching in Hi. Then there is a matching M in G such 
that for each i el there exists] el such that Hi is a subgraph of Hj and Hi n M = 
= Hl n Mj. Furthermore, let d be a nonnegative integer and Л a set of vertices 
of finite degree of G. If Mi fails to meet at most d vertices in V{Hi) n Ä for each 
i el, then M fails to meet at most d vertices in A. In particular, if Mi meets all 
vertices in V[Hi) n A for each i el, then M meets all vertices in A. 

Proof. We apply the selection theorem with A^ = {0, 1} for each e e E, and f̂  = 
= E[Hi) for each i e I. Note that each £(Я,) is nonempty, since the vertex-set .of 
a graph is always nonempty and Hi has no isolated vertices. For each i e / , let 
fi :E{Hi) -> {0, 1} be defined by Д в ) - 1 if e e M,- and fi{e) = 0 if e ф Mi. By the 
selection theorem there is a mapping / : £ -> {0, 1} such that for each i e / there 
exists jel such that £(Я,) ^ E{Hj) and / 1 E{Hi) = fj \ £(Я,). Since Hi h'ds no 
isolated vertices, it is a subgraph of Hj. Let M = [e : e e E and f(e) = l} . If ei, ^2 e 
e E, Ci Ф e2, then there is an i el such that e^, ^2 e E{H^. With j el as above, we 
have / (^ i ) = fj{ei) and /(^2) = //(^2)- Thus, if e^ and ^2 ^^^ adjacent we cannot 
have both / (e i ) = 1 and/(e2) = 1. Therefore, M is a matching in G. 

Now let iel, and let jel be as above. If eeE{H^ then /(e) =" fj{c)^ Thus, 
e e Hi n M if and only if e e Hi n Mj. Hence, Hi n M = Hi n Mj. 

Finally, suppose that d and A are as in the statement of the theorem, and suppose 
that M fails to meet d + 1 vertices in A, say v^, ..., f^+i- Then, these vertices and all 
their incident edges belong to some Я,-. If j e / is such that Я,- is a subgraph of Hj 
and Hi n M = Hl n Mj, then Mj fails to meet v^, ..., v^+i, all of which are in 
V{Hj) n A. 

We denote by G^ the square of G [1, p. 46]. It was proved in [3] and in [6] that 
if G is a finite connected graph with an even number of vertices, then G^ has a perfect 
matching. Our next results show that this holds for locally finite graphs, but not for 
all infinite graphs. 

Theorem 2. If G is a connected infinite graph, then G^ has a matching which meets 
each vertex of finite degree. 

Proof. Let {Vi : i el} be the set of all finite subsets of F with an even number of 
elements and which induce connected subgraphs of G. Let Я,- be the subgraph of G 
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induced by F ,̂ and let K^ be the subgraph of G^ induced by F .̂ Then {K^ : lei} 
satisfies the condition (*) of Theorem 1 relative to G .̂ Since Я? is a spanning sub
graph of Ki, and Я? has a perfect matching, so also does Ki. Therefore, this theorem 
follows from Theorem 1. 

Corollary. The square of a connected locally finite graph has a perfect matching. 

The following is an example of an infinite graph whose square has no perfect 
matching. 

Example L Let G^ be the graph with vertices VQ, V^, V2, ..., Wi, U2, ..., and edges 
u„v„ and VQV„, n = 1 ,2 , . . . . The graph G^ has the additional edges VoU„, n = 1,2, ..., 
and VjjjV„, m, и = 1, 2, ..., m Ф n. The set {u„v„ : n = 1, 2, ...} is a matching of defect 
one in Gj and in GJ . Let M be a matching in GI which meets VQ: then for some m, 
either VQU^ or VQVJ„ is in M. If M meets u„ for all w ф m, then w„t;„ e M for all n ф m: 
hence, either u^ or z;̂  is not met by M. Thus, M is not a perfect matching, and we 
conclude that G^ has no perfect matching. 

We denote by L[G) the line graph of G [1, p. 182]. It was proved in [3] and in [6] 
that a finite connected line graph with an even number of vertices has a perfect 
matching. This also can be extended to locally finite graphs, but not to all infinite 
graphs. First we note a more general result. 

Theorem 3. / / G is a connected infinite graph with no induced K(l, 3), then G 
has a perfect matching which meets each vertex of finite degree. 

Proof. Let {Hi : i el] be the same collection of subgraphs of G used in the proof 
of Theorem 2: it satisfies condition (*) of Theorem 1. Since G has no induced K(l, 3), 
and since each Я^ is an induced subgraph of G, each Я^ has no induced K{1, 3). 
Hence, by [6, Corollary 2], each Hi has a perfect matching. Thus, this theorem 
follows from Theorem 1. 

Corollary 1. Ä connected locally finite graph with no induced K(l, 3) has a perfect 
matching. 

Corollary 2. Ä connected infinite line graph has a matching which meets each 
vertex of finite degree. 

Corollary 3. / / G is a connected locally finite graph, then L{G) has a perfect 
matching. 

Corollary 2 follows from the fact that a line graph has no induced K{1, 3). Corollary 
3 is a consequence of the fact that the line graph of a connected locally finite graph 
is itself connected and locally finite. In fact, these are the only connected infinite 
graphs with locally finite line graphs. The next example shows that the line graph of 
a connected infinite graph need not have a perfect matching. 
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Example 2. Let P be the path with three vertices and for n = 1, 2, ..., let W„ be 
K{1, 3): we assume that P and the ^„'s have mutually disjoint vertex-sets. Let VQ 
be the middle vertex of P and let v„ be the center of the star W„. Let м be a vertex of 
none of these graphs, and let G2 be constructed by joining и to each of VQ, V^, t;2, . . . 
The line graph L ( G 2 ) consists of a complete graph К with a denumerable number 
of vertices, a complete graph CQ with three vertices, and complete graphs C„, n = 
= 1,2,.. . , with four vertices. The graphs CQ, C^, C2, ... have mutually disjoint 
vertex-sets, each has one vertex in common with K, and each vertex of X is a vertex 
of exactly one of them. The set of edges of L(G2) consisting of a maximum matching 
in each of CQ, C^, C2, . . . is a matching of defect one in ^(02). A matching in L(G2) 
which meets all vertices of C^, C2, ... cannot meet all three vertices of CQ. Therefore, 
L ( G 2 ) has no perfect matching. 

Note that it is not simply the existence of a vertex of infinite degree in a connected 
infinite graph that causes its square or line graph to fail to have a perfect matching. 
For, both b(Gi) and G2 have perfect matchings. 

3. Locally finite graphs. The two theorems proved in this section are due essentially 
to BRUALDI [2, Theorems 4 and 5]: he stated them in the case d = 0, but his proofs 
can be adapted to the more general case. Brualdi's proof of Theorem 4 used Rado's 
theorem applied to sets of vertices. Our proof makes use of Theorem 1, i.e., it makes 
use of Rado's theorem applied to sets of edges. 

Theorem 4. Let A be a set of vertices of finite degree of a connected infinite 
graph G. Let d be a nonnegative integer. Suppose that for each finite subset A^ 
of A there is a matching in G which fails to meet at most d vertices in A'. Then, 
there is a matching in G which fails to meet at most d vertices in A. 

Proof. For each finite subset A' of A, let H(A') be the subgraph of G induced by 
the set of edges of G incident with vertices in A\ Then H(A') is a finite subgraph of G 
without isolated vertices. Now consider all subgraphs of G which can be obtained by 
adding a finite number of edges of G not incident with vertices in A, and their incident 
vertices, to H(A') for some A\ The collection {Я,- : iel} of subgraphs of G so ob
tained satisfies condition (*) of Theorem L If a vertex z; in Л is a vertex of Я^, then 
every edge of G incident with v is an edge of Я^. Hence, by hypothesis, Hi has 
a matching which fails to meet at most d vertices in V[Hi) n A. This theorem follows 
now from Theorem L 

If X ^ F, then G ~ X denotes the graph that remains after the vertices in X and 
their incident edges have been removed from G. An odd component of a graph is 
one with an odd number of vertices. Let A Q V. For a finite subset X of F we denote 
by PG,A{^) the number of odd components of G — Z all of whose vertices are 
contained in A. We write p^ for PG,V-

Theorems. Let A be a set of vertices of finite degree of a connected infinite 
graph G. Let d be a nonnegative integer. There is a matching in G which fails to 
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meet at most d vertices in A if and only if PG,A{^) й Щ + ä for every finite subset 
XofV. 

When G is locally finite, J = 0, and A =^ V, Theorem 5 is a result due to TUTTE [9]. 

Theorem 5'. A connected locally finite graph G has a perfect matching if and only 
if PG{X) ^ \x\ for every finite subset X fo V. 

We shall prove Theorem 5 using Theorem 4 and the finite graph version of Theorem 
5. The latter was proved in [4] to be a direct consequence of the finite graph 
version of Theorem 5', which is also due to Tutte [8]. 

P r o o f of T h e o r e m 5. Suppose that there is a matching M in G which fails to 
meet at most d vertices in A. Let Z g К Let Cj, ..., Ĉ  be odd components of G — X 
all of whose vertices are contained in A. Each C,- has at least one vertex, say Vi, not 
met by an edge in M having both end-vertices in K(C,). At least t — d oï the vertices, 
Vi, ..., v^ are joined to distinct vertices in X by edges in M. Hence, t — d ^ \X\, i.e.,, 
r ^ | j ^ | + d. This proves the necessity of the condition. 

Conversely, suppose that the condition holds. Let A' be a finite subset of A, let В 
be the set of all vertices of G adjacent to vertices in A\ and let H be the subgraph 
of G induced by A' u B. Then H is a finite subgraph of G. If we show that there is 
a matching in H which fails to meet at most d vertices in A\ then we will have verified 
the hypothesis of Theorem 4, and the required matching in G will exist. 

Let X ^ A' и В and let С be an odd component of H - X with V{C) g A\ 
If a vertex of G -- X is adjacent to a vertex of C, then it is in B, Hence, it is a vertex 
of C, and so we conclude that С in an odd component of G — X with F(C) g A. 
Therefore, PU,A'{X) й PG,A{X) ^ \x\ -\- d. Consequently, by the finite graph version 
of Theorem 5, there is a matching in H which fails to meet at most d vertices in A\ 

Corollary. Let G and A be as in Theorem 5. There is a matching in G which 
fails to meet only a finite number of vertices in A if and only if 

sup {РО,А(Х) - \X\ : X ^ V and X finite} 

is finite. 

4. Perfect matchings in infinite regular graphs. The finite graph version of the 
following theorem was proved by PLESNIK [7]. 

Theorem 6. Let G be an (r — lyedge connected infinite regular graph of degree 
r > 0. If F ^ E and | F | = r — 1, then G has a perfect matching M with M n F = 0. 

Proof. Let G' be the graph with vertex-set Kandedge-set E\F. Let X g V,X finite, 
and let Cj, ..., C„ be odd components of G' — X. Let к be the number of edges of G 
having exactly one end in X: then к ^ r\x\ since G is regular. Let 7 = V[(X u 
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y ^ ... u Vn), where Vi = V'(C,-), i = 1, ..., n. Since F is infinite, У ф 0. For 
,• ^ 1 ..., п, let 

5,- = the number of edges of G with one end in Kj and the other in X, 

ti = the number of edges of G with one end in Vi and the other in V\{X u F^), 

^i == the number of edges of G with one end in Vi and the other in У, 

and let 

q = the number of edges of G with one end in У and the other in X. 
If d^ is the sum of the degrees of the vertices of C ,̂ then since G is (r — l)-edge 
connected, 

di ^ гЩ ~ (5, + t^) й гЩ ~ (г - 1) = r{\Vi\ - 1) + 1 . 

The number on the right is odd, while di is even: hence г — 1 < 5̂  + ti, i.e., r S 
^ 5f + ti. (This part of the argument is due to Plesnik.) Thus, m S Yji^i + ^0 
(all summations are from 1 to n). It follows also from the fact that G is (r — l)-edge 
connected that r — 1 ^ q + Y,^i' 

Now let us estimate J]^- All edges of G with one end in some Vi and the other 
in V\(X u Vi) are in F, Some of these edges have one end in some Vi and the other 
in Y: they are ^ ^ i in number. Some of these edges have one end in some F̂  and the 
other in some Vj with j Ф i: they are at most r ~ 1 — Y^^i ^^ number, and they are 
counted twice in determining the sum of the f/s. Thus, 

X̂ • s Ъ: + 2(r - 1 - X«0 = 2(r - 1) - Y.4i. 
Then, 

fc = « + Esi = g + Yi^i + t^ -Y^U^q + rn- 2{r - 1) + X«; è 

"^ rn — 2{r ~ l ) + r— l = r n - - r + l . 

Thus, | x | ^ n -" 1 + l / r > n — 1, i.e., | z | ^ /г. Therefore, by Theorem 5', G' has 
a perfect matching, which is also a perfect matching in G and which contains no edge 
in F. 

Corollary. Let G be as in Theorem 6. If e e E, then G has a perfect matching M 
with e e M. 

Proof. Let V be the vertex at one end of e, and let F = {e : e e E, e is incident 
with t?, and e ^ e\> Since G is regular of degree r, | F | = r ~ 1. By the theorem, G has 
a perfect matching M with M n F = 0. Since M meets v, we must have e e M. 
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